Зрительная сенсорная система. Органы зрения, или зрительная сенсорная система

Орган зрения является самым важным из всех органов чувств человека, ведь около 90% информации о внешнем мире человек получает через зрительный анализатор или зрительную систему

Орган зрения является самым важным из всех органов чувств человека, ведь около 90% информации о внешнем мире человек получает через зрительный анализатор или зрительную систему. Основными функциями органа зрения являются центральное, периферическое, цветовое и бинокулярное зрение, а также светоощущение.

Человек видит не глазами, а посредством глаз, откуда информация передается через зрительный нерв в определенные области затылочных долей коры головного мозга, где формируется та картина внешнего мира, которую мы видим.

Строение зрительной системы

Зрительная система состоит из:

* Глазного яблока;

* Защитного и вспомогательного аппарата глазного яблока (веки, конъюнктива, слезный аппарат, глазодвигательные мышцы и фасции глазницы);

* Системы жизнеобеспечения органа зрения (кровоснабжение, выработка внутриглазной жидкости, регуляция гидро и гемодинамики);

* Проводящих путей – зрительного нерва, зрительного перекреста и зрительного тракта;

* Затылочных долей коры больших полушарий головного мозга.

Глазное яблоко

Глаз имеет форму сферы, поэтому к нему стала применяться аллегория яблока. Глазное яблоко – очень нежная структура, поэтому располагается в костном углублении черепа – глазнице, где частично укрыто от возможного повреждения.

Глаз человека имеет не совсем правильную шаровидную форму. У новорожденных его размеры равны (в среднем) по сагиттальной оси 1, 7 см, у взрослых людей 2, 5 см. Масса глазного яблока новорожденного находится в пределах до 3 г, взрослого человека - до 7-8 г.

Особенности строения глаз у детей

У новорожденных глазное яблоко относительно большое, но короткое. К 7-8 годам устанавливается окончательный размер глаз. Новорожденный имеет относительно большую и более плоскую, чем у взрослых, роговицу. При рождении форма хрусталика сферичная; в течение всей жизни он растет и становится более плоским. У новорожденных в строме радужки пигмента мало или совсем нет. Голубоватый цвет глазам придает просвечивающий задний пигментный эпителий. Когда пигмент начинает появляться в радужке, она приобретает свой собственный цвет.

Строение глазного яблока

Глаз располагается в глазнице и окружен мягкими тканями (жировая клетчатка, мышцы, нервы и пр.). Спереди он покрыт конъюнктивой и прикрыт веками.

Глазное яблоко состоит из трех оболочек (наружной, средней и внутренней) и содержимого (стекловидного тела, хрусталика, а также водянистой влаги передней и задней камер глаза).

Наружная, или фиброзная, оболочка глаза представлена плотной соединительной тканью. Она состоит из прозрачной роговицы в переднем отделе глаза и белого цвета непрозрачной склеры. Обладая эластическими свойствами, эти две оболочки образуют характерную форму глаза.

Функция фиброзной оболочки – проведение и преломление лучей света, а также защита содержимого глазного яблока от неблагоприятных внешних воздействий.

Роговица – прозрачная часть (1/5) фиброзной оболочки. Прозрачность роговицы объясняется уникальностью ее строения, в ней все клетки расположены в строгом оптическом порядке и в ней отсутствуют кровеносные сосуды.

Роговица богата нервными окончаниями, поэтому она очень чувствительна. Воздействие неблагоприятных внешних факторов на роговицу вызывает рефлекторное сжимание век, обеспечивая защиту глазного яблока. Роговица не только пропускает, но и преломляет световые лучи, она имеет большую преломляющую силу.

Склера – непрозрачная часть фиброзной оболочки, которая имеет белый цвет. Ее толщина достигает 1 мм, а самая тонкая часть склеры расположена в месте выхода зрительного нерва. Склера состоит в основном из плотных волокон, которые придают ей прочность. К склере крепятся 6ть глазодвигательных мышц.

Функции склеры – защитная и формообразующая. Сквозь склеру проходят многочисленные нервы и сосуды.

Сосудистая оболочка , средний слой, содержит кровеносные сосуды, по которым кровь поступает для питания глаза. Прямо под роговицей сосудистая оболочка переходит в радужную оболочку, которая и определяет цвет глаз. В центре ее находится зрачок . Функция этой оболочки – ограничивать поступление света в глаз при его высокой яркости. Это достигается сужением зрачка при высокой освещенности и расширением – при низкой.

За радужной оболочкой расположен хрусталик , похожий на двояковыпуклую линзу, который улавливает свет, когда он проходит через зрачок и фокусирует его на сетчатке. Вокруг хрусталика сосудистая оболочка образует ресничное тело, в котором заложена цилиарная (ресничнвя) мышца, регулирующая кривизну хрусталика, что обеспечивает ясное и четкое видение разноудаленных предметов.

Когда эта мышца расслаблена, прикрепленный к цилиарному телу ресничный поясок натягивается и хрусталик уплощается. Его кривизна, а следовательно и преломляющая сила, минимальна. В таком состоянии глаз хорошо видит удаленные объекты.

Чтобы рассмотреть предметы, расположенные вблизи, цилиарная мышца сокращается, а напряжение ресничного пояска ослабевает, так что хрусталик становится более выпуклым, следовательно, более сильно преломляющим.

Это свойство хрусталика менять свою преломляющую силу луча, называется аккомодацией .

Внутренняя оболочка глаза представлена сетчаткой – высо- кодифференцированной нервной тканью. Сетчатка глаза – передний край мозга, исключительно сложное как по своей структуре, так и по функциям образование.

Что интересно, в процессе эмбрионального развития сетчатка глаза формируется из той же группы клеток, что головной и спинной мозг, поэтому справедливо утверждение, что поверхность сетчатки является продолжением мозга.

В сетчатке свет преобразуется в нервные импульсы, которые по нервным волокнам передаются в мозг. Там они анализируются, и человек воспринимает изображение.

Главным слоем сетчатки является тонкий слой светочувствительных клеток – фоторецепторов . Они бывают двух видов: отвечающие на слабый свет (палочки) и сильный (колбочки).

Палочек насчитывается около 130 миллионов, и они расположены по всей сетчатке, кроме самого центра. Благодаря им человек видит предметы на периферии поля зрения, в том числе при низкой освещенности.

Колбочек насчитывается около 7 миллионов. Они расположены главным образом в центральной зоне сетчатки, в так называемом желтом пятне . Сетчатка здесь максимально утончается, отсутствуют все слои, кроме слоя колбочек. Желтым пятном человек видит лучше всего: вся световая информация, попадающая на эту область сетчатки, передается наиболее полно и без искажений. В этой области возможно лишь дневное и цветное зрение.

Под воздействием световых лучей в фоторецепторах происходит фотохимическая реакция (распад зрительных пигментов), в результате которой выделяется энергия (электрический потенциал), несущая зрительную информацию. Эта энергия в виде нервного возбуждения передается в другие слои сетчатки – на клетки-биполяры, а затем на ганглиозные клетки. При этом, благодаря сложным соединениям этих клеток, происходит удаление случайных “помех” в изображении, усиливаются слабые контрасты, острее воспринимаются движущиеся предметы.

В конечном счете, вся зрительная информация в кодированном виде передается в виде импульсов по волокнам зрительного нерва в головной мозг, его высшую инстанцию – заднюю кору, где и происходит формирование зрительного образа.

Что интересно, лучи света, проходя сквозь хрусталик, преломляются и переворачиваются, из-за чего на сетчатке возникает перевернутое уменьшенное изображение предмета. Также картинка с сетчатки каждого глаза поступает в головной мозг не целиком, а словно разрезанная пополам. Однако мы видим мир нормально.

Следовательно, дело не столько в глазах, сколько в мозге. В сущности, глаз – это просто воспринимающий и передающий инструмент. Клетки мозга, получив перевернутое изображение, переворачивают его снова, создавая истинную картину окружающего мира.

Содержимое глазного яблока

Содержимое глазного яблока – стекловидное тело, хрусталик, а также водянистая влага передней и задней камер глаза.

Стекловидное тело по весу и объему составляет примерно 2/3 глазного яблока и более чем на 99% состоит из воды, в которой растворено небольшое количество белка, гиалуроновой кислоты и электролитов. Это прозрачное бессосудистое студенистое образование, заполняющее пространство внутри глаза.

Стекловидное тело достаточно прочно связано с цилиарным телом, капсулой хрусталика, а также с сетчаткой вблизи зубчатой линии и в области диска зрительного нерва. С возрастом связь с капсулой хрусталика ослабевает.

Вспомогательный аппарат глаза

К вспомогательному аппарату глаза относят глазодвигательные мышцы, слезные органы, а также веки и конъюнктиву.

Глазодвигательные мышцы

Глазодвигательные мышцы обеспечивают подвижность глазного яблока. Их шесть: четыре прямых и две косых.

Прямые мышцы (верхняя, нижняя, наружная и внутренняя) начинаются от сухожильного кольца, расположенного у вершины орбиты вокруг зрительного нерва, и прикрепляются к склере.

Верхняя косая мышца начинается от надкостницы глазницы сверху и кнутри от зрительного отверстия, и, направляясь несколько кзади и книзу, прикрепляется к склере.

Нижняя косая мышца начинается от медиальной стенки орбиты позади нижней глазничной щели и прикрепляется к склере.

Кровоснабжение глазодвигательных мышц осуществляется мышечными ветвями глазной артерии.

Наличие двух глаз позволяет сделать наше зрение стереоскопичным (то есть формировать трехмерное изображение).

Точная и слаженная работа мышц глаза позволяет нам видеть окружающий мир двумя глазами, т.е. бинокулярно. В случае нарушения функций мышц (например, при парезе или параличе одной из них) возникает двоение или же зрительная функция одного из глаз подавляется.

Также считается, что глазодвигательные мышцы участвуют в процессе подстройки глаза к процессу видения (аккомодации). Они сжимают или растягивают глазное яблоко так, чтобы лучи, поступающие от обозреваемых объектов, будь то вдали или вблизи, могли попасть точно на сетчатку. При этом хрусталик обеспечивает более тонкую настройку.

Кровоснабжение глаза

Мозговая ткань, осуществляющая проведение нервных импульсов от сетчатки до зрительной коры, а также зрительная кора, в норме почти повсеместно имеют хорошее обеспечение артериальной кровью. В кровоснабжении этих мозговых структур участвуют несколько крупных артерий, входящих в состав каротидных и вертебрально-базилярной сосудистых систем.

Артериальное кровоснабжение головного мозга и зрительного анализатора осуществляется из трех основных источников - правой и левой внутренней и наружной сонных артерий и непарной базилярной артерии. Последняя образуется в результате слияния правой и левой позвоночных артерий, расположенных в поперечных отростках шейных позвонков.

Почти вся зрительная кора и отчасти кора прилежащих к ней теменной и височной долей, а также затылочные, среднемозговые и мостовые глазодвигательные центры снабжаемых кровью за счет вертебро-базилярного бассейна (вертебра – в переводе с латинского – позвонок).

В связи с этим нарушения кровообращения в вертебрально-базилярной системе может стать причиной нарушения функций как зрительной, так и глазодвигательной систем.

Вертебробазилярная недостаточность, или синдром позвоночной артерии, – это состояние, при котором снижается кровоток в позвоночных и базилярной артериях. Причиной этих нарушений могут быть сдавливание, повышение тонуса позвоночной артерии, в т.ч. в следствие сдавливания костной тканью (остеофиты, грыжа межпозвоночного диска, подвывих шейных позвонков и др.).

Как видите, наши глаза – это исключительно сложный и удивительный дар природы. Когда все отделы зрительного анализатора работают гармонично и без помех, окружающий нас мир мы видим ясно.

Относитесь к своим глазам бережно и внимательно!

Периферическим отделом зрительной сенсорной системой является глаз, который расположен в углублении черепа - глазнице.

Сзади и с боков он защищен от внешних воздействий костными стенками глазницы, а спереди - веками. Он состоит из глазного яблока и вспомогательных структур: слезных желез, ресничной мышцы, кровеносных сосудов и нервов. Слезная железа выделяет жидкость, предохраняющую глаз от высыхания. Равномерному распределению слезной жидкости по поверхности глаза способствует мигание век.

Глазное яблоко ограниченно тремя оболочками - наружной, средней и внутренней. Наружная оболочка глаза - склера, или белочная оболочка. Это плотная непрозрачная ткань белого цвета, толщиной около 1 мм, в передней части она переходит в прозрачную роговицу.

Под склерой расположена сосудистая оболочка глаза, толщина которой не превышает 0,2-0,4 мм. В ней содержится большое количество кровеносных сосудов. В переднем отделе глазного яблока сосудистая оболочка переходит в ресничное (цилиарное) тело и радужную оболочку (радужку).

В центре радужки располагается зрачок, его диаметр изменяется, от чего в глаз может попадать большее или меньшее количество света. Просвет зрачка регулируется мышцей, находящейся в радужке.

В радужной оболочке содержится особое красящее вещество - меланин. От количества этого пигмента цвет радужки может колебаться от серого и голубого до коричневого, почти черного. Цветом радужки определяется цвет глаз. Если пигмент отсутствует (таких людей называют альбиносами), лучи света могут проникать в глаз не только через зрачок, но и через ткань радужки. У альбиносов глаза имеют красноватый оттенок, зрение понижено.

В ресничном теле расположена мышца, связанная с хрусталиком и регулирующая его кривизну.

Хрусталик - прозрачное, эластичное образование, имеет форму двояковыпуклой линзы. Он покрыт прозрачной сумкой, по всему его краю к ресничному телу тянутся тонкие, но очень упругие волокна. Они сильно натянуты и держат хрусталик в растянутом состоянии.

В передней и задней камере глаза находиться прозрачная жидкость, которая снабжает питательными веществами роговицу и хрусталик. Полость глаза позади хрусталика заполнена прозрачной желеобразной массой - стекловидным телом. Оптическая система глаза представлена роговицей, камерами глаза, хрусталиком и стекловидным телом. Каждая из этих сред имеет свой показатель оптической силы.

Оптическая сила выражается в диоптриях. Одна диоптрия (дптр) - это оптическая сила линзы с фокусным расстоянием 1 м. Оптическая сила системы глаза в целом - 59 дптр при рассматривании далеких предметов и 70,5 дптр при рассматривании близких предметов.

Глаз - чрезвычайно сложная оптическая система, которую можно сравнить с фотоаппаратом, в котором объективом выступают все части глаза, а фотопленкой - сетчатка. На сетчатке фокусируются лучи света, давая уменьшенное и перевернутое изображение. Фокусировка происходит за счет изменение кривизны хрусталика: при рассматривании близкого предмета он становится выпуклым, а при рассматривании удаленного - более плоским.

Ребенок в первые месяцы после рождения путает верх и низ предмета. Если ему показать горящую свечу, то он, стараясь схватить пламя, протянет руку не к верхнему, а к нижнему концу.

Несмотря на то, что на сетчатке изображение получается перевернутым, мы видим предметы в нормальном положении благодаря повседневной тренировке зрительного анализатора. Это достигается образованием условных рефлексов, показаниями других анализаторов и постоянной проверкой зрительных ощущений повседневной практикой.

Световоспринимающий аппарат глаза. Внутренняя поверхность глаза выстлана тонкой (0,2-0,3 мм), весьма сложной по строению оболочкой - сетчаткой, или ретиной, на которой находятся светочувствительные клетки - палочки и колбочки, или рецепторы (рис. 5.5).

Колбочки сосредоточены в основном в центральной области сетчатки - в желтом пятне. По мере удаления от центра число колбочек уменьшается, а палочек - возрастает. На периферии сетчатки имеются только палочки. У взрослого человека насчитывается 6-7 млн. палочек, которые обеспечивают восприятие дневного и сумеречного света. Колбочки являются рецепторами цветного зрения, палочки - черно-белого.

Местом наилучшего видения является желтое пятно, и особенно его центральная ямка. Такое зрение называют центральным. Остальные части сетчатки принимают участие в боковом, или периферическом, зрении. Центральное зрение обеспечивает возможность рассматривать мелкие детали предметов, а периферическое позволяет ориентироваться в пространстве.

В палочках содержится особое вещество пурпурного цвета - зрительный пурпур, или родопсин, в колбочках - вещество фиолетового цвета - йодопсин, который, в отличие от родопсина, в красном свете выцветает.

Возбуждение палочек и колбочек вызывает появление нервных импульсов в связанных с ними волокнах зрительного нерва. Колбочки менее возбудимы, поэтому, если слабый свет попадает в центральную ямку, где находятся колбочки, а палочек нет, мы его видим очень плохо или не видим вовсе. Зато слабый свет хорошо виден, когда он попадает на боковые поверхности сетчатки. Таким образом, при ярком освещении функционируют в основном колбочки, при слабом освещении - палочки.

В сумерках при слабом освещении мы видим за счет зрительного пурпура. Распад зрительного пурпура под действием света вызывает возникновение импульсов возбуждения в окончаниях зрительного нерва и является начальным моментом зрительнойафферентации.

Зрительный пурпур на свету распадается на белок опсин и пигмент ретинен - производное витамина А. В темноте витамин А превращается в ретинен, который соединяется сопсином и образует родопсин, т. е. зрительный пурпур восстанавливается. В темноте сетчатка содержит мало витамина А, а на свету обнаруживается значительное его количество. Следовательно, витамин А - источник зрительного пурпура.

Недостаток в пище витамина А сильно нарушает образование зрительного пурпура, что вызывает резкое ухудшение сумеречного зрения, так называемую куриную слепоту (гемералопию).

Рецепторы сетчатки передают сигналы по волокнам зрительного нерва, в котором насчитывают до 1 млн. нервных волокон, только один раз, в момент появления нового предмета. Затем добавляются сигналы о наступающих изменениях в изображении предмета по сравнению с его прежним изображением и о его исчезновении. Зрительные ощущения возникают только в момент фиксации взгляда в ряде последовательных точек предмета.

Непрерывные мелкие колебательные движения глаз, которые совершаются постоянно в течение 25 мс каждое, позволяют видеть неподвижные предметы. У лягушек таких движений глаз нет, поэтому они видят только те предметы, которые в поле зрения перемещаются. Отсюда становится понятным, насколько велика роль движений глаз в процессе зрения.

Электромагнитные волны определенной волны вызывают определенные цветовые ощущения, которые соответствуют следующим длинам волн: красный - 620-760 нм, оранжевый - 510-585, голубой - 480-510, фиолетовый - 390-450 нм.

Проводниковый отдел зрительной сенсорной системы - это зрительный нерв, ядра верхних бугров четверохолмия среднего мозга, ядра наружного коленчатого тела промежуточного мозга.

Центральный отдел зрительного анализатора расположен в затылочной доле.

Зрение двумя глазами (бинокулярное зрение). Нормальное зрение осуществляется двумя глазами. При рассматривании предметов левым и правым глазом мы видим неодинаково, поэтому на сетчатке каждого глаза получается свое изображение. Однако человек воспринимает предмет как единое целое. Это происходит оттого, что изображение возникает на идентичных точках сетчатки. Идентичными называют все точки, расположенные от центральных ямок на одинаковом расстоянии и в том же направлении. Если лучи от рассматриваемого предмета попадут на неидентичные (несоответственные) точки сетчатки, то изображение предмета окажется раздвоенным.

Зрение двумя глазами необходимо для качественного восприятия и представления о рассматриваемом объекте. Восприятие движения предмета зависит от перемещения егоизображения на сетчатке. Восприятие движущегося предмета при одновременном движении глаз и головы и определение скорости движения предметов обусловлены не только зрительными, но и центростремительными импульсами от проприорецепторов глазных и шейных мышц.

Возрастные особенности. Элементы сетчатки начинают развиваться на 6-10-й неделе внутриутробного развития, но окончательное ее морфологическое созревание происходит лишь к 10-12-ти годам. В процессе развития существенно меняются цветоощущения ребенка. У новорожденного в сетчатке функционируют только палочки, обеспечивающие черно-белое зрение. Колбочки, ответственные за цветовое зрение, еще не зрелые, и их количество невелико. И хотя функции цветоощущения у новорожденных есть, но полноценное включение колбочек в работу происходит только к концу 3-го года жизни. По мере созревания колбочек дети начинают различать сначала желтый, потом зеленый, а затем красный цвета (уже с 3-х месяцев удавалось выработать условные рефлексы на эти цвета); распознавание цветов в более раннем возрасте зависит от яркости, а не от спектральной характеристики цвета. Полностью различать цвета дети начинают с конца 3-го года жизни. В школьном возрасте различительная цветовая чувствительность глаза повышается. Максимального развития ощущение цвета достигает к 30-ти годам и затем постепенно снижается. Важное значение для формирования этой способности имеет тренировка.

Миелинизация проводящих путей начинается лишь на 8-9-м месяце внутриутробного развития, и заканчивается лишь к 3-4-му году жизни.

Корковый отдел зрительного анализатора в основном формируется на 6-7-м месяце внутриутробной жизни, но окончательно зрительная кора созревает к 7-летнему возрасту.

Что касается дорецепторных структур, то у новорожденного глазное яблоко составляет 16 мм, а его масса 3,0 г. Рост глазного яблока продолжается после рождения. Интенсивнее всего оно растет первые 5 лет жизни, менее интенсивно - до 9-12-ти лет. У взрослых диаметр глазного яблока составляет около 24 мм, а вес 8,0 г.

У новорожденных форма глазного яблока более шаровидная, чем у взрослых, в результате в 80-94% случаев у них отмечается дальнозоркая рефракция (см. рис. 5.6, с. 128). Повышенная растяжимость и эластичность склеры у детей способствует легкой деформации глазного яблока, что важно в формировании рефракции глаза. Так, если ребенок играет, рисует или читает, низко наклонив голову, в силу давления жидкости на переднюю стенку, глазное яблоко удлиняется и развивается близорукость (рис. 5.6).

В первые годы жизни радужка содержит мало пигментов и имеет голубовато-сероватый оттенок, а окончательное формирование ее окраски завершается только к 10-12-ти годам.

Зрачок у новорожденных узкий. В возрасте 6-8-ми лет зрачки широкие из-за преобладания тонуса симпатических нервов, иннервирующих мышцы радужной оболочки, что повышает риск солнечных ожогов сетчатки. В 8-10 лет зрачок вновь становится узким, а к 12-13-ти годам быстрота и интенсивность зрачковой реакции на свет такие же, как и у взрослого.

У новорожденных и детей дошкольного возраста хрусталик более выпуклый и более эластичный, чем у взрослого, и его преломляющая способность выше. Это делает возможным четкое видение предмета при большем приближении его к глазу, чем у взрослого. В свою очередь, привычка рассматривать предметы на малом расстоянии может приводить к развитию косоглазия.

Сенсорные и моторные функции зрения развиваются одновременно. В первые дни после рождения движения глаз несинхронны, при неподвижности одного глаза можно наблюдать движение другого. Способность фиксировать взглядом предмет, или, образно говоря, «механизм точной настройки», формируется в возрасте от 5-ти дней до 3-5-ти месяцев. Функциональное созревание зрительных зон коры головного мозга, по некоторым данным, происходит уже к рождению ребенка, по другим - несколько позже.

Реакция на форму предмета отмечается уже у 5-месячного ребенка. У дошкольников первую реакцию вызывает форма предмета, затем его размеры и в последнюю очередь - цвет.

Острота зрения с возрастом повышается, улучшается и стереоскопическое зрение.

Стереоскопическое зрение к 17-22-м годам достигает своего оптимального уровня, причем с 6-ти лет у девочек острота стереоскопического зрения выше, чем у мальчиков.

В 7-8 лет глазомер у детей значительно лучше, чем у дошкольников, но хуже, чем у взрослых; половых различий не имеет. В дальнейшем у мальчиков линейный глазомер становиться лучше, чем у девочек.

Интенсивно увеличивается и поле зрение у детей, к 7-ми годам его размер составляет приблизительно 80% от размера поля зрения взрослого человека. В развитии поля зрения наблюдаются половые особенности.

Поле зрения определяет объем учебной информации, воспринимаемой ребенком, т. е. пропускную способность зрительного анализатора, и, следовательно, учебные возможности. В процессе онтогенеза пропускная способность зрительного анализатора (бит/с) также изменяется и достигает в разные возрастные периоды следующих значений.

Нарушения зрения. Коррекция зрения. Важное значение в процессе обучения и воспитания детей с дефектами органов чувств имеет высокая пластичность нервной системы, позволяющая компенсировать выпавшие функции за счет оставшихся. Известно, что у слепоглухих детей повышена чувствительность вкусового и обонятельного анализаторов. С помощью обоняния они могут хорошо ориентироваться на местности и узнавать родственников и знакомых. Чем более выражена степень поражения органов чувств ребенка, тем более трудной становится и учебно-воспитательная работа с ним.

Подавляющая часть всей информации из окружающего мира (примерно 90%) поступает в наш мозг через зрительные и слуховые каналы, поэтому для нормального физического и психического развития детей и подростков особое значение имеют органы зрения и слуха.

Среди дефектов зрения наиболее часто встречаются различные формы нарушения рефракции оптической системы глаза или нарушения нормальной длины глазного яблока. В результате лучи, идущие от предмета, преломляются не на сетчатке. При слабой рефракции глаза вследствие нарушения функций хрусталика - его уплощения, или при укорочении глазного яблока, изображение предмета оказывается за сетчаткой. Люди с такими нарушениями зрения плохо видят близкие предметы; такой дефект называют дальнозоркостью.

При усилении физической рефракции глаза, например, из-за повышения кривизны хрусталика, или удлинении глазного яблока, изображение предмета фокусируется впереди сетчатки, что нарушает восприятия удаленных предметов. Этот дефект зрения называют близорукостью.

При развитии близорукости школьник плохо видит написанное на классной доске, просит пересадить его на первые парты. При чтении он приближает книгу к глазам, сильно склоняет голову во время письма, в кино или в театре стремится занять место поближе к экрану или сцене. При рассматривании предмета ребенок прищуривает глаза. Что бы сделать изображение на сетчатке более четким, он чрезмерно приближает рассматриваемый предмет к глазам, что вызывает значительную нагрузку на мышечный аппарат глаза. Нередко мышцы не справляются с такой работой, и один глаз отклоняется в сторону виска - возникает косоглазие. Близорукость может развиваться при таких заболеваниях, как рахит, туберкулез, ревматизм.

Частичное нарушение цветового зрения получило название дальтонизма (по имени английского химика Дальтона, у которого впервые был обнаружен этот дефект). Дальтоники обычно не различают красный и зеленый цвета (они им кажутся серыми разных оттенков). Около 4-5% всех мужчин страдают дальтонизмом. У женщин он встречается реже (до 0,5%). Для обнаружения дальтонизма пользуются специальными цветовыми таблицами.

Профилактика нарушений зрения основывается на создании оптимальных условий для работы органа зрения. Зрительное утомление приводит к резкому снижению работоспособности детей, что отражается на их общем состоянии. Своевременная смена видов деятельности, изменение обстановки, в которой проводятся учебные занятия, способствуют повышению работоспособности.

Большое значение имеет правильный режим труда и отдыха, школьная мебель, отвечающая физиологическим особенностям учащихся, достаточное освещение рабочего места и др. во время чтения каждые 40-60 мин необходимо делать перерыв на 10-15 мин, чтобы дать отдохнуть глазам; для снятия напряжения аппарата аккомодации детям рекомендуют посмотреть вдаль.

Кроме того, важная роль в охране зрения и его функции принадлежит защитному аппарату глаза (веки, ресницы), который требуют бережного ухода, соблюдения гигиенических требований и своевременного лечения. Неправильное использование косметических средств может привести к конъюктивитам, блефаритам и другим заболеваниям органов зрения.

Особое внимание следует обратить на организацию работы с компьютерами, а также просмотр телевизионных передач. При подозрении на нарушение зрения необходима консультация врача - офтальмолога.

До 5-ти лет у детей преобладает гиперметропия (дальнозоркость). При данном дефекте помогают очки с собирательными двояковыпуклыми стеклами (придающими проходящим через них лучам сходящееся направление), которые улучшают остроту зрения и снижают излишнее напряжение аккомодации.

В дальнейшем в связи с нагрузкой при обучении частота гиперметрии снижается, а частота эмметропии (нормальной рефракции) и миопии (близорукости) увеличивается. К окончанию школы по сравнению с начальными классами распространенность близорукости возрастает в 5 раз.

Формированию и прогрессированию близорукости способствует дефицит света. В условиях Заполярья, при постоянном искусственном освещении в период полярной ночи, в тех школах, где уровень освещенности на рабочих местах был в 5-10 раз ниже гигиенических нормативов, у детей и подростков близорукость развивалась чаще.

Острота зрения и устойчивость ясного видения у учащихся существенно снижаются к окончанию уроков, и это снижение тем резче, чем ниже уровень освещенности. С повышением уровня освещенности у детей и подростков увеличивается быстрота различения зрительных стимулов, возрастает скорость чтения, улучшается качество работы. При освещенности рабочих мест 400 лк без ошибок было выполнено 74% работ, при освещенности 100 лк и 50 лк - соответственно 47 и 37%.

При хорошем освещении у нормально слышащих детей у подростков обостряется острота слуха, что также благоприятствует работоспособности, положительно сказывается на качестве работы. Так, если диктанты проводились при уровне освещенности 150 лк, число пропущенных или написанных с ошибками слов было на 47% меньше, чем в аналогичных диктантах, проведенных при освещенности 35 лк.

На развитие близорукости оказывает влияние учебная нагрузка, непосредственно связанная с необходимостью рассматривать объекты на близком расстоянии, ее продолжительность в течение дня.

Зрительная сенсорная система (зрительный анализатор) представляет собой совокупность защитных оптических, рецепторных и нервных структур, воспринимающих и анализирующих световые раздражители. Зрительная система состоит из периферического отдела – глаза, промежуточных звеньев – подкорковых зрительных центров (наружное коленчатое тело таламуса и переднее двухолмие) и конечного звена – зрительной коры. Все уровни зрительной системы соединены друг с другом проводящими путями.

Строение глаза

Орган зрения человека – глаз (рис. 1) имеет шарообразную (или близкую к таковой) форму. Он включает в себя ядро, покрытое тремя оболочками.

    Горизонтальный разрез правого глаза: 1 – склера; 2 – роговая оболочка (роговица); 3 – сосудистая оболочка; 4 – ресничное тело; 5 – радужная оболочка; 6 – зрачок; 7 – пигментный эпителий; 8 – сетчатка; 9 – зрительный нерв; 10 – передняя камера глаза; 11 – хрусталик; 12 – стекловидное тело.

Наружная плотная непрозрачная оболочка – склера - выполняет главным образом защитную, механическую функцию. В передней части глазного яблока склера переходит в прозрачную роговую оболочку, или роговицу . Кривизна поверхности роговицы определяет особенности преломления света. Роговица обладает наибольшей преломляющей способностью. Под склерой лежит сосудистая оболочка , которая образована сетью кровеносных сосудов. Ее основное назначение – питание глазного яблока. Спереди сосудистая оболочка утолщается и переходит сначала в ресничное тело (мышца, изменяющая кривизну хрусталика) и далее – в радужную оболочку , которые состоят из гладких мышечных волокон, кровеносных сосудов и пигментных клеток. Цвет радужной оболочки зависит от пигментации составляющих ее клеток и их распределения. Между роговицей и радужной оболочкой находится передняя камера глаза, наполненная жидкостью – «водянистой влагой ». В центре радужной оболочки имеется отверстие – зрачок, играющий роль диафрагмы и регулирующий величину светового потока, проникающего внутрь глаза. Размер зрачка зависит от освещенности. Контроль за изменениями размера зрачка осуществляется автоматически нервными волокнами, заканчивающимися в мускулатуре радужной оболочки. Круговая мышца, суживающая зрачок – сфинктер – иннервируется парасимпатическими волокнами, мышца, расширяющая зрачок – дилататор – иннервируется симпатическими волокнами. Реакция расширения зрачка до максимального диаметра – 7,5 мм – очень медленная: она длится около 5 минут. Максимальное сокращение диаметра зрачка до 1,8 мм достигается быстрее – всего за 5 секунд.

Позади радужной оболочки расположен хрусталик . Он представляет собой двояковыпуклую линзу, расположенную в сумке, волокна которой соединены с ресничными мышцами. С помощью этих мышц хрусталик способен изменять свою кривизну. Такая способность хрусталика называется аккомодацией. Аккомодации обеспечивает ясное видение различно удаленных предметов. При рассматривании близко расположенных предметов кривизна хрусталика увеличивается, если же предмет находится далеко, кривизна уменьшается. Аккомодация хрусталика иногда оказывается недостаточной, чтобы спроецировать изображение точно на сетчатку. Если расстояние между хрусталиком и сетчаткой больше, чем фокусное расстояние хрусталика, то возникает близорукость (миопия). Если сетчатка расположена слишком близко к хрусталику и фокусировка хороша только при рассматривании далеко расположенных предметов, возникает дальнозоркость (гиперметропия).

Внутри глаза, позади хрусталика, находится стекловидное тело . Оно представляет собой коллоидный раствор гиалуроновой кислоты во внеклеточной жидкости. Поскольку и хрусталик, и стекловидное тело являются белковыми структурами, то обменные процессы в них могут нарушаться. Например, с возрастом снижается эластичность хрусталика, поэтому ухудшается способность видения близко расположенных предметов (старческая дальнозоркость), постепенно он теряет свою прозрачность, возникает заболевание, получившее название катаракты. В стекловидном теле могут появляться плотные вкрапления, что субъективно ощущается как темные точки, пылинки в поле зрения. Эти изменения в конечном итоге снижают четкость изображения и могут привести к потере зрения. Стекловидное тело и хрусталик называют оптической системой глаза, которая обеспечивает фокусировку изображения на рецепторной поверхности сетчатки. Изображение на сетчатке оказывается четким, но уменьшенным и перевернутым. Мозг исправляет эту «ошибку», руководствуясь не только поступающей зрительной информацией, но и информацией от других сенсорных систем (вестибулярной, проприоцептивной, кожной).

Строение сетчатки

Сетчатка – с нейроанатомической точки зрения – высокоорганизованная слоистая структура, объединяющая рецепторы и нейроны. Она состоит из нескольких слоев клеток, выполняющих разные функции. Несколько упрощенно строение светочувствительного и проводящего аппарата сетчатки можно представить в виде следующей схемы (рис. 2).

Наружный слой сетчатки, плотно примыкающий непосредственно к сосудистой оболочке, образован пигментными клетками, содержащими пигмент фусцин. Этот пигмент поглощает свет, препятствуя его отражению и рассеиванию, что способствует четкости зрительного восприятия. К пигментному слою изнутри примыкает слой фоторецепторов – колбочек и палочек, которые повернуты от пучка падающего света таким образом, что их светочувствительные сегменты спрятаны в промежутках между клетками пигментного слоя. Каждый фоторецептор состоит из чувствительного к действию света наружного сегмента, содержащего зрительный пигмент, и внутреннего сегмента, содержащего ядро и митохондрии, обеспечивающие энергетические процессы в фоторецепторной клетке.

Палочки и колбочки отличаются функционально: палочки реагируют на свет и обеспечивают зрительное восприятие при слабой освещенности, а колбочки функционируют при ярком свете и обеспечивают восприятие цвета. Фоторецепторы содержат зрительные пигменты, которые по своей природе являются белками. В палочках содержится пигмент родопсин, в колбочках – пигменты иодопсин, хлоролаб и эритлаб, необходимые для цветового зрения. Свет, попадая на сетчатку, вызывает разложение пигмента. Эти химические преобразования сопровождаются изменением потенциала на мембране рецептора, т.е. возникновением рецепторного потенциала. Таким образом, функция рецепторов сводится к преобразованию энергии квантов света в электрическую энергию ответа клетки.

На сетчатке каждого глаза около 6 млн. колбочек и 120 млн. палочек – всего около 130 млн. фоторецепторов. Они распределены по сетчатке неравномерно: чем ближе к периферии, тем больше палочек, чем ближе к центру, тем больше колбочек, наконец, в самом центре сетчатки напротив зрачка располагаются только колбочки. Эта область называется желтым пятном или центральной ямкой . Здесь плотность колбочек составляет 150 тысяч на 1 квадратный миллиметр, поэтому в области желтого пятна острота зрения максимальна.

Центральная часть сетчатки представлена биполярными клетками , имеющими по два относительно длинных отростка, одним из которых они контактируют с фоторецепторами, другим – с ганглиозными клетками сетчатки, которые, в свою очередь, составляют ее внутреннюю часть. Ганглиозные клетки обладают круглыми рецептивными полями с четко выраженными центром и периферией. Размеры центральной части и периферической каймы могут изменяться в зависимости от освещенности. Если центр возбуждается при попадании света на сетчатку, то периферия при этом тормозится. Может быть и обратное соотношение. Ганглиозные клетки имеют как палочковые, так и колбочковые рецептивные поля. В последнем случае центр и периферия рецептивного поля возбуждается (или тормозится) определенным цветом. Например, если в ответ на предъявление красного цвета центр возбуждается, то периферия будет тормозиться. Такие комбинации могут быть самыми разнообразными. Ганглиозные клетки в отличие от других элементов сетчатки способны генерировать потенциалы действия, направляющиеся по нервным волокнам к центральным структурам мозга.

Ганглиозные клетки являются выходными элементами сетчатки. Их аксоны формируют зрительный нерв, который пронизывает сетчатку в противоположном направлении и входит в полость черепа. В месте вхождения в сетчатку волокон зрительного нерва фоторецепторы отсутствуют; эта область получила название слепого пятна .

Таким образом, фоторецепторы, биполяры и ганглиозные клетки представляют собой три последовательных звена переработки зрительной информации.

На уровне между рецепторами и биполярами имеются специализированные клетки с горизонтальным расположением отростков, которые регулируют передачу возбуждения от рецепторов к биполярам и носят название горизонтальных . Между биполярами и ганглиозными клетками, располагаясь как бы симметрично горизонтальным, находятся амакриновые клетки , которые «управляют» передачей электрических сигналов от биполяров к ганглиозным клеткам. На теле амакриновых клеток заканчиваются центробежные волокна, несущие возбуждение из ЦНС. Горизонтальные и амакриновые клетки обеспечивают латеральное торможение между соседними клеточными элементами сетчатки, ограничивая распространение зрительного возбуждения внутри нее.

В заключение следует отметить, что сетчатка как система позволяет выделять такие характеристики светового сигнала, как его интенсивность (яркость), пространственные параметры (размер, конфигурация). Рецептивные поля, построенные по принципу антагонистических отношений центра и периферии, позволяют оценивать контрастность и контуры изображения, а также оптимальным образом выделять полезный сигнал из шума.

Центральные структуры зрительной системы

Наружное коленчатое тело (НКТ) – основной подкорковый центр зрительного анализатора. Большая часть зрительных волокон (аксонов ганглиозных клеток) в составе зрительного тракта оканчивается в этой структуре. Основные пути от НКТ идут в 17-е, в меньшей степени - в 18-е и 19-е зрительные поля (по Бродману). Другие волокна направляются к верхнему двухолмию, подушке зрительного бугра и другим структурам.

Рецептивные поля нейронов НКТ имеют различную форму – от круглой до вытянутой; существуют поля с возбуждающимся центром и тормозной периферией и наоборот. В НКТ кодируется информация о пространственных характеристиках (размере) зрительного изображения, об уровне освещенности, о цвете. Ввиду многочисленных связей НКТ с различными таламическими ядрами (в первую очередь ассоциативными) можно предположить, что на этом уровне происходит перераспределение потока информации по различным каналам и начинается процесс анализа наиболее сложных параметров стимула, в частности анализа информации о биологической значимости данного раздражителя.

Переднее двухолмие. Хотя к передним холмам среднего мозга направляется не более 10% зрительных волокон, эта структура играет важную роль в организации ориентировочного поведения.

Переднее двухолмие имеет слоистую структуру. В верхних слоях заканчиваются волокна, идущие от сетчатки, коры мозга (затылочной, лобной и височной областей), из спинного мозга, от задних холмов четверохолмия, НКТ, мозжечка и черной субстанции. Нижние слои называют эфферентным центром, дающим начало наиболее длинным нисходящим путям. Они направляются в спинной мозг, к ядрам черепно-мозговых нервов, в ретикулярную формацию и другим структурам, обеспечивающим зрительные ориентировочные рефлексы.

Большая часть нейронов не отвечает или слабо отвечает на действие диффузного света или на неподвижные объекты, но дает сильную реакцию на движение, поэтому их называют детекторами движения. При этом более 75% нейронов реагируют только на определенное направление движения (преимущественно на движение в горизонтальной плоскости), и сила реакции зависит от скорости движения. Удаление или разрушение переднего двухолмия у животных сопровождается потерей способности следить за движущимся объектом. В связи с этим считают, что переднее двухолмие осуществляет координацию движений глазных яблок с поступлением зрительной информации.

Зрительная кора. Зрительная кора имеет слоистую структуру. В зависимости от выраженности тех или иных слоев ней выделяют первичную область – 17-е поле, вторичную – 18-е поле и третичную – 19-е поле по Бродману. Поле 17 является центральным полем коркового ядра анализатора, 18-е и 19-е поля – периферическими.

Функциональное значение зрительной коры чрезвычайно велико. Это доказывается наличием многочисленных связей не только со специфическими зрительными подкорковыми образованиями, но и с ассоциативными и неспецифическими ядрами таламуса, с ретикулярной формацией, теменной ассоциативной областью и т.д.

Реакции одиночных нейронов зрительной коры впервые были зарегистрированы Р. Юнгом в начале 50-х г.г. Было показано, что на диффузный засвет сетчатки реагирует лишь около половины нейронов. Большая же часть нейронов отвечает лишь на стимулы, ориентированные определенным образом (лучше всего – на светлые полосы на темном фоне или пространственные решетки, состоящие из чередующихся светлых и темных полос).

В 60-х гг. ХХ в. американские нейрофизиологи Д. Хьюбел и Т. Визель, исследуя свойства нейронов зрительной коры, выделили три типа рецептивных полей – простые, сложные и сверхсложные. Рецептивные поля простого типа имеют прямоугольную форму, состоят из центра и периферии, границы которых приблизительно параллельны друг другу. Лучше всего они отвечают на движение светлой полосы по темному фону или наоборот. Как правило, у нейронов с простым типом рецептивного поля существует предпочитаемое направление движения, реакция на которое выражена сильнее всего.

Нейроны с рецептивным полем сложного типа лучше отвечают на полоску или решетку, оптимальным образом ориентированную относительно сетчатки (вертикальное, горизонтальное или наклонное положение).

Нейроны сверхсложного типа могут отвечать на несколько положений полосы (линии), ее повороты на определенный угол, на угол, образуемый двумя линиями, на кривизну контура или более сложные пространственные характеристики зрительного изображения. Предполагается, что существует конвергенция нейронов с простыми рецептивными полями на нейроны более высокого порядка. В 17-м поле коры встречается больше нейронов с простыми, а в 18-м и 19-м – со сложными и сверхсложными рецептивными полями.

На основании этого Д. Хьюбел и Т. Визель сформулировали детекторную теорию переработки зрительной информации. Суть ее состоит в том, что нейроны с простыми рецептивными полями, являясь детекторами элементарных признаков зрительного изображения (например, ориентации линий), конвергируют с нейронами более высокого уровня, которые в результате этой конвергенции приобретают более сложные свойства. Таким образом, существует иерархия нейронов-детекторов, на верхних ступенях которой находятся детекторы наиболее сложных признаков зрительного изображения. Однако, как было показано в дальнейшем, такого рода нейроны, ответственные за опознание целостных зрительных образов, расположены за пределами собственно зрительной коры – в первую очередь, в нижневисочной области. Таким образом, процесс зрительного восприятия не заканчивается в проекционных областях, а продолжается на более сложных уровнях ассоциативных корковых зон.

Альтернативой детекторной теории является пространственно-частотная гипотеза переработки зрительной информации, предложенная английским исследователем Ф. Кемпбеллом и отечественным физиологом В.Д. Глезером. Согласно этой гипотезе, нейроны зрительной коры определяют две основные характеристики зрительного изображения – ориентацию стимула (полосы, решетки) и его пространственную частоту. При этом нейроны разных участков коры «настроены» на стимулы разной пространственной ориентации и пространственной частоты. Таким образом, в 17-м поле зрительной коры создается «мозаика» из возбужденных и невозбужденных нейронов, изоморфно отображающая пространственное распределение возбужденных и заторможенных рецепторов сетчатки глаза. Нейроны вторичной и третичной зрительных областей (18-е и 19-е поля) используют информацию, поставляемую из первичной коры (17-е поле), для формирования более крупных подобразов зрительного изображения.

Таким образом, на уровне зрительной коры осуществляется тонкий, дифференцированный анализ наиболее сложных признаков зрительного сигнала (выделение контуров, очертаний, формы объекта, локализации, перемещений в пространстве и т.д.). На уровне вторичной и третичной областей, по-видимому, осуществляется наиболее сложный интегративный процесс, подготавливающий организм к опознанию зрительных образов и формированию целостной сенсорно-перцептивной картины мира. Формирование же целостных зрительных образов, их опознание и оценка биологической значимости осуществляется в ассоциативных областях в первую очередь, заднетеменной и нижневисочной.

Ассоциативные зоны коры. В нейрофизиологических исследованиях было показано, что нейроны нижневисочной коры (НВК) лучше всего отвечают на целостные образы (например, на геометрические фигуры). При этом можно выделить клетки, отвечающие только на одну фигуру (например, круг), или реагирующие на несколько различных изображений (круг, треугольник, крест и квадрат). Ответы нейронов, как правило, инвариантны к преобразованиям фигур, т.е. не зависят от размера, поворота, цвета изображений, освещенности и т.д.

В целом считают, что нейроны НВК отвечают на сенсорное значение зрительного стимула независимо от его значимости для моторного поведения. При этом для НВК важны не отдельные характеристики стимула, а их определенные сочетания. Очевидно, НВК осуществляет классификацию изображений в соответствии с конкретной задачей, стоящей перед животными и человеком. При повреждении этой области у человека нарушаются процессы опознания объектов и памяти.

Заднетеменная кора (ЗТК) создает нейронную конструкцию (модель) окружающего пространства, описывая расположение и перемещение объектов в этом пространстве по отношению к телу, а также положение и движение тела по отношению к окружающему пространству. Другими словами, в ЗТК происходит переработка информации, описывающей соотношения между внутренними и наружными координатными системами. Имеются также данные о связи нейронов ЗТК с произвольным вниманием к тому или иному зрительно воспринимаемому объекту.

При двусторонних повреждениях теменной области у человека возникают нарушения зрительного восприятия пространства. Такие больные не могут оценить пространственные преобразования фигур, у них нарушена топографическая ориентировка и т. д. Это свидетельствует о важной роли ЗТК в восприятии пространства и пространственных соотношений между объектами, находящимися в поле зрения.

Опознание образов осуществляется содружественной работой НВК и ЗТК. Если первая осуществляет опознание отдельных элементов (фрагментов) целостной зрительной ситуации, инвариантно к их пространственным преобразованиям, то вторая формирует целостную картину окружающего мира.

Лобная кора благодаря своим многочисленным связям со структурами памяти и структурами лимбической системы осуществляет оценку значимости стимула для организма и планирование соответствующего поведенческого акта.

Световая чувствительность и адаптация

Световая чувствительность характеризует способность зрительной системы воспринимать излучение света. Наибольшую световую чувствительность глаз имеет в темноте. Минимальное количество световой энергии, необходимое в этих условиях для возникновения ощущения света, называют абсолютным порогом. Фоторецептор способен возбуждаться при действии одного-двух квантов света, однако, для возникновения светового ощущения необходима суммация возбуждения от нескольких рецепторов. В естественных условиях зрительная система крайне редко работает на пределе, т.е. в околопороговой области, и основное значение для зрения имеет контрастная чувствительность, т.е. чувствительность в условиях световой адаптации. Если тестовое пятно находится на освещенном фоне, то минимальную разность яркости пятна В c и фона В f , которая воспринимается наблюдателем как едва заметное различие, называют разностным, или дифференциальным, порогом (∆ В) : ∆В = │В c – В f │. Отношение разностного порога к освещенности фона называют пороговым контрастом или относительным дифференциальным порогом . Величина относительного дифференциального порога безразмерная и показывает, насколько нужно изменить величину тестового стимула по отношению к фону, чтобы уловить едва заметную разницу между ними. Например, если относительный дифференциальный порог равен 0,03, то это означает, что тестовый стимул должен отличаться от фона на 3%. Согласно закону Бугера-Вебера, ∆В/В f = const , или ∆В = k∙В f (разностный порог растет пропорционально освещенности). Однако этот закон справедлив лишь для среднего диапазона интенсивностей и нарушается при малых и больших значениях стимула.

Большое значение для световой чувствительности зрительной системы имеет ее способность к адаптации , т.е. к функциональной перестройке, позволяющей работать в оптимальном режиме при данном уровне освещенности. Различают темновую и световую адаптацию. Темновая адаптация характеризуется максимальным повышением световой чувствительности (снижением абсолютных порогов) зрительной системы для восприятия светового раздражителя в абсолютной темноте. Световая адаптация характеризует чувствительность системы при разных уровнях освещенности.

Темновая адаптации включает в себя изменение палочковой и колбочковой чувствительности. Палочковая адаптация завершается через 7–8 минут, изменения палочковой чувствительности происходят примерно в течение 30 мин. Механизм темновой адаптации с одной стороны состоит в постепенном восстановлении зрительного пигмента в темноте, с другой – в перестройка рецептивных полей в передающей системе рецептор – биполяр – ганглиозная клетка. Так, обнаружено, что в процессе темновой адаптации уменьшается вплоть до полного исчезновения тормозная «кайма» на периферии рецептивного поля ганглиозной клетки, а следовательно, увеличивается ее световая чувствительность.

Световая чувствительность при световой адаптации понижается при переходе от меньшей освещенности к большей. Она протекает быстрее, чем темновая адаптация, и составляет примерно 1–3 минуты.

Острота зрения

Острота зрения характеризует предельную пространственную разрешающую способность зрительной системы, т.е. способность глаза различать две близко расположенные точки как раздельные. Острота зрения определяется как оптикой глаза, так и его нейронными механизмами.

При измерении остроты зрения чаще всего пользуются методом обнаружения, когда предъявляют светлый тест-объект на темном фоне или темный на светлом. Так, наблюдатель должен опознать буквы разного углового размера, определить наклон решетки, состоящей из параллельных полос, и т.д. Наибольшее распространение получили кольца Ландольта, в которых требуется определить положение разрыва на кольце. За количественную меру остроты зрения принимается величина, обратная углу зрения, минимального по размеру, но еще воспринимаемого объекта.

Острота зрения зависит от ряда факторов: освещенности, контрастности фона и текста, состояния и адаптации рецепторного аппарата, оптического аппарата глаза. Она обусловлена также перестройкой рецептивных полей ганглиозных клеток сетчатки. При повышении уровня освещенности размер центра рецептивного поля уменьшается, а влияние тормозной периферии нарастает. Можно предположить, что когда изображение двух точек попадает в два смежных рецептивных поля, разделенных тормозной периферией, вероятность их различения выше, чем в том случае, когда такая периферия отсутствует.

Острота зрения является также функцией положения тест-объекта на сетчатке (или удаления последнего от центральной ямки). Чем дальше от центра производится измерение, тем острота зрения меньше.

Движения глаз и их роль в зрении

Движения глаз играют весьма важную роль в зрительном восприятии. Даже в том случае, когда наблюдатель фиксирует взглядом неподвижную точку, глаз не находится в покое, а все время совершает небольшие движения, которые являются непроизвольными. Движения глаз выполняют функцию дезадаптации при рассматривании неподвижных объектов. Другая функция мелких движений глаза – удерживание изображения в зоне ясного видения.

В реальных условиях работы зрительной системы глаза все время перемещаются, обследуя наиболее информативные участки поля зрения. При этом одни движения глаз позволяют рассматривать предметы, расположенные на одном удалении от наблюдателя, например, при чтении или рассматривании картины, другие – при рассматривании объектов, находящихся на разном удалении от него. Первый тип движений – это однонаправленные движения обоих глаз, в то время как второй осуществляет сведение или разведение зрительных осей, т.е. движения направлены в противоположные стороны.

Показано, что перевод глаз с одних объектов на другие определяется их информативностью. Взор не задерживается на тех участках, которые содержат мало информации, и в то же время длительно фиксирует наиболее информативные участки (например, контуры объекта). Эта функция нарушается при поражении лобных долей. Движение глаз обеспечивает восприятие отдельных признаков предметов, их соотношение, на основе чего формируется целостный образ, хранящийся в долговременной памяти.

Цветовое зрение

Восприятие цвета обусловлено работой двух механизмов. Первичным является фоторецепторный механизм, основанный на существовании рецепторов, избирательно реагирующих на разные участки спектра. В сетчатке были обнаружены три типа колбочек с максимумами поглощения в различных областях спектра (синий, зеленый и красный).

В то же время в психологии и физиологии описан ряд фактов, которые невозможно объяснить, основываясь на фоторецепторном механизме. Такими примерами могут служить феномены одновременного и последовательного контраста. Одновременный контраст заключается в изменении цветового тона в зависимости от фона, на котором предъявляется тот или иной тестовый стимул. Например, серое пятно на красном фоне приобретает зеленоватый оттенок, на желтом – синеватый и т.д. Феномен последовательного контраста состоит в том, что если достаточно долго смотреть на окрашенную в определенный цвет поверхность (например, красную), а затем перевести взор на белую, то она приобретает оттенок оппонентного цвета (в данном случае – зеленоватый). Здесь вступает в работу центральный механизм. Суть его заключается в том, что нейроны ганглиозных клеток, НКТ и зрительной коры обладают цветооппонентными рецептивными полями, т.е. центр рецептивного поля активируется одним цветом, а его периферия – другим, противоположным (оппонентным). Это обусловлено особенностями их рецептивных полей, включающих возбуждающие и тормозные связи с разными типами колбочек. Описаны две цветооппонентные системы: красно-зеленая, желто-синяя.

Таким образом, восприятие цвета обусловлено работой двух разных механизмов, работающих на разных уровнях зрительной системы.

Стереоскопическое зрение

Стереоскопическое зрение позволяет оценить глубину пространства, т.е. относительную удаленность объектов в поле зрения. Оно обусловлено неодинаковым изображением одного и того же объекта на сетчатках обоих глаз. Поскольку глаза расположены на определенном расстоянии друг от друга, то они воспринимают объект под разным углом (так называемый бинокулярный параллакс), поэтому изображения на правой и левой сетчатке будут несколько отличаться друг от друга. В этом легко убедиться, по очереди закрывая то один глаз, то другой. Глазные оси были бы строго параллельны друг другу только в том случае, если бы фиксируемый объект находился на бесконечном удалении от наблюдателя. По мере приближения объекта он будет восприниматься как объемный, а глазные оси будут сходиться. Наконец, на очень близком расстоянии возникает двоение изображения. Иначе говоря, существует определенная зона видения, в пределах которой объект кажется объемным. Она выражается в угловых минутах. Ее нижняя граница составляет около 2 угл. мин. Это угол зрения, при котором две точки для наблюдателя сливаются в одну, т.е. явление глубины (или стереопсиса) исчезает. На практике эту границу достаточно легко определить: это расстояние, при котором глаза другого человека воспринимаются как одно изображение, что в среднем составляет около 6 км. Верхней границей стереопсиса является угол зрения, составляющий около 10 угл. град., за пределами этой границы изображение начинает двоиться.

Нейрофизиологические механизмы стереоскопического зрения на сегодняшний день изучены не до конца. Показано, однако, что основную роль в возникновении стереопсиса играет характер передачи изображения от сетчатки в высшие центры зрительной системы (рис 3.).

Как известно, у человека в области хиазмы осуществляется неполный перекрест волокон зрительного нерва – волокна от внутренних половин сетчаток перекрещиваются и идут в НКТ и зрительную кору противоположного полушария. Волокна от наружных половин сетчаток идут без перекреста. Таким образом, в каждое полушарие приходит информация от противоположной половины поля зрения. Это и является физиологической основой стереоскопического зрения.

Вопросы и задания для самоконтроля

1. Какие структуры глаза относятся к его оптической системе, какова их роль в зрительном восприятии?

2, Рассмотрите строение сетчатки. Какие из элементов сетчатки способны генерировать потенциал действия?

3. Назовите функциональные отличия фоторецепторов.

4. Какую роль выполняют горизонтaльные и амакриновые клетки?

5. Что является причиной возникновения рецепторного потенциала в фоторецепторах?

6. Kaкaя информация кодируется нейронами наружного коленчатого тела?

7. Какова функция передних холмов в переработке зрительной информации?

8. Чем детекторная теория зрительного восприятия отличается от пространственно-частотной теории?

9. Какую функцию выполняют нижневисочнaя и заднетеменнaя кора?

10. Как изменяется соотношение центра и периферии рецептивного поля ганглиозной клетки при темновой и световой адаптации?

11. От каких факторов зависит острота зрения?

12. Какую роль в зрительном восприятии играют движения глаз?

13. Oпишите основные механизмы цветового зрения.

14. Что лежит в основе стереопсиса?

Представляет собой совокупность структур, воспринимающих световую энергию и формирующих зрительные ощущения. Согласно современным представлениям, 80-90% всей информации об окружающем мире человек получает благодаря . С помощью зрительного анализатора воспринимаются размеры предметов, степень их освещённости, цвет, форма, направление и скорость передвижения, расстояние, на которое они удалены от глаза и друг от друга. Всё это позволяет оценивать пространство, ориентироваться в окружающем мире, выполнять различные виды целенаправленной деятельности.

Описание полей схемы:

Схема строения зрительного анализатора: 1 - сетчатка, 2 - неперекрещенные волокна зрительного нерва, 3 - перекрещенные волокна зрительного нерва, 4 - зрительный тракт, 5 - наружнее коленчатое тело, 6 - латеральный корешок, 7 - зрительные доли

Выходя из глаза, зрительный нерв делится на две половины. Внутренняя половина перекрещивается с такой же половиной другого глаза и вместе с наружной половиной противоположной стороны направляется к метаталамусу, где расположен следующий нейрон, заканчивающийся на клетках зрительной зоны в затылочной доле . Часть волокон зрительного тракта направлена к клеткам четверохолмия , от которых начинается тектоспинальный путь рефлекторных ориентировочных движений, связанных со зрением. Кроме того, в четверохолмии имеются связи с парасимпатическим ядром Якубовича, от которого начинаются волокна глазодвигательного нерва, обеспечивающие сужение зрачка и аккомодацию глаза.

https://www. /watch? v=jWsqMz9M9OY&t=209

Орган зрения - глаз - находится в орбитальной впадине черепа (глазнице), сзади и с боков окружен мышцами, которые прикрепляются к наружной поверхности глазного яблока и обеспечивают его движение.

Орган зрения состоит из:

    глазного яблока зрительного нерва вспомогательного аппарата глаза: глазные мышцы, жировая клетчатка, веки, ресницы, брови, слезные железы

Главная функция зрения – познавательная. Около 90 % информации об окружающем мире человек получает с помощью зрительного анализатора. Он, как и каждый анализатор, состоит из трех частей:

Ø периферической (глаз),

Ø проводниковой (зрительный нерв)

Ø центральной (зрительная зона в коре затылочной части головного мозга).

Вспомогательный аппарат глаза

Вспомогательный аппарат глаза выполняет двигательную и защитную функции.

Двигательная функция осуществляется шестью мышцами , от сокращения которых зависят движения глаз.

Защитную функцию выполняет слезный аппарат , состоящий из слезных желез, отводящих путей, слезных канальцев, слезного мешка и носослезного протока. Слеза предохраняет роговицу от переохлаждения, высыхания и смывает осевшие пылевые частицы.

К защитному аппарату относятся также брови, веки и ресницы .

Веки представляют собой кожные складки, при смыкании они полностью покрывают глазное яблоко. Внутренняя поверхность век покрыта слизистой оболочкой - конъюнктивой . Защита глаз от ветра, пыли, ярких лучей.

Края век снабжены ресницами , позади них располагаются отверстия сальных желез, в которых вырабатывается жировой секрет для смазки краев век.

Брови имеют вид валиков, они покрыты волосами и предохраняют глаз сверху, отводят пот со лба.

Глазное яблоко имеет не совсем правильную шарообразную форму. Для осмотра доступен только передний отдел - роговица и окружающая его часть, остальная часть залегает в глубине глазницы. Масса глазного яблока 7-8 г, диаметром примерно 24 мм.

Строение и функции глаза

Системы

Придатки и части глаза

Строение

Функции

Оболочки

Белочная (склера)

Наружная плотная оболочка, состоящая из соединительной ткани.

Защита глаз от механических и химических повреждений, от микроорганизмов.

Сосудистая

Средняя оболочка, пронизанная кровеносными сосудами. Внутренняя поверхность содержит слой черного пигмента.

Питание глаза, пигмент поглощает световые лучи.

Сетчатка

Внутренняя оболочка глаза, состоящая из фоторецепторов: палочек и колбочек.

Восприятие света, преобразование его в нервный импульс.

Оптическая

Роговица

Прозрачная передняя часть белочной оболочки.

Преломляет лучи света.

Водянистая влага

Прозрачная жидкость, находящаяся за роговицей.

Пропускает лучи света.

Радужная оболочка

Передняя часть сосудистой оболочки с пигментом и мышцами.

Пигмент (меланин) придает цвет глазу, мышцы меняют величину зрачка.

Зрачок

Отверстие в радужной оболочке.

Регулирует количество света, расширяясь и суживаясь.

Хрусталик

Двояковыпуклая эластичная прозрачная линза, окруженная ресничной мышцей.

Преломляет и фокусирует лучи света, обладает аккомодацией.

Стекловидное тело

Прозрачное студенистое вещество.

Заполнят глазное яблоко. Поддерживает внутриглазное давление. Пропускает лучи света.

Световоспринимающая

Фоторецепторы

Расположены в сетчатке в форме палочек и колбочек.

Палочки воспринимают форму (зрение при слабом освещении), колбочки – цвет (цветное зрение).

Клетки пигментного эпителия имеют форму шестигранной призмы и расположены в один ряд. В них содержится пигмент фусцин. Пигментный эпителий поглощает и трансформирует лучи света, устраняя его диффузное рассеивание внутри глаза. Ганглиозная клетка вступает в контакт с группой биполяров, а один биполяр - с гроздьями палочек и колбочек. Слой нервных волокон состоит из осевых цилиндров ганглиозных клеток, которые образуют зрительный нерв.

Основная функция зрения состоит в различении яркости, цвета, формы, размеров наблюдаемых объектов. Наряду с другими анализаторами зрение играет большую роль в регуляции положения тела и в определении расстояния до объекта.

Ощущение цвета

Цвет - это ощущение, которое возникает в сознании человека при воздействии на его зрительный аппарат электромагнитного излучения с длиной волны в диапазоне от 380 до 760 нм. Эти ощущения могут быть вызваны и другими причинами: болезнь, удар, мысленная ассоциация, галлюцинации, и др.

Способность к цветоощущению возникла в процессе эволюции как реакция адаптации, как способ получения сведений об окружающем мире и способ ориентирования в нем. Каждый человек воспринимает цвета индивидуально, отлично от других людей. Однако у большей части людей цветовые ощущения очень схожи.

Физической основой цветовосприятия является наличие специфических светочувствительных клеток в центральном участке сетчатки глаза, так называемых палочек и колбочек.

Различают три вида колбочек, по чувствительности к разным длинам волн света (цветам). Колбочки S-типа чувствительны в фиолетово-синей, M-типа - в зелено-желтой, и L-типа - желто-красной частях спектра.

Наличие этих трех видов колбочек (и палочек, чувствительных в изумрудно-зеленой части спектра) даёт человеку цветное зрение.

В ночное время зрение обеспечивают только палочки, поэтому ночью человек не может различать цвета.

Дальтонизм, цветовая слепота – наследственная, реже приобретённая особенность зрения, выражающаяся в неспособности различать один или несколько цветов. Названа в честь Джона Дальтона, который впервые описал один из видов цветовой слепоты на основании собственных ощущений, в 1794 году.

Передача дальтонизма по наследству связана с Х-хромосомой и практически всегда передаётся от матери-носителя гена к сыну, в результате чего в двадцать раз чаще проявляется у мужчин.

Характер цветового восприятия определяется на специальных полихроматических таблицах Рабкина. В наборе имеется 27 цветных листов - таблиц, изображение на которых (обычно цифры) состоит из множества цветных кружков и точек, имеющих одинаковую яркость, но несколько различных по цвету. Человеку с частичной или полной цветовой слепотой (дальтонику), не различающему некоторые цвета на рисунке, таблица кажется однородной. Человек с нормальным цветовосприятием способен различить цифры или геометрические фигуры.

Цветовая слепота может ограничить возможности человека при исполнении тех или иных профессиональных навыков . Зрение врачей, водителей, моряков и лётчиков тщательно исследуется, так как от его правильности зависит жизнь многих людей. Дефект цветового зрения впервые привлёк к себе внимание общественности в 1875 г., когда в Швеции произошло крушение поезда, повлёкшее большие жертвы. Оказалось, что машинист не различал красный цвет, а развитие транспорта именно в то время привело к широкому распространению цветовой сигнализации. После этого случая проверка на цветовое зрение стала обязательной для водителей транспортных средств. Сегодня усилиями специалистов в области цветового зрения изготовлены особые очки, с помощью которых дальтоники могут различать основные цвета: красный, зеленый, синий.

Ощущение пространства

Поле зрения - пространство, воспринимаемое глазом при неподвижном взгляде. Поле зрения является функцией периферических отделов сетчатки; его состоянием в значительной мере определяется возможность человека свободно ориентироваться в пространстве. Примерные границы поля зрения определяют контрольным методом. Для этого обследуемый садится спиной к свету, один глаз его закрывают легкой повязкой. Исследующий садится против него на расстоянии примерно 1 м и закрывает свой глаз, противоположный закрытому глазу больного. Обследуемый фиксирует открытый глаз исследующего. Последний постепенно проводит от периферии к центру в различных направлениях пальцем своей руки и отмечает момент, когда обследуемый замечает палец. Путем сравнения получаемых при этом границ поля зрения обследуемого и исследующего, у которого поле зрения должно быть нормальным, устанавливают наличие изменений.

Глаз человека пропускает и преломляет лишь лучи с длиной волны от 400 до 760 мкм. Все преломляющие среды глаза, начиная с роговицы, поглощают ультрафиолетовые лучи. Световые раздражения воспринимаются фоторецепторами - палочками и колбочками сетчатки. Прежде чем достигнуть сетчатки, лучи света проходят через светопреломляющие среды глаза. При этом на сетчатке получается действительное обратное уменьшенное изображение. Несмотря на перевернутость изображения предметов на сетчатке, вследствие переработки информации в коре головного мозга человек воспринимает их в естественном положении, к тому же зрительные ощущения всегда дополняются и согласуются с показаниями других анализаторов.

Четкое представление о наблюдаемых объектах, расположенных на различном расстоянии, осуществляется за счет аккомодации - приспособления глаза к видению различно удаленных предметов. При аккомодации сокращаются мышцы, которые изменяют кривизну хрусталика.

С возрастом эластичность хрусталика уменьшается, он становится более уплощенным и аккомодация ослабевает. В это время человек хорошо видит только далекие предметы: развивается так называемая старческая дальнозоркость. Кроме того существует врожденная дальнозоркость , связанная уменьшенной величиной глазного яблока или слабой преломляющей силой роговицы или хрусталика. При дальнозоркости изображение от далеких предметов фокусируется позади сетчатки.

К нарушениям функции глаза относится и близорукость . При близорукости глазное яблоко увеличено в размере, изображение далеких предметов даже при отсутствии аккомодации хрусталика получается перед сетчаткой. Такой глаз ясно видит только близкие предметы и поэтому называется близоруким.

Изменения зрения

Гигиена зрения

ü Глаз следует оберегать от разных механических воздействий,

ü читать в хорошо освещенном помещении, держа книгу на определенном расстоянии (до 33-35 см от глаза). Свет должен падать слева. Нельзя близко наклоняться к книге, так как хрусталик в этом положении долго находится в выпуклом состоянии, что может привести к развитию близорукости.

ü Слишком яркое освещение вредит зрению, разрушает световоспринимающие клетки. Поэтому сталеварам, сварщикам и лицам других сходных профессий рекомендуется надевать во время работы темные защитные очки.

ü Нельзя читать в движущемся транспорте. Из-за неустойчивости положения книги все время меняется фокусное расстояние. Это ведет к изменению кривизны хрусталика, уменьшению его эластичности, в результате чего ослабевает ресничная мышца.

ü Расстройство зрения может возникнуть также из-за недостатка витамина А.

Существует ли какая либо связь между характером человека и цветом его глаз? Некоторые специалисты-психологи в последнее время склоняются к мнению, что это именно так.

ü Люди с темными глазами упорны, выносливы; однако при трудностях, опасности, кризисном состоянии становятся слишком раздражительными, вспыльчивыми. Они и импульсивны и темпераментны. При возникновении неожиданных препятствий принимают быстрые и точные для данного момента решения.

ü Сероглазые всегда упорны и решительны, но вместе с тем беспощадны перед рутинными задачами, которые не требуют особого умственного напряжения.

ü Светло-коричневые глаза говорят об известной замкнутости и индивидуальности. Люди с такими глазами не выносят, чтобы ими командовали и обычно работают лучше, если они предоставлены сами себе.

ü Голубоглазые - выносливы, но сентиментальны и житейское однообразие очень портит им настроение. Они обычно мрачны, угнетены, как говорится люди настроения, часто сердятся.

ü Зеленоглазые - относятся к самой счастливой категории - стабильны, с богатым воображением, решительны, знают свои возможности, они сосредоточены и терпеливы, находят выход из любого положения, человечны и строги, но справедливы. Прекрасные слушатели и собеседники. Специалисты указывают на них, как на идеальный тип руководителя.

Домашнее задание

1. Выучить конспект.

2. Выполнить тест.

1.Какой из цветов колбочки НЕ распознают?

1)красный 2)сине-фиолетовый

3)желтый 4)зеленый

2.Где находятся фоторецепторы глаза – палочки и колбочки?

1)в сетчатке 2)в роговице

3)в сосудистой оболочке 4)в хрусталике

3. Какая структура глазного яблока обеспечивает аккомодацию?

1)роговица 2)сетчатка

3)зрачок 4)хрусталик

4. Какая оболочка глаза расположена под белочной?

1)радужная 2)роговица

3)сосудистая 4)сетчатка

5. Где расположено слепое пятно?

1)в зрачке 2)в склере

3)в радужке 4)в сетчатке

6. Какая структура глаза НЕ относится к преломляющим средам?

1)роговица 2)сетчатка

3)хрусталик 4)стекловидное тело

7. Как называется передняя часть сосудистой оболочки глаза?

1)радужка 2)роговица

3)зрачок 4)сетчатка

8. Где расположено желтое пятно?

1)в склере 2)в радужке

3)в сетчатке 4)в сосудистой оболочке

9. С помощью какого анализатора человек получает наибольшее количество информации из внешней среды?

1)слухового 2)зрительного

3)осязательного 4)обонятельного

10. В какой зоне полушарий головного мозга находится обрабатывающее звено зрительного анализатора.

3. Найди соответствие.

Части глаза

Функции

А. Белочная

1. Питание глаза, пигмент поглощает световые лучи.

Б. Сосудистая

2. Пропускает лучи света.

В. Сетчатка

3. Пигмент придает цвет глазу, мышцы меняют величину зрачка.

Г. Роговица

4. Восприятие света, преобразование его в нервный импульс.

Д. Водянистая влага

5. Палочки воспринимают форму (зрение при слабом освещении), колбочки – цвет (цветное зрение).

Е. Радужная оболочка

6. Регулирует количество света, расширяясь и суживаясь.

Ж. Зрачок

7. Заполнят глазное яблоко. Поддерживает внутриглазное давление. Пропускает лучи света.

З. Хрусталик

8. Защита глаз от механических и химических повреждений, от микроорганизмов.

И. Стекловидное тело

9. Преломляет лучи света

К. Фоторецепторы

10. Преломляет и фокусирует лучи света, обладает аккомодацией.

4. Вставь пропущенные слова

1. Система, состоящая из рецептора, проводящих нервных путей и мозговых центров, называется …

2. Зоны, обеспечивающие тесное взаимодействие между анализаторами и участвующие в процессах восприятия образов, называют …

3. Глаза от ветра и пыли защищают …

4. Излишки слезной жидкости стекают в носовую полость через …

5. Глаза находятся в полости костного углубления –…

6. Три оболочки глазного яблока – …

7. Передняя прозрачная часть белочной оболочки называется …

8. Цвет глаз определяется …

9. Зрительные рецепторы расположены в …

10. За зрачком расположен прозрачный двояковыпуклый …

11. Прозрачная желеобразная масса, заполняющая пространство позади хрусталика, называется …

12. Место на сетчатке, откуда отходит зрительный нерв, называется …

13. Следствием увеличения кривизны хрусталика является …