Этанол источник получения. Можно ли пить этиловый спирт: виды использования и возможные последствия для организма

углеводов . Пиво употребляли еще в древнем Вавилоне , а изготовление вина известно с пятого тысячелетия до н. е. Возможно получение свободного этанола дистилляцией впервые было задокументировано арабскими алхимиками примерно в 10-м веке [ ].

В зависимости от содержания воды, способа получения и цели использования существует много различных етаноловмисних продуктов. Наибольшее широкого потребления получила смесь 95,6 мас. % Этанола и 4,4 мас. % Воды, такое содержание этилового спирта максимально возможный при обычной фракционной перегонки, потому что это соотношение образует азеотропную смесь с температурой кипения 78,15 C.

Кроме пищевых продуктов этиловый спирт в большом количестве потребляется как топливо , растворитель и как сырье в различных промышленных процессах. Для промышленных нужд этиловый спирт часто производят с нефтяной и газовой сырья каталитической гидратацией этилена .


1. Физические свойства и строение

Этиловый спирт - бесцветная жидкость со слабым "алкогольным" запахом. Плотность его 0,789 г / см 3. Температура кипения 78,3 С. С водой смешивается в любых пропорциях. Этиловый спирт является хорошим растворителем для многих органических, а также неорганических веществ.

Молекулярная формула этилового спирта C 2 H 6 O, или C 2 H 5-OH. Структурная формула:


2. Промышленные способы добывания

В промышленных масштабах этиловый спирт добывают тремя способами: спиртовым брожением сахаристых веществ, гидролизом целлюлозы и синтетическим способом.

2.1. Брожения сахаристых веществ

Способ брожения сахаристых веществ является старейшим. Исходным веществом для этого способа служат природные продукты, богатые крахмал : картофель , зерна пшеницы , ржи , кукурузы и т.д., а также целлюлоза .

Для превращения крахмала в сахаристые вещества его сначала подвергают гидролизу. С этой целью растертую картофель или муку заваривают горячей водой, чтобы ускорить набухание крахмала, а затем добавляют солод , т.е. растертые с водой проросшие зерна ячменя. В солоде содержится особый фермент (органическое вещество, которое играет роль катализатора), под воздействием которого происходит оцукровування (гидролиз) крахмала, т.е. превращение его в глюкозу . Этот процесс суммарно изображают следующим уравнением:

  • nC 6 Н 10 О 5 + nН 2 O = nC 6 Н 12 O 6

После окончания процесса гидролиза к смеси добавляют дрожжи, под влиянием которых глюкоза подвергается брожению, то есть превращается в спирт и диоксид углерода :

  • C 6 H 12 O 6 = 2C 2 H 5-OH + 2CO 2

По окончании брожения жидкость подвергают перегонке и получают спирт-сырец, содержащий около 90% этилового спирта и различные побочные продукты - пропиловый спирт C 3 H 7-OH, изобутиловый C 4 H 9-OH и изоамиловый C 5 H 11-OH (так называемые сивушные масла), которые предоставляют сырца неприятного запаха и делают его ядовитым.

Спирт-сырец ректификують (очищают) разгонки на специальных ректификационных колонках и получают спирт ректификат (очищенный), который содержит 96% этилового спирта и 4% воды. При таком соотношении спирт и вода образуют нераздельно кипящую смесь (азеотроп). Поэтому методом перегонки можно получить 100%-ного спирта. Безводный, или так называемый абсолютный, спирт получают лишь для специальных целей обработкой спирта безводным сульфатом меди CuSO 4, который поглощает остатки воды и превращается в медный купорос CuSO 4 5H 2 O, который затем отделяют. В настоящее время используют более современные методы. Самый простой - это осушка над активированными молекулярными ситами (3 или 4 Анстрем). Лучший - сначала обработка металлическим натрием (преимущественно с ним реагирует вода с образованием NaOH и водорода), затем ректификация. Окончательно сохраняют над молекулярными ситами.


2.2. Гидролиз целлюлозы

Картофель и зерно, на переработке которых базируется производство этилового спирта по предыдущим способом, - довольно ценные пищевые продукты. Поэтому их пытаются заменить непищевой сырьем. В связи с этим теперь уже нашел широкое применение способ получения спирта из целлюлозы, которая по своему химическому составу близка к крахмала.

Этот способ основан на способности целлюлозы (клетчатки) подвергаться гидролизу под действием кислот с образованием глюкозы, которую затем сбраживают на спирт при помощи дрожжей. С этой целью отходы дерева (опилки, стружку), нагревают в автоклавах с 0,3-0,5%-ной серной кислотой под давлением 7-10 атм. Целлюлоза при этом, подобно крахмалу, гидролизует:

  • (C 6 H 10 O 5) n + nH 2 O = nC 6 H 12 O 6

По окончании процесса кислоту нейтрализуют мелом :

  • H 2 SO 4 + CaCO 3 = CaSO 4 ↓ + CO 2

Малорастворимый сульфат кальция отфильтровывают, а раствор подвергают брожению, добавив дрожжи . Затем раствор направляют на ректификационные колонки для отгонки спирта.

Полученный таким способом этиловый спирт называют гидролизным. Его применяют только для технических целей, поскольку в нем содержится целый ряд вредных примесей, в частности метиловый спирт , ацетон и т.п..

С одной тонны древесины можно получить до 200 дм 3 спирта. Это означает, что 1 т древесины может заменить 1 т картофеля или 300 кг зерна.


2.3. Добыча синтетического спирта

Этот способ основан на способности этилена, при определенных условиях, в реакции гидратации, т.е. присоединение воды с образованием этилового спирта. Процесс проводят в специальном контактном аппарате под давлением более 50 атм и температуре 280-300 С в присутствии фосфорной кислоты в качестве катализатора.

3. Лабораторные методы получения этанола

Существует также еще достаточно много лабораторных методов получения этанола.

3.1. Гидролиз галогенпроизводных углеводородов

Этанол образуется при гидролизе галогенозамищеного этана . Поскольку реакция может проходить в обоих направлениях, ее проводят в присутствии щелочей или карбонатов для смещения равновесия вправо.

3.2. Гидратация этилена

Реакция проводится аналогично промышленном метода получения синтетического этанола.

3.3. Восстановление карбонильных соединений

Восстановление карбонильной группы в гидроксильной является довольно распространенным лабораторным методом получения

Хмельные напитки, в состав которых входит этанол - одноатомный винный спирт, знакомы человечеству с древности. Их готовили из меда и перебродивших фруктов. В древнем Китае в напитки добавляли также рис.

Спирт из вина был получен на Востоке (VI -VII вв.). Европейские ученые создали его из продуктов брожения в XI в. Российский царский двор познакомился с ним в XIV в.: генуэзское посольство презентовало его как живую воду («аква вита»).

Т.Е. Ловиц, русский ученый XVIII в., впервые получил опытным путем абсолютный этиловый спирт при перегонке с использованием поташа - карбоната калия. Для очистки химик предложил применять древесный уголь.

Благодаря научным достижениям XIX -XX вв. стало возможным глобальное использование спиртов. Ученые прошлого разработали теорию строения водно-спиртовых растворов, исследовали их физико-химические свойства. Открыли способы брожения: циклический и непрерывно-проточный.

Значимые изобретения химической науки прошлого, которые сделали реальным полезное свойство спиртов:

  • ратификационный аппарат Барбе (1881)
  • брагоперегонный тарельчатый аппарат Саваля (1813)
  • разварник Генце (1873)

Был открыт гомологический ряд спиртовых веществ. Проведены серии экспериментов по синтезу метанола, этиленгликоля. Передовые научные исследования послевоенных лет XX века помогли улучшить качество производимой продукции. Подняли уровень отечественной спиртовой промышленности.

Распространение в природе

В природе спирты встречаются в свободным виде. Вещества также являются компонентами сложных эфиров. Естественный процесс брожения содержащих углеводы продуктов создает этанол, а также бутанол-1, изопропанол. Спирты в хлебопекарной промышленности, пивоварении, виноделии связано с использованием процесса брожения в этих отраслях. Большая часть феромонов насекомых представлена спиртами.

Спиртовые производные углеводов в природе:

  • сорбит — содержится в ягодах рябины, вишни, имеет сладкий вкус.

Многие растительные душистые вещества - это терпеновые спирты:

  • фенхол - компонент плодов фенхеля, смол хвойных деревьев
  • борнеол - составной элемент древесины борнеокамфорного дерева
  • ментол - компонент состава герани и мяты

Желчь человека, животных содержит желчные многоатомные спирты:

  • миксинол
  • химерол
  • буфол
  • холестанпентол

Вредное воздействие на организм

Повсеместное использование спиртов в сельском хозяйстве, промышленности, военном деле, транспортной сфере делают их доступными для рядовых граждан. Это становится причиной острых, в том числе массовых, отравлений, летальных исходов.

Опасность метанола

Опасным ядом является метанол. Он токсично воздействует на сердце, нервную систему. Прием внутрь 30 г метанола приводит к смерти. Попадание меньшего количества вещества - причина тяжелых отравлений с необратимыми последствиями (слепотой).

Предельно допустимая его концентрация в воздухе на производстве - 5 мг/м³. Опасны жидкости, содержащие даже минимальное количество метанола.

При легких формах отравления проявляются симптомы:

  • озноб
  • общая слабость
  • тошнота
  • головные боли

По вкусу, запаху метанол не отличается от этанола. Это становится причиной ошибочного употребления яда внутрь. Как отличить этанола от метанола в домашних условиях?


Медную проволоку сворачивают спиралью и сильно накаляют на огне. При ее взаимодействии с этанолом чувствуется запах прелых яблок. Соприкосновение с метанолом запустит реакцию окисления. Станет выделяться формальдегид - газ с неприятным резким запахом.

Токсичность этанола

Этанол приобретает токсичные и наркотические свойства в зависимости от дозы, способа попадания в организм, концентрации, длительности воздействия.

Этанол способен вызвать:

  • нарушение работы ЦНС
  • рак пищевода, желудка
  • гастрит
  • цирроз печени
  • болезни сердца

4-12 г этанола на 1 кг массы тела - смертельная разовая доза. Канцерогенным, мутагенным, токсичным веществом является ацетальдегид - основной метаболит этанола. Он изменяет мембраны клеток, структурные характеристики эритроцитов, повреждает ДНК. Изопропанол похож на этанол токсическим воздействием.

Производство спиртов и их оборот регулируются государством. Этанол не признан юридически наркотиком. Но его токсичное воздействие на организм доказано.

Особенно разрушительным становится влияние на головной мозг. Уменьшается его объем. Происходят органические изменения нейронов коры мозга, их повреждение и гибель. Возникают разрывы капилляров.

Нарушается нормальная работа желудка, печени, кишечника. При чрезмерном употреблении крепкого алкоголя появляются острые боли, диарея. Слизистая оболочка органов желудочно-кишечного тракта повреждается, застаивается желчь.

Ингаляционное воздействие спиртов

Общераспространенное использование спиртов во многих отраслях промышленности создает угрозу их ингаляционного воздействия. Токсичное воздействие исследовали на крысах. Получены результаты приведены в таблице.

Пищевая промышленность

Этанол - основа алкогольных напитков. Его получают из сахарной свеклы, картофеля, винограда, злаковых культур - ржи, пшеницы, ячменя, другого сырья, содержащего сахар или крахмал. В процессе производства применяются современные технологии очистки от сивушных масел.

Они подразделяются на:

  • крепкие с долей этанола 31-70 % (коньяк, абсент, ром, водка)
  • средней крепости - от 9 до 30 % этанола (ликеры, вина, наливки)
  • слабоалкогольные - 1,5-8 % (сидр, пиво).

Этанол является сырьем для натурального уксуса. Продукт получается при окислении уксуснокислыми бактериями. Аэрирование (принудительное насыщение воздухом) - необходимое условие процесса.

Этанол в пищевой промышленности не единственный спирт. Глицерин - пищевая добавка Е422 - обеспечивает соединение несмешиваемых жидкостей. Его используют при изготовлении кондитерских, макаронных, хлебобулочных изделий. Глицерин входит в состав ликеров, придает напиткам вязкость, сладкий вкус.

Применение глицерина благоприятно влияет на продукцию:

  • клейкость макарон уменьшается
  • консистенция конфет, кремов улучшается
  • предотвращается быстрое зачерствение хлеба, проседание шоколада
  • выпекание изделий происходит без налипания крахмала

Распространено использование спиртов как сахарозаменителей. Для этого по свойствам подходят маннит, ксилит, сорбит.

Парфюмерия и косметика

Вода, спирт, парфюмерная композиция (концентрат) - основные компоненты парфюмерных продуктов. Они используются в разных пропорциях. Таблица представляет виды парфюмерных изделий, пропорции главных составных частей.

В производстве парфюмерной продукции этанол высшей очистки выступает растворителем душистых веществ. При реакции с водой образуются соли, которые выпадают в осадок. Раствор несколько дней отстаивается и фильтруется.

2-фенилэтанол в парфюмерной и косметической промышленности заменяет натуральное розовое масло. Жидкость обладает легким цветочным запахом. Входит в состав фантазийных и цветочных композиций, косметического молочка, кремов, эликсиров, лосьонов.

Основной базой многих средств по уходу является глицерин. Он способен притягивать влагу, активно увлажнять кожу, делать ее эластичной. Сухой, обезвоженной коже полезны крема, маски, мыла с глицерином: он создает на поверхности влагосберегающую пленку, сохраняет мягкость кожного покрова.

Существует миф: что использование спирта в косметике вредно. Однако эти органические соединения - необходимые для производства продукции стабилизаторы, носители активных веществ, эмульгаторы.

Спирты (особенно жирные) делают средства по уходу кремообразными, смягчают кожу и волосы. Этанол в шампунях и кондиционерах увлажняет, быстро испаряется после мытья головы, облегчает расчесывание, укладку.

Медицина

Этанол в медицинской практике используют как антисептик. Он уничтожает микробы, предупреждает разложение в открытых ранах, задерживает болезненные изменения крови.

Его подсушивающее, обеззараживающее, дубящее свойства - причина использования для обработки рук медицинского персонала до работы с пациентом. Во время искусственной вентиляции легких этанол незаменим как пеногаситель. При нехватке медикаментозных средств становится компонентом общей анестезии.

При отравлении этиленгликолем, метанолом этанол становится противоядием. После его приема уменьшается концентрация токсичных веществ. Применяют этанол в согревающих компрессах, при растирании для охлаждения. Вещество восстанавливает организм при лихорадочном жаре и простудном ознобе.

Спирты в лекарственных средствах и их воздействие на человека исследует наука фармакология. Этанол как растворитель используют при изготовлении экстрактов, настоек целебного растительного сырья (боярышника, перца, женьшеня, пустырника).


Принимать эти жидкие лекарственные средства можно только после врачебной консультации. Необходимо строго следовать предписанной медиком дозировке!

Топливо

Коммерческая доступность метанола, бутанола-1, этанола - причина использования их в качестве топлива. Смешивают с дизельным топливом, бензином, применяют как горючее в чистом виде. Смеси позволяют уменьшить токсичность выхлопных газов.

Спирт, как альтернативный источник горючего имеет свои минусы:

  • у веществ повышенные коррозийные характеристики, в отличие от углеводородов
  • если в топливную систему попадет влага, произойдет резкое снижение мощности из-за растворимости веществ в воде
  • существует риск возникновения паровых пробок, ухудшения работы двигателя из-за низких температур кипения веществ.

Однако газовые и нефтяные ресурсы исчерпаемы. Поэтому применение спиртов в мировой практике стало альтернативой использования привычного топлива. Налаживается их массовое производство из отходов промышленности (целлюлозно-бумажной, пищевой, деревообрабатывающей) - одновременно решается проблема утилизации.

Промышленная переработка растительного сырья позволяет получить экологически чистое биотопливо - биоэтанол. Сырьем для него является кукуруза (США), сахарный тростник (Бразилия).

Положительный энергетический баланс, возобновляемость топливного ресурса делают производство биоэтанола популярным направлением мировой экономики.

Растворители, поверхностно-активные вещества

Кроме производства косметики, парфюмерии, жидких лекарственных средств, кондитерских изделий спирты еще являются хорошими растворителями:

Спирт как растворитель:

  • при изготовлении металлических поверхностей, электронных элементов, фотобумаги, фотопленок
  • при очистке натуральных продуктов: смол, масла, воска, жиров
  • в процессе экстракции - извлечения вещества
  • при создании синтетических полимерных материалов (клея, лака), красок
  • в производстве медицинских, бытовых аэрозолей.

Популярные растворители - изопропанол, этанол, метанол. Также используют многоатомные и циклические вещества: глицерин, циклогексанол, этиленгликоль.

Поверхностно-активные вещества производят из высших жирных спиртов. Полноценный уход за автомобилем, посудой, квартирой, одеждой возможен благодаря ПАВ. Они входят в состав чистящих, моющих средств, используются во многих отраслях экономики (см. таблицу).

Отрасль ПАВ: функции, свойства
Сельское хозяйство Входят в состав эмульсий; увеличивают продуктивность процесса передачи растениям питательных веществ
Строительство Уменьшают водопотребность бетона, цементных смесей; увеличивают морозостойкость, плотность материалов
Кожевенная промышленность Предотвращают слипание, повреждения изделий
Текстильная промышленность Снимают статическое электричество
Металлургия Снижают трение; способны выдержать высокие температуры
Бумажная промышленность Разделяют вареную целлюлозу от чернил в процессе переработки использованной бумаги
Лакокрасочная промышленность Способствуют полному проникновению краски на поверхности, включая небольшие углубления

Применение спиртов в пищевой промышленности, медицине, производстве парфюмерии и косметике, использование в качестве топлива, растворителей, поверхностно-активных веществ положительно сказывается на состояние экономики страны. Приносит удобство в жизнь человека, но требует соблюдения техники безопасности из-за токсичности веществ.

Этанол (этиловый спирт, метилкарбинол, винный спирт или алкоголь, часто в просторечии просто «спирт») - одноатомный спирт сформулой C 2 H 5 OH, второй представитель гомологического ряда одноатомных спиртов, при стандартных условиях летучая, горючая, бесцветная прозрачная жидкость.

Биологическое действие

Одним из основных механизмов, определяющим биологическое (преимущественно токсическое) действие этилового спирта, является его мембранотропная активность, образование ацетальдегида, а также метаболические эффекты, обусловленные истощением пула восстановленного НАД.Н.

Влияние на клеточные мембраны

Первичным биологическим эффектом этилового спирта является действие его на клеточные мембраны. Это действие неспецифично и определяется полярным и неполярным взаимодействием его с мембранами клеток из-за наличия сильных водородных связей, образующихся в результате поляризации оксигрупп.

Такое взаимодействие удерживает этиловый спирт в водной фазе. Растворяясь в воде и, частично, в мембранных липидах, он вызывает разжижение (флюидизацию) клеточных мембран. При длительном воздействии этиловым спиртом увеличивается содержание холестерина в мембранах, изменяется структура фосфолипидного слоя, разжижение мембран клеток способствует возникновению их ригидности.

Кроме того, нарушается трансмембранный перенос ионов кальция, снижается возбудимость мембран.

Метаболизм и этанол

Механизмы биотрансформации этилового спирта приводят к образованию токсического ацетальдегида, а также к накоплению восстановленной формы НАД.Н.

Этанол, ферменты

Механизм метаболических нарушений при острой алкогольной интоксикации связывают с развитиемстресса и выбросом в кровь аденокортикотропных гормонов (АКТГ), глюкокортикоидов и адреналина.

При длительном воздействии этанола на организм на первый план выступает прямое действие этилового спирта на обмен белков, жиров и углеводов. Этиловый спирт и ацетальдегид задерживают и изменяют направление многих реакций энергетического обмена. Причиной этих нарушений считается смещение соотношения НАД.Н/НАД в сторону редуцированного коэнзима.

Не менее важное значение имеет повреждающее действие этилового спирта на субклеточные мембраны с повышением их проницаемости, торможением активности Na+ -, K+ -АТФаз и способности к захвату ионов кальция.

В печени, сердце и скелетных мышцах этиловый спирт уменьшает напряжение кислорода, активность глютамат- и малатдегидрогеназ, НАД.Н-цито-хромС-оксидоредуктазы, переключает дыхательную цепь на преимущественное окисление янтарной кислоты, снимая щавелевоуксусное ингибирование сукцинатдегидрогеназы.

Этанол и обмен липидов

Этиловый спирт, нарушая обмен липидов, вызывает накопление жира в печени - стеатоз. Он проявляется гепатомегалией, жировой инфильтрацией, распадом белков субклеточных структур и гидропической дистрофией гепатоцитов. В паренхиме органа содержание триглицеридов возрастает в 20-25 раз, как и фосфолипидов, холестерина и его эфиров.

Содержание триглицеридов возрастает тем интенсивнее, чем тяжелее алкогольная интоксикация. Поражение прогрессирует по схеме: жировая дистрофия → алкогольный гепатит → цирроз. Считается, что в развитии таких последствий влияния этанола, как гепатит, цирроз печени, кардиомиопатия, функциональные и структурные нарушения в ЦНС, важную роль играют нарушения обмена Ca++ из-за повреждения клеточных мембран. Массивное поступление его в клетку на фоне снижения активности Na+ и Ka+ -АТФаз приводит к структурно-функциональным сдвигам, вплоть до развития некроза.

Этанол и обмен витаминов

К метаболическим эффектам этилового спирта относится полигиповитаминоз, возникающий вследствие замедления всасывания и нарушения метаболизма многих витаминов. Этиловый спирт тормозит всасывание тиамина и уменьшает кишечно-печеночную циркуляцию фолиевой кислоты.

Ацетальдегид усиливает распад пиридоксаль-5-фосфата, т. к. происходит его вытеснение из связи с белками, вследствие чего он становится более доступным гидролитическому действию основной фосфатазы. Кроме того, этиловый спирт снижает концентрацию витамина А в печени и тормозит превращение его в активный ретинол.

Этанол и водно-солевой обмен

Алкоголь - один из неблагоприятных факторов, влияющих на водно-солевой обмен. При хронической алкогольной интоксикации изменяется баланс ионов и воды в тканях, что приводит к расстройствам сердечно-сосудистой, эндокринной и нервной систем. Нарушения водного и электролитного обмена не происходят изолированно, вне связи друг с другом.

Существенные сдвиги в содержании воды, натрия и калия в организме ставят под угрозу жизнь клетки. Молярная концентрация плазмы крови - наиболее важный показатель водно-солевого гомеостаза. Молярные концентрации внутрисосудистой интерстициальной и внутриклеточной жидкостей считаются одинаковыми, несмотря на то, что внутриклеточная жидкость содержит больше анионов. Это объясняется образованием так называемых поливалентных ионов и анионов при связывании анионов с протеинами. Такие поливалентные анионы выступают как осмотически активные единицы, уменьшающие число осмотически активных анионов.

Градиент молярных концентраций между жидкостными пространствами организма является одним из механизмов, осуществляющих поток воды между ними, - вода будет перемещаться в сторону водного пространства с большей молярной концентрацией. Ионы мочевины и Na+ не могут быть использованы каналами, проходимыми для воды, хотя радиус молекулы воды больше, чем радиус Na+ (0,15 нм и 0,1 нм соответственно).

Поступление воды в организм регулируется чувством жажды, а выделение воды почками регулируется нейрогуморальным путем при участии нейропептидного гормона - вазопрессина, образующегося в нейронах супраоптического ядра гипоталамуса. При этом установлено, что гормональный эффект вазопрессина осуществляется посредством аденилциклазной системы. При снижении молярной концентрации плазмы крови секреция вазопрессина прекращается и развивается водный диурез, при гидратации и повышении молярной концентрации плазмы крови секреция вазопрессина возрастает и вода задерживается в организме.

Этанол и гормоны

Обнаружено также, что этанол приводит к существенному снижению лютеинизирующего гормона (ЛГ) в сыворотке крови . Это позволяет предположить, что этанол снижает уровень ЛГ в сыворотке крови путем уменьшения выброса люлиберина из гипоталамуса. В настоящее время привлекательной представляется концепция, что снижение алкоголем уровня ЛГ опосредуется эндогенными опиатами, энкефалинами, эндорфинами. Согласно имеющимся данным, эндогенные опиаты принимают участие в функционировании обратной связи, поддерживающей продукцию ЛГ, поскольку было установлено, что налоксон, например, устраняет ингибирующее тестостерона на продукцию ЛГ. Таким образом, предполагается, что выделившиеся под влиянием алкоголя эндогенные опиаты усиливают ингибирование секреции ЛГ.

Введение алкоголя приводит к повышению активности печеночной тестостерон А-редуктазы. Это повышение активности фермента способствует усиленному метаболическому клиренсу тестостерона. Установлено также, что продукция тестостерона при этом снижается, следствием чего является уменьшение его концентрации в плазме крови. При этом обнаружен более высокий уровень периферического превращения тестостерона в эстрадиол при циррозе печени.

Очевидно, что ускорение превращения тестостерона вэстрадиол связано с возникновением портального шунта при циррозе печени, который повышает доставку тестостерона к периферическим тканям, способным осуществлять взаимопревращение стероидов. Существует аргументированное мнение, что этанол обладает выраженной способностью модифицировать деятельность гормональной системы организма.

Этанол и железы внутренней секреции

Нет практически ни одной эндокринной железы, функция которой не изменялась бы при развитии алкоголизма. Уровни воздействия этанола на эндокринные комплексы чрезвычайно разнообразны; это и влияние на секрецию рилизинг-факторов, изменение гормонпродуцирующей деятельности клеток гипофиза, поражени босинтетических систем клеток периферических эндокринных желез, количественные и качественные изменения метаболизма гормонов в печени, а также нарушение комплексообразования гормонов со специфическими рецепторами и с транспортными белками.

Естественно, что такое полигландулярное воздействие на эндокринную систему и широкий спектр поражения этанолом механизмов действия гормонов создает специфическую картину алкогольных эндокринопатий, многочисленность и взаимодействие которых часто не позволяет установить первичные и биологически более значимые эндокринные расстройства, которые могут носить этиопатогенетический характер для синдромологии алкоголизма.

К числу характерных гормональных нарушений, возникающих при хроническом употреблении этанола у мужчин, в частности, относятся, наряду с симптомами гипогонадизма, импотенция, бесплодие, феминизация и ряд других изменений.

Помимо центрального действия на системы, регулирующие и осуществляющие синтез гнадотропинов, токсический эффект этанола в отношении половых стероидов реализуется через непосредственное воздействие на стероидогенез. Показано, по крайней мере, несколько возможных механизмов ингибирования этанолом или ацетальгидом синтеза андрогенов в тестикулах.

Во-первых, алкоголь или его метаболиты могут угнетать непосреднно биосинтез тестостерона, снижая активность ферментов, участвующих в этом процессе. Во-вторых, окисление этанола и его метаболитов в тестикулах может вызывать увеличение отношения НАД.Н/НАД в клетках семенников. И наконец, этанол и его метаболиты могут взаимодействовать с гормональными рецепторами как опосредованно, так и независимо влиять на синтез цАМФ в тестикулах

Этанол существенно подавляет активность алкогольдегидрогеназы, увеличивает образование ацетальдегида, который не успевает окисляться в ацетат, и, накапливаясь в организме, определяет многие токсические эффекты алкоголя, приводящие к существенным изменениям метаболизма различных органов и тканей

Известно, что в норме цитозольный фермент алкогольдегидрогеназы (АДГ) превращает ацетальдегид в эндогенный этанол, содержание которого в крови невелико, но относительно постоянно. У больных алкоголизмом активность этого фермента в крови повышена как в периоды употребления, так и в период ремиссии. Вместе с тем при повышенной активности АДГ катализируемая ею реакция смещается в сторону образования ацетальдегида из этанола, что способствует его накоплению в организме.

В результате происходит запуск каскада биохимических реакций, приводящих к образованию и накоплению в тканях веществ, обладающих психотропным действием, способствующих формированию алкогольного абстинентного синдрома (ААС) и патологического влечения к алкоголю (ПВА). Исследования последних лет показали, что в качестве ингибитора активности АДГ является эмитин, который в терапевтических дозах (≈ 0,01 г) снижает активность АДГ в сыворотке крови и ослабляет ПВА.

Этанол и сердечно-сосудистая система

Изучение особенностей поражения миокарда у пожилых больных, страдающих алкоголизмом (АЛГ), показало, что при высоком уровне толерантности к этанолу поражение миокарда происходит по типу алкогольной кардиомиопатии, которой сопутствуют атеросклеротические поражения сосудов сердца и аорты. При относительно невысоком уровне толерантности у больных АЛГ пожилого возраста развитие патологии миокарда идет по атеросклеротическому типу. Наличие так называемых «светлых промежутков» при запойных формах АЛГ в определенной степени тормозит развитие токсически обусловленных патологических изменений в миокарде и печени.

Определение артериального давления (АД) в течение суток у мужчин в возрасте 36 лет, регулярно принимающих этанол более 80 г/сутки, показало, что фаза наркотического действия этанола характеризуется нормализацией АД, в то время как при снижении уровня алкоголя в организме до фоновых значений наблюдается артериальная гипертензия . Отказ от потребления алкоголя на третьи сутки нормализовал суточный профиль АД без антигипертензивной терапии.

Результаты эпидемиологических исследований умеренного потребления алкоголя при заболеваниях сосудов показали, что прием этанола в дозе 12-24 г/сутки ведет к снижению заболеваемости и смертности от ишемической болезни сердца (ИБС). В то же время злоупотребление алкоголем, наоборот, ведет к росту патологии как коронарных, так и периферических сосудов. Однако необходим взвешенный подход к рекламации умеренного потребления этанола для профилактики ИБС.

Литература

Баженова А. Ф., БаженовЮ. И., Крайнова Е. Б. Влияние этанола на потребление кислорода различными органами и тканями в раннем онтогенезе белых крыс // Физиология организмов в нормальном и экстремальном состояниях: Сб. ст. Томск, 2001.

Баженова А. Ф., Виноградова Е. В., Инокова Н. Н. Влияние алкоголя на по- требление кислорода тканями белых крыс // Физиологические механизмы природных адаптаций: Сб. ст. Иваново, 1999. Ю. И. Баженов, А. Ф. Баженова, Я. Ю. Волкова Влияние этанола нафизиологические функции организма

БаженовЮ. И., Катаева Л. Н., Краснова Т. А. Влияние алкогольной инток- сикации взрослых белых крыс на эритропоэз их потомства на ранних этапах постна- тального онтогенеза // Эколого-физиологические проблемы адаптации: Материалы X Международного симпозиума. М., 2001.

БуровЮ. В., Ведерникова Н. Н. Нейрохимия и фармакология алкоголизма. М., 1985.

Жихарева А. И., Абубакирова О. Ю. Механизм повреждающего действия алкоголя на печень // Физиология организмов в нормальном и экстремальном состоя- ниях: Сб. ст. Томск, 2001.

Жиров И. В., Огурцов П. П., Шелепин А. А. Изменение суточного профиля артериального давления под влиянием систематического потребления алкоголя // Вестн. Рос. ун-та дружбы народов. Сер. Медицина. 2000. № 3. . Кершегольц Б. М. Этанол и его метаболизм в высших организмах. Якутск, 1990.

ЭТИЛОВЫЙ СПИРТ (синоним: этанол, гидроксиэтан, алкоголь, винный спирт) - наиболее известный представитель класса спиртов, обладающий специфическим физиологическим действием на организм человека и животных. Этиловый спирт применяют в медицине как антисептическое средство, используют для растираний и компрессов, как растворитель при приготовлении жидких лекарственных форм и как консервирующее средство при изготовлении анатомических препаратов (см. Препараты анатомические). В биохимических, клинико-диагностических,санитарно-гигиенических лабораториях и в химико-фармацевтической промышленности этиловый спирт является одним из наиболее употребимых растворителей и реагентов. Как сырье или вспомогательный материал этиловый спирт используется более чем в 150 различных производствах, в том числе в пищевой и лакокрасочной промышленности, парфюмерии, в производстве порохов, кинопленки и фотопленки, а также в качестве сырья для получения ряда химических продуктов (например, этилацетата, хлороформа, этилового эфира). В некоторых странах этиловый спирт применяется как моторное топливо.

Благодаря спиртовому брожению (см.), осуществляемому с помощью микроорганизмов, образование этилового спирта из углеводов (см.) распространено как в природе, так и в быту и с древности освоено человеком. В малых количествах этиловый спирт содержится в природных водах, почве, атмосферных осадках, он найден в свежих листьях растений, молоке, тканях животных. Следы этилового спирта обнаружены в ткани головного мозга, мышцах, печени человека; в крови человека в норме содержится 0,03-0,04°/00 алкоголя.

Этиловый спирт С2Н5ОН - бесцветная гигроскопичная жидкость жгучего вкуса, с характерным (спиртовым) запахом; г°кипения 78,39°, t°UJl - 114,15°, удельный вес (при 20°) 0,789, коэффициент рефракции при 20°1,3614. Этиловый спирт легко загорается и горит слабоокрашенным пламенем, температура вспышки 14°, концентрационные пределы взрываемости паров этилового спирта в воздухе от 3 до 19 об%. Предельно допустимая концентрация этилового спирта в воздухе рабочей зоны составляет 1000 мг/м3. Подобно другим спиртам (см.), этиловый спирт в жидком состоянии сильно ассоциирован вследствие образования межмолекулярных водородных связей. Обычный этиловый спирт представляет собой азеотропную смесь (см. Азеотропные смеси) с водой (г°кипения 78,15°), содержащую 95,57% этанола, из которой при необходимости получают безводный, так называемый абсолютный, спирт. Этиловый спирт дает также азеотропные смеси со многими органическими жидкостями (бензолом, хлороформом, этилацетатом и др.). С водой, спиртами, этиловым эфиром (см.), глицерином (см.), ацетоном (см.) и многими другими растворителями этиловый спирт смешивается во всех соотношениях (с водой - с выделением тепла и уменьшением объема). Этиловый спирт растворяет многие органические и некоторые неорганические соединения, в лабораторной практике он служит одним из наиболее часто употребляемых растворителей (см.). С некоторыми неорганическими солями (см.) этиловый спирт образует кристаллосольваты, например СаС12 4С2Н5ОН, кристаллосольваты образуются также с этиловым спиртом и отдельными органическими соединениями (см.).

Для этилового спирта характерны химические свойства первичных спиртов. При окислении или каталитическом дегидрировании этиловый спирт превращается в ацет-альдегид (см. Альдегиды), а при более энергичном окислении - в уксусную кислоту (см.). Отщепление воды от этилового спирта при нагревании в присутствии катализаторов (серной кислоты, окиси алюминия) в зависимости от условий приводит к его превращению в этилен или диэтиловый эфир (см. Этиловый эфир). С карбоновыми и неорганическими кислотами или их производными этиловый спирт образует сложные эфиры (см.). Эта реакция широко используется для синтетических и аналитических целей. Обмен гидроксильной группы в молекуле этилового спирта на атом галогена (С2Н5ОН + НВг - С2Н5Вг + Н20) приводит к образованию этилгалогенидов - веществ, применяемых в органическом синтезе. При взаимодействии этилового спирта с галогенами в щелочной среде происходит так называемое галоформное расщепление: С2Н5ОН + 4Х2 + 6NaOH- СНХ3+HCOONa + 5NaX + 5Н20, где X - хлор, бром или йод. Галоформное расщепление используют для получения хлороформа (см.) и обнаружения этилового спирта (йодоформная проба). Со щелочными металлами (см.) этиловый спирт образует алкоголяты (этилаты): С2Н5ОН + Na -> -* C2H5ONa + V2H2. Хлорированием этилового спирта получают трихлорацетальдегид (хлораль): СН3СН2ОН + 4С12 -> -> СС13СНО + 5НС1.

Традиционным методом получения этилового спирта является сбраживание углеводсодержащего сырья (зерна, картофеля, мелассы). Суммарная реакция спиртового брожения (С6Н1206-> -> 2С2Н5ОН + 2С02) идет с высоким выходом этилового спирта (свыше 90%) и состоит из ряда стадий с постепенным расщеплением глюкозы (см.) или фруктозы (см.) до ацетальдегида, который восстанавливается до этилового спирта. Эту реакцию катализирует дрожжевая алкогольдегидрогеназа (КФ 1.1.99.8). Полученные разбавленные-растворы этилового спирта концентрируют перегонкой до образования спирта-ректификата (96-96,5 об. % С2Н5ОН). Крахмалистые материалы, используемые для получения этилового спирт,а предварительно подвергают осахариванию до глюкозы амилазой солода (см. Амилазы) и затем сбраживают дрожжами. В качестве углеводсодержащего сырья применяют также продукты гидролиза целлюлозы (см.) и отходы ее производства (сульфитные щелока). Этиловый спирт, полученный брожением сырья с высоким содержанием пектиновых веществ или лигнина, в качестве примеси содержит заметное количество метилового спирта (см.).

Большое практическое значение имеет также производство этилового спирта из этилена: СН2 - СН2 + Н20 + С2Н5ОН (реакция проходит при повышенной температуре и давлении и катализируется серной кислотой), а также прямой гидратацией этилена в присутствии кислотных катализаторов; этим методом в настоящее время в большинстве стран получают основное количество этилового спирта.

В организме человека этиловый спирт окисляется до ацетальдегида (см. Ук-сусный альдегид): СН3СН2ОН + НАД+ ^ СНдСНО + НАД Н + Н+. Эта реакция катализируется алкогольдегидрогеназой (КФ 1.1.1.1) печени; этот катализатор - первичный фермент метаболизма этилового спирта. Образовавшийся ацетальдегид окисляется (главным образом в печени) до уксусной кислоты, которая, превращаясь в ацетил-КоА, включается в обмен веществ (см. Трикарбоновых кислот цикл).

На организм человека этиловый спирт оказывает наркотическое и токсическое действие, вызывая вначале возбуждение, а затем резкое угнетение центральной нервной системы (см. Алкогольное опьянение). Систематическое употребление спиртных напитков даже в небольших дозах приводит к нарушению важнейших функций организма и тяжелейшему поражению всех органов и тканей, вызывает органические заболевания нервной и сердечно-сосудистой систем, печени, пищеварительного тракта, ведет к моральной и психической деградации личности (см. Алкоголизм, Алкоголизм хронический).

Степень повреждения, различная частота и темп прогрессирования поражения разных органов зависят от дозы и частоты приема алкоголя больным алкоголизмом. Наиболее характерными признаками алкогольной интоксикации, особенно в стадии ее обострения, является наличие при морфологическом исследовании биопсийного материала так называемого алкогольного гиалина в гепатоцитах и накопление промежуточных филаментов в цитоплазме эпителиальных и мезенхимальных клеток (последнее является морфологическим выражением расстройства белкового обмена). Нарушение липидного обмена при алкогольной интоксикации проявляется в накоплении включений жира в цитоплазме клеток разных органов. Наиболее характерными морфологическими проявлениями так называемой алкогольной болезни является сочетание признаков нарушения белкового и липидного обменов, выраженных микроциркуляторных расстройств в виде полнокровия сосудов, наличия плазморрагий и кровоизлияний; в экссудате преобладают полиморфно-ядерные лейкоциты и макрофаги с морфологическими признаками функциональной недостаточности, что подтверждает состояние иммунного дефицита у алкоголика (см. Иммуно логическая недостаточность).

Методы определения. Содержание этилового спирта в смесях с водой определяют по плотности растворов с помощью специальных таблиц (спиртометрия). Для химического обнаружения этилового спирта используют йодоформную пробу, которую, однако, можно применять лишь в отсутствие веществ, также образующих йодоформ (ацетальдегида, ацетона, молочной и пировиноградной кислот); образование этилового эфира бензойной кислоты С6Н5СООС2Н5, распознаваемого по характерному запаху (необходимо иметь в виду, что метиловый спирт дает аналогичную пробу), или образование этилового эфира гс-нитро-бензойной кислоты n-02NC6H4C00C2H5, определяемого по температуре плавления (57°); а также специфическую цветную реакцию ацетальдегида, образующегося окислением этилового спирта, со вторичными аминами и нитропруссидом натрия (проба Симона). Для определения этилового спирта применяют его легко получаемые эфиры с характерными температурами плавления (гс-нитробензойной кислоты, 3,5-динит-робензойной кислоты и др.). Для количественного определения содержания этилового спирта в водных растворах используют также рефрактометрию (см.) и спектр о фотометрию (см.) на основе пробы Симона. Большинство современных химических методов определения, этилового спирта в биологических жидкостях основано на его окислении и спектрофотометрическом измерении концентрации продуктов окисления либо титровании непрореагировавшего окислителя, чаще всего бихромата (см. Титриметрический анализ); из анализируемых образцов этиловый спирт предварительно изолируют отгонкой или диффузией (метод Видмарка и др.). Более специфичны ферментативные методы определения этилового спирта, основанные на его окислении алкогольдегидрогеназой и спектрофотометрировании образовавшегося НАД Н, а также определение этилового спирта с помощью газожидкостной хроматографии (см.). Эти методы применимы и для определения этилового спирта в выдыхаемом воздухе. Количественное определение этилового спирта в крови и моче является достоверным показателем интоксикации этиловым спиртом. Для проведения наиболее точного, специфичного и чувствительного измерения концентрации этиловый спирт с помощью газожидкостной хроматографии достаточно 2-5 мл крови или мочи. Для установления интоксикации этиловым спиртом применяют и другие количественные методы определения этанола, например метод Видмарка, титриметрический метод (титрование непрореагировавшего окислителя) и др.

Для количественного определения этилового спирта из вены берут 5-10 мл крови в небольшую пробирку (до краев) так, чтобы не оставалось воздуха. Проба мочи в таком же объеме берется из общего количества мочи, выпущенной в чистую емкость. Обработку кожи, посуды и инструментов производят нелетучим антисептиком, не содержащим этиловый спирт. Взятый материал может храниться не более 1 суток, обязательно в холодильнике.

Качественные пробы на этиловый спирт при подозрении на алкогольное отравление являются предварительными и неспецифичными, поэтому их результаты должны подтверждаться количественным определением этилового спирта. Пары этилового спирта в выдыхаемом воздухе обнаруживаются через 10-20 минут после его приема и в течение 1,2-20 часов, в зависимости от крепости алкогольного напитка и принятой дозы. Среди качественных проб на этиловый спирт наиболее распространена проба по Мохову и Шинкаренко с использованием индикаторных трубок. Запаянные с обоих концов стеклянные трубки содержат реагент оранжевого цвета - силикагель, обработанный раствором хромового ангидрида в концентрированной серной кислоте. Для проведения пробы концы трубки отламывают, и испытуемый в течение 20-30 секунд выдувает в трубку воздух. Под действием паров этилового спирта происходит восстановление ионов хрома, и оранжевая окраска реагента меняется на зеленую или голубую. Однако положительный результат может быть получен также при действии на реагент паров метилового спирта, ацетона (у больных сахарным диабетом), эфира и альдегидов. Пары бензина, уксусной кислоты, дихлорэтана, фенола окрашивают реагент в темно-коричневый цвет. Реже применяется проба Рапопорта, основанная на растворении в дистиллированной воде этилового спирта, содержащегося в выдыхаемом воздухе, и последующем его окислении перманганатом калия в присутствии серной кислоты. При этом происходит изменение окраски раствора. Эта проба также не специфична, так как положительный результат при ее применении может быть получен при растворении в воде паров эфира, ацетона, бензина, сероводорода, метилового спирта. Для определения присутствия этилового спирта в моче или цереброспинальной жидкости используют пробу Никлу, основанную на изменении окраски исследуемой жидкости с оранжевой на зеленую после последовательного добавления кристаллического перманганата калия и концентрированной серной кислоты.

Механизм токсического действия этилового спирта связан с его избирательным поражением центральной нервной системы, прежде всего нервных клеток коры больших полушарий (см. Алкогольное опьянение). Ряд веществ, поступивших в организм одновременно с этиловым спиртом снотворные барбитурового ряда, транквилизаторы, оксид углерода и др.), усиливает его действие. Вещества, повышающие основной обмен, обычно увеличивают скорость окисления этиловым спиртом в организме. К таким веществам относятся адреналин (см.), инсулин (см.), тироксин (см.) и др. Некоторые вещества являются прямыми антагонистами этилового спирта (фенамин, первитин и др.) и при поступлении в организм значительно ослабляют внешние проявления интоксикации этиловым спиртом.

На первом этапе интоксикации этиловым спиртом накапливается в крови, достигая максимума в среднем через 1-1,2 (фаза резорбции). После небольшого периода диффузного равновесия концентрации этилового спирта в крови и других жидкостях, в органах и тканях содержание спирта в крови постепенно снижается, одновременно в моче его концентрация возрастает (фаза элиминации).

Освидетельствование для установления алкогольного опьянения производится по направлению правоохранительных органов, суда и администрации учреждений. В акте освидетельствования должны быть указаны анамнестические сведения (предшествовавшие заболевания и травмы, периодичность приема этилового спирта, его переносимость, время последнего приема алкоголя и др.), данные объективного исследования - конституция и вес (масса) тела, результаты клинического обследования и психотехнических испытаний, результаты качественных проб на алкоголь и количественного определения этилового спирта в крови и моче. Проведение экспертизы состоит из двух этапов: врачебного освидетельствования, которое проводится, как правило, невропатологами или психиатрами, и химические исследования с целью обнаружения этилового спирта в организме.

«Методическими указаниями о судебно-медицинской диагностике смертельных отравлений этиловым алкоголем и допускаемых при этом ошибках» М3 СССР (1974) рекомендуется следующая ориентировочная токсикологическая оценка различных концентраций алкоголя в крови: менее 0,3%0 - отсутствие влияния алкоголя; от 0,3 до 0,5%0 - незначительное влияние алкоголя; от 0,5 до 1,5% - легкое опьянение; от 1,5 до 2,5% - опьянение средней степени; от 2,5 до 3% - сильное опьянение; от 3 до 5%0 - тяжелое отравление, может наступить смерть; от 5% и выше - смертельное отравление. Приведенная оценка применима лишь для фазы резорбции. В фазе элиминации состояние человека, принявшего алкоголь, может быть легче или тяжелее указанного выше, поэтому необходимо проводить сравнительную оценку содержания этилового спирта в крови и моче.

Отсутствие этилового спирта в крови и наличие его в моче свидетельствуют о факте приема этилового спирта, однако не позволяют установить степень алкогольной интоксикации. При сопоставлении концентрации этилового спирта в крови и моче можно ориентировочно определить время приема алкоголя.

Обнаружение этилового спирта при судебно-медицинском исследовании трупа имеет значение для диагностики смертельного отравления этиловым спиртом и для установления факта алкогольной интоксикации перед наступлением смерти. Необходимо определить концентрацию этилового спирта в трупе, собрать анамнестические данные, установить возраст умершего, собрать сведения об обстоятельствах смерти и т. д. Смертельной дозой считается 200-300 мл чистого этилового спирта, однако эта доза колеблется в зависимости от возраста, привыкания к этиловому спирту, состояния здоровья и др. Для людей, привычных к алкоголю, и хронических алкоголиков смертельная доза может быть выше в несколько раз. Смерть от отравления этиловым спиртом возможна на любой стадии алкогольной интоксикации. Средней смертельной концентрацией этиловым спиртом в крови считается 3,5-5%, а концентрация выше 5% является безусловно смертельной.

Отравление этиловым спиртом обостряет течение многих заболеваний и может способствовать наступлению смертельного исхода. Необходимо проводить дифференциальную диагностику смерти от острого отравления этиловым спиртом со смертью от заболевания (чаще сердечно-сосудистого), наступившей в состоянии острой алкогольной интоксикации. К установлению острого отравления этиловым спиртом в качестве причины смерти следует подходить с большой осторожностью и во всех случаях этот вывод тщательно аргументировать.

П. И. Новиков (1967) рекомендует для оценки количественного содержания этилового спирта в трупе брать для химического исследования кровь, мочу, содержимое желудка и цереброспинальную жидкость. Соотношение концентрации этилового спирта в этих жидкостях позволяет ориентировочно определять стадию алкогольной интоксикации, время приема этилового спирта и принятую дозу. Если судебно-медицинскому исследованию подвергается не весь труп, а лишь отдельные его части, можно определить концентрацию этилового спирта во внутренних органах или в мышцах с последующим пересчетом на содержание этилового спирта в крови. Необходимо помнить, что при гнилостном разложении в трупе происходит образование этилового спирта, концентрация которого может достичь 0,5-1%.

Библиогр.: Балякин В. А. Токсикология и экспертиза алкогольного опьянения, М., 1962; Каррер П. Курс органической химии, пер. с нем., с. 118, Л., 1960; Кольковски П. Колориметрический экспресс-метод полуколичест-венного определения этилового спирта, Лаборат. дело, № 3, с. 17, 1982; Новиков П. И. Экспертиза алкогольной интоксикации на трупе, М., 1967; Пауков В. С. и Угрюмов А. И. Патологоанатомическая диагностика алкоголизма, Арх. патол., т. 47, в. 8, с. 74, 1985; Полюдек-Фабини Р. и Б е й р и х Т. Органический анализ, пер. с нем., с. 54, Л., 1981; Руководство по судебно-медицинской экспертизе отравлений, под ред. Р. В. Бережного и др., с. 210, М., 1980; Серов В. В. и Лебедев С. П. Клиническая морфология алкоголизма, Арх. патол., т. 47, в. 8, с. 3, 1985; Солдатенков А. Т. и Сытинский И. А. Методы определения алкоголя в биологических жидкостях, Лаборат. дело, № 11, с. 663, 1974; Стабников В. H., Р о й т е р И. М., и Процюк Т. Б. Этиловый спирт, М., 1976; Уайт А. и др. Основы биохимии, пер. с англ., т. 2, с. 780, М.,

А. И. Точилкин; Р. В. Бережной (суд.).

Этиловый спирт (этанол, С 2 Н 5 ОН) обладает седативно-гипнотическим действием. При приёме внутрь этанол, так же как метанол, этиленгликоль и другие спирты, легко абсорбируется из желудка (20%) и тонкой кишки (80%) благодаря его малой молекулярной массе и растворимости в липи-дах. Скорость абсорбции зависит от концентрации: например, в желудке она максимальна при концентрации приблизительно 30%. Пары этанола могут легко абсорбироваться в лёгких. После приёма этанола натощак максимальная концентрация в крови достигается через 30 мин. Наличие пищи в кишечнике задерживает всасывание. Распределение этанола в тканях организма происходит быстро и равномерно. Более 90% поступившего этанола окисляется в печени, оставшийся выделяется через лёгкие и почки (в течение 7-12 ч). Количество алкоголя, окисляемое за единицу времени, приблизительно пропорционально массе тела или печени. Взрослый человек может метаболизировать 7-10 г (0,15-0,22 моль) этанола в час.

Метаболизм этанола осуществляется главным образом в печени с участием двух ферментных систем: алкоголь дегидрогеназы и микросомальной этанолокисляющей системы (МЭОС).

Главный путь метаболизма этанола связан с алкоголь дегидрогеназой — Zn^-содержащим цитозольным ферментом, катализирующим превращение спирта в ацетальдегид. Этот фермент находится преимущественно в печени, но присутствует и в других органах (например, в головном мозге и желудке). У мужчин значительное количество этанола метаболизируется алкоголь дегидрогеназой желудка. МЭОС включает оксидазы со смешанной функцией. Промежуточным продуктом метаболизма этанола с участием МЭОС также является ацетальдегид.

Полагают, что при концентрации алкоголя в крови ниже 100 мг% (22 нмоль/л) его окисление осуществляется преимущественно алкоголь де-гидрогеназой, тогда как при более высоких концентрациях МЭОС начинает играть более значительную роль. В настоящее время не доказано, что при хроническом употреблении алкоголя активность алкоголь дегидроге-назы повышается, но достоверно установлено, что при этом увеличивается активность МЭОС. Более 90% ацетальдегида, образовавшегося из этанола, окисляется в печени до ацетата с участием митохондриальной альдегид де-гидрогеназы. Обе реакции превращения этанола НАД-зависимы. Дефицит НАД вследствие его потребления при алкогольной интоксикации может блокировать аэробный метаболизм и ограничивать превращение конечного продукта гликолиза углеводов и аминокислот — молочной кислоты. Лактат накапливается в крови, вызывая метаболический ацидоз.

Механизм действия алкоголя на ЦНС неизвестен. Вместе с тем установлено, что нефизиологические концентрации этанола ингибируют ионные насосы, ответственные за генерацию электрических нервных импульсов. В результате этого алкоголь подавляет функции ЦНС, подобно другим анестетикам. При алкогольной интоксикации развиваются типичные эффекты передозировки седативно-гипнотического средства наряду с сердечно-сосудистыми эффектами (вазодилатация, тахикардия) и раздражением ЖКТ. Зависимость между концентрацией этанола в крови и клиническими проявлениями интоксикации представлена в табл.. Смертельная доза

этанола при однократном приёме составляет от 4 до 12 г на 1 кг массы тела (в среднем 300 мл 96% этанола при отсутствии толерантности к нему). Алкогольная кома развивается при концентрации этанола в крови выше 500 мг%, а смерть — выше 2000 мг%.

Таблица Зависимость между концентрацией этанола в крови и моче, и клиническими проявлениями интоксикации


Неустойчивость походки, неразборчивая речь и трудности при выполнении простых заданий становятся очевидными при концентрации этанола в плазме крови приблизительно 80 мг%. В связи с этим в ряде стран эта величина служит границей для запрещения управления автотранспортом. Мастерство водителя снижается даже при более низких концентрациях этанола. На Рис. показана относительная вероятность дорожно-транспортного происшествия в зависимости от концентрации этанола в крови [Грэхам-Смит Д.Г., Аронсон Дж.К., 2000].

При определении концентрации этанола в сыворотке крови следует иметь в виду, что она на 10-35% выше, чем в крови. При использовании метода определения этанола с алкоголь дегидрогеназой другие спирты (например, изопропанол) могут служить субстратами и вызывать интерференцию, что приводит к получению ложноположительных результатов.

Степень интоксикации зависит от трех факторов: концентрации этанола в крови, скорости подъёма уровня алкоголя и времени, в течение которого сохраняется повышенный уровень этанола в крови. Характер потребления, состояние слизистой ЖКТ и присутствие в организме ЛС также оказывают влияние на степень интоксикации.

Для оценки уровня этанола в крови необходимо использовать следующие правила.

Пик концентрации алкоголя в крови достигается через 0,5-3 ч после приёма последней дозы.

Каждые 30 г водки, стакан вина или 330 мл пива повышают концентрацию этанола в крови на 15-25 мг%.

Концентрация этанола, мг%

Концентрация этанола, мг%

Рис. Относительная вероятность дорожно-транспортного происшествия в зависимости от концентрации этанола в крови

Женщины усваивают алкоголь быстрее, чем мужчины, и его концентрация в крови на 35-45% выше; в течение предменструального периода концентрация этанола в крови повышается быстрее и в большей степени.

Приём пероральных контрацептивов повышает концентрацию этанола в крови и увеличивает продолжительность интоксикации.

Концентрация этанола в моче не очень хорошо коррелирует с его уровнем в крови, поэтому не может быть использована для оценки степени интоксикации.

У пожилых людей интоксикация развивается быстрее, чем у молодых.

Используемые в настоящее время для определения алкоголя дыхательные тесты имеют свои особенности и ограничения. Концентрация этанола в выдыхаемом воздухе составляет приблизительно 0,05% от концентрации в крови, то есть 0,04 мг% (0,04 мг/л) при концентрации в крови 80 мг% (800 мг/л), что достаточно для его выявления дыхательными тестами.

В табл. приведены ориентировочные данные по времени обнаружения этанола в выдыхаемом воздухе в зависимости от дозы принятого алкоголя.

Таблица Время обнаружения этанола дыхательными тестами