Объем оцк. Объем циркулирующей крови

Изобретение относится к медицине, диагностике заболеваний. Больному внутривенно вводят 50-200 мл 10% раствора перфторана. Каждые 15-25 мин отбирают пробы крови из противоположной вены. Измеряют содержание перфторана в граммах в 1 мл крови взятой пробы. Рассчитывают объем циркулирующей крови по отношению исходного содержания перфторана к содержанию перфторана в 1 мл взятой пробы крови. Способ может быть эффективно использован в полевых условиях, поскольку не требует сложного и дорогостоящего оборудования, а вся процедура измерения объема циркулирующей крови составляет 40-60 мин. 1 з.п. ф-лы, 1 табл.

Изобретение относится к медицине и может быть использовано при диагностике заболеваний сердечно-сосудистой системы, печени, почек. Исследование объема циркулирующей крови (ОЦК) имеет большое значение при диагностике ряда заболеваний сердечно-сосудистой системы, печени и почек. По мере развития сердечной недостаточности ОЦК неуклонно возрастает, главным образом за счет объема плазмы, тогда как объем циркулирующих эритроцитов остается нормальным или даже снижается. Раннее выявление гиперволемии позволяет своевременно корректировать проведение лекарственной терапии. Определение ОЦК важно в современной хирургической клинике, поскольку изменения окраски кожных покровов, частоты пульса и дыхания, динамики артериального и венозного давления, показатели гемограммы часто свидетельствует об уже наступившей декомпенсации кровообращения. Известен способ определения ОЦК методом разведения красителей, включающий введение в вену пациента индоцианина, или метиленовой сини (см. Большая Медицинская Энциклопедия, т. 18, М. : Советская энциклопедия, 1960 г., с. 82-86.) При этом, регистрируют количество введенного в вену красителя. Через 15-20 минут из противоположной вены берут пробу крови и замеряют количество красителя в 1 мл крови во взятой пробе. По соотношению количества красителя при введении в вену и в 1 мл крови взятой пробы (т.е. по степени разбавления красителя) рассчитывают объем циркулирующей крови. Известный способ определения объема циркулирующей крови в настоящее время имеет весьма ограниченное применение, т.к. вызывает значительные осложнения у больных с заболеванием или травмой печени. Известен также способ определения ОЦК методом изотопного разведения (см. сборник "Стандартизированные методики радиоизотопной диагностики", Обнинск, 1987 г. , с. 26). Способ осуществляют следующим образом. Приготавливают раствор радиофармпрепарата, например, альбумин-технеций (Тс)99м. Измеряют его радиоактивность. Вводят препарат в вену пациента. Через 15-25 минут осуществляют взятие пробы крови из противоположной вены пациента. Измеряют радиоактивность введенного радиофармпрепарата в 1 мл взятой пробы крови. Объем циркулирующей крови рассчитывают по соотношению исходной радиоактивности фармпрепарата при введении в вену пациента и по радиоактивности фармпрепарата в 1 мл крови во взятой пробе. Настоящий способ определения ОЦК в отличие от способов, основанных на разведении красителей, дает существенно меньше осложнений у больных с заболеванием или травмой почек. Однако использование радионуклидов ограничивает сферу применения данного способа. В настоящее время он может быть использован или специализированными лабораториями радионуклидной диагностики, или крупными медицинскими центрами, имеющими соответствующее дорогостоящее оборудование и аппаратуру. Существенным недостатком известного способа определения ОЦК является также и то, что он не может быть использован в полевых условиях (военная медицина, медицина катастроф и т.п.), поскольку радиофармпрепараты имеют период полураспада 6-8 дней, что исключает возможность использования данного способа определения ОЦК в практической медицине, в полевых и в экстремальных условиях. Настоящее изобретение решает задачу разработки оперативного, надежного и достаточно простого по аппаратурной реализации способа определения ОЦК, который может быть эффективно использован в практической медицине, в частности в полевых и экстремальных условиях. Решение поставленной задачи достигается следующим образом. В способе определения объема циркулирующей крови, включающем приготовление дозы фармпрепарата, регистрацию или измерение исходного информационного параметра (А) фармпрепарата, введение фармпрепарата в вену пациента, взятие через 15-25 минут пробы крови с фармпрепаратом из противоположной вены пациента, измерение информационного параметра (Б) фармпрепарата в 1 мл крови во взятой пробе у пациента и расчет объема циркулирующей крови по соотношению А/Б, согласно настоящему изобретению в качестве фармпрепарата используют перфторан, 10% раствор которого вводят в вену пациента в объеме 50-200 мл. При расчете объема циркулирующей крови в качестве информационных параметров А и Б принимают соответственно количество перфторана в граммах до введения в вену пациента и его количество в граммах в 1 мл крови во взятой пробе. Согласно изобретению измерение количества перфторана во взятой у пациента пробе крови осуществляют методом ядерно-магнитной резонансной спектроскопии. Технический результат настоящего изобретения заключается в возможности оперативного и надежного определения объема циркулирующей крови пациента без использования дорогостоящего и громоздкого оборудования как в условиях рядовых клиник, так и в полевых и экстремальных условиях. Сущность изобретения поясняется нижеследующим описанием. Патентуемый способ определения объема циркулирующей крови (ОЦК) осуществляют следующим образом. Приготавливают (например) 50 мл 10% раствора перфторана. Регистрируют исходное содержание перфторана в растворе (информационный параметр А). С помощью системы капельного введения лекарственных препаратов (капельницы) водят раствор фармпрепарата в вену пациента. Через 15-25 минут осуществляют взятие пробы крови (1-10 мл) у пациента. Измеряют содержание перфторана в граммах в 1 мл крови во взятой пробе у пациента (информационный параметр Б). По соотношению А/Б рассчитывают объем циркулирующей крови. Например, если первоначально пациенту было введено 50 мл 10% раствора перфторана, то исходное количество перфторана (т.е. информационный параметр А) составляет 5 г. После взятия из противоположной вены пробы крови, например 10 мл, измеряют содержание перфторана в граммах во взятой пробе. Для удобства последующего расчета полученное значение содержания перфторана в 10 мл крови делят на 10, т.е. определяют содержание перфторана в граммах в 1 мл крови (информационный параметр Б). Например, в 1 мл крови содержится 1 мг, или 0,001 г, перфторана. Используя расчетное соотношение А/Б, определим, что объем циркулирующей крови составит 5000 мл, или 5 литров. Расчет содержания перфторана в пробе крови пациента осуществляют по стандартной методике с использованием стандартного ЯМР-спектрометра, например "Миниспек НМС-100" (фирмы "Брюкнер" Австрия). Заявителем были проведены исследования (см. таблицу) по определению минимального содержания перфторана во взятой пробе крови. Проведенные исследования по разбавлению перфторана (см. таблицу) показывают следующее. При введении 100 мл 10% раствора перфторана (10 г) обеспечивается надежное измерение его концентрации при разбавлении его в 5000 раз (С 2 =2 мг), а при большей степени разбавления необходимо увеличить объем пробы. Предварительные испытания разработанного способа определения объема циркулирующей крови подтвердили его несомненные преимущества и потенциальные возможности. В частности, патентуемый способ может быть эффективно использован в полевых условиях, поскольку не требует сложного и громоздкого специального оборудования и аппаратуры, а вся процедура измерения объема циркулирующей крови составляет 40-60 минут.

Формула изобретения

1. Способ определения объема циркулирующей крови, включающий приготовление дозы фармпрепарата, регистрацию или измерение исходного значения (А) информационного параметра фармпрепарата, введение фармпрепарата в вену пациента, взятие через 15-25 мин пробы крови с фармпрепаратом из противоположной вены пациента, измерение (Б) информационного параметра фармпрепарата в 1 мл крови во взятой пробе у пациента, расчет объема циркулирующей крови по соотношению А/Б, отличающийся тем, что в качестве фармпрепарата используют перфторан 10%, раствор которого вводят в вену пациента в объеме 50-200 мл, при этом при расчете объема циркулирующей крови, определяемой в миллилитрах, в качестве значений А и Б информационного параметра принимают соответственно содержание перфторана в граммах в растворе до введения в вену пациента и содержание перфторана в граммах в 1 мл крови взятой пробы. 2. Способ по п. 1, отличающийся тем, что измерение содержания перфторана во взятой пробе крови осуществляют методом ядерно-магнитной резонансной спектроскопии.

Современные методы определения ОЦК основаны на принципе разведения, когда циркулирующая кровь является растворите­лем, в котором измеряют изменившуюся концентрацию введенного в кровоток ве­щества.

При использовании какого-либо вещества (метки) для непрямого измерения ОЦК в организме надо соблюдать следующие условия. Метка должна быть: 1) легко и точно количественно определяемой в крови: 2) при­годной для введения в концентрированном растворе; 3) безвредной и стабильной; 4) оставаться в кровотоке в течение всего пе­риода измерения.

Инфузионныеметоды делятся на методы первичного измерения объема циркулирую­щих эритроцитов и измерения объема цир­кулирующей плазмы. Первичные измере­ния объема эритроцитов возможны путем введения в кровоток известного ко­личества эритроцитов, меченных каким-либо радиоактивным веществом. Наибольшее распространение в качестве метки эритроцитов получил радиоактивный хром. Больному вводят в/в 10 мл взвеси меченых эритро­цитов. Через 10-15 мин эритроциты пол­ностью смешиваются с циркулирующей кровью, из вены другой конечности берут 5 мл крови, из которых 4 мл используют для пробы, и несколько капель - для оп­ределения гематокрита. Подсчитав с помо­щью специальной радиометрической аппа­ратуры активность заранее приготовленного стандарта (4 мл разведенной в 100 раз взвеси меченых эритроцитов) и 4 мл пробы крови.

Для первичного измерения объема циркулирующей плазмы в качестве радиоак­тивной метки используют альбумин сыво­ротки крови, меченный с помощью радиоак­тивного йода. Для неизотопного измере­ния объема циркулирующей плазмы в разное время применяли глюкозу, полиглюкин, кон­го красный, синий Эванса и др. В настоя­щее время чаще всего применяют радиоактивный альбумин, меченный по йоду, или синий Эванса.

Для определения объема циркулирующей плазмы с помощью синего Эванса предварительно готовят стандартное разведение красителя в изотоническом растворе натрия хлорида из расчета 1 мл краски (5 мг) на 24 мл изотонического раствора; в 1 мл такого раствора содержится 0,2 мг красителя. Затем 0,1 мл этого стандарта смешивают с 3,9 мл плазмы, чем достигается разве­дение еще в 40 раз. Теперь в 1 мл рас­твора красителя в плазме содержится 0,005 мг красителя. Больных обследуют натощак в постели. Обычно вводят в/в 10-15 мг красителя. Через 10 - 15 мин из вены другой руки берут 8 - 10 мл крови. Определяют оп­тическую плотность стандарта и исследуемо­го образца.

Наиболее точно ОЦК можно определить, измеряя одновременно ОЦЭ и ОЦП двумя метками (например, 51Сr и синим Эванса). В последние годы в клиническую практику внедряют радиометрические автоматические приборы типов «Hemolitre» и «Volemetron», упрощающие расчеты и делающие измере­ния ОЦК более быстрыми и точными.

В нормальных условиях ОЦК - величина довольно стабильная и составляет у мужчин 7 %, а у женщин 6,5 % массы тела. Чаще всего ОЦК и его составные части выражают в мл/кг массы тела больного. У здоровых взрослых мужчин ОЦК - в среднем равен 70 мл/кг, ОЦЭ – 28,6 мл/кг, ОЦП – 41,4 мл/кг, у здоровых женщин ОЦК в сред­нем равен 65 мл/кг, ОЦЭ - 23,7 мл/кг, ОЦП - 41,3 мл/кг.

В найденные величины вносят следующие поправки: 1) при заметном похудании в течение последних 6 мес должную величину ОЦК следует рассчитывать, исходя из начальной массы тела; 2) при прогрессирующем длительном похудании величину ОЦК рас­считывают с учетом массы тела в момент из­мерения и вводят увеличивающую поправку на 10 - 15%; 3) у лиц преклонного возраста должные величины следует уменьшить на 10%.

У мужчин нижняя граница нормы ОЦК составляет 60 мл/кг, ОЦЭ - 24 мл/кг и ОЦП - 36 мл/кг, а у женщин соответствен­но 55; 22 и 33 мл/кг. Показатели ниже указанных величин могут потребовать кор­рекции. О состоянии волемии судят также по ряду клинических данных. В зависимости от величины дефицита ОЦК выделяют уме­ренную (дефицит 10-15 %), выраженную (де­фицит 16 - 25%) и тяжелую (26 - 40%) гиповолемию. При умеренной гиповолемии кожа больного холодная, тахикардия до 100 уд/мин, АД, ЦВД и диурез остаются в пределах нормы. При выраженной гиповолемии на­блюдается тахикардия до 120 уд/мин, систо­лическое АД нормальное или умеренно по­вышенное при снижении пульсового давления и ЦВД, тенденция к олигурии - 0,5 мл/(кг*ч). Тяжелая гиповолемия проявляется артериаль­ной гипотензией, тахикардией выше 120 уд/ мин, падением ЦВД до нуля, олигоанурией - меньше 0,4 мл/(кг * ч).

3.1.3. Определение объема циркулирующей крови

Объем циркулирующей крови (ОЦК). Рассмотрим в формулу определения ОЦК:

ОЦК обуславливает величину среднего системного давления и является важнейшим параметром кровообращения. С уве­личением ОЦК повышается среднее системное давление, что ве­дет к более интенсивному наполнению полостей сердца во время диастолы и, следовательно, к повышению УО и МО (механизм Старлинга). Уменьшение ОЦК при кровонотере приводит к нарушению нормального соотношения между емкостью сосу­дистого русла и ОЦК, снижению среднего системного давления, что может быть причиной глубоких гемоциркуляторных рас­стройств. Кроме того, ОЦК играет важную роль в системе кро­вообращения как фактор, обеспечивающий нормальное снаб­жение тканей кислородом и питательными веществами. В фи­зиологических условиях ОЦК изменяется мало, так же, как температура тела, электролитный состав и другие показатели постоянства внутренней среды. ОЦК уменьшается при дли­тельном постельном режиме, обильном потоотделении, неукро­тимой рвоте, диарее, ожоговой болезни, микседеме и др., увеличивается во вторую половину беременности Прием боль­шого количества жидкости не вызывает выраженных измене­ний ОЦК, а внутривенное введение солевых растворов или раствора глюкозы обусловливает лишь кратковременное повышение объема плазмы. Более длительное увеличение наблю­дается при вливании коллоидных растворов. Постоянное повышение ОЦК и объема циркулирующих эритроцитов отмечается у большинства больных с врожденны­ми пороками, особенно с тетрадой Фалло, эритремией. У больных анемией увеличен объем плазмы, но ОЦК практически не изменен. ОЦК - важный компенсаторний механизм сердеч­но-сосудистой системы. Увеличение ОЦК - один из самых достоверных признаков недостаточности кровообращения. У некоторых больных с нарушением кровообращения (даже с явлениями декомпенсации) при мерцательной аритмии и дру­гих патологиях наблюдаются нормальные или даже сниженные величины ОЦК. Это объясняется проявлением компенсаторной реакции на переполнение кровью прилегающих к сердцу венозных сосудов и предсердий. ОЦК оценивают, сравнивая его с ДОЦК. Рекомендуют выражать ОЦК не только в абсолютных объемных единицах (литрах или миллилитрах), но и в процентах к ДОЦК.

ДОЦК для человека определяется по формулам (S. Nadler, J. Hidalgo, Т. Bloch, 1962):

для мужчин ДОЦК (л) = 0.3669Р3 + 0.03219М + 0,6041;

для женщин ДОЦК (л) = 0,356Р3 + 0,03308М + 0,1833,

где Р - рост, м; М - масса, кг.

3.2. КОМПЛЕКСНЫЕ ПОКАЗАТЕЛИ ЦЕНТРАЛЬНОЙ ГЕМОДИНАМИКИ

3.2.1. Определение коэффициента эффективности циркуляции

Коэффициент эффективности циркуляции (КЭЦ) показывает, какая часть ОЦК проходит через сердце за 1 мин.

КЭЦ =-МО/ ОЦК-[мин-"].

Клиническая ценность показателя заключается в его высокой чувствительности к типичному развитию недостаточно­сти кровообращения, которое сопровождается снижениемМОсердца и увеличением ОЦК. Таким образом, снижение КЭЦ - надежный признак развития недостаточности кровообращения. Увеличение этого показателя свидетельствует о гиперфункции сердца. Умень­шение ОЦК по сравнению с ДОЦК должно приводить к повы­шению КЭЦ, поэтому наблюдаемые иногда в этом случае нор­мальные КЭЦ также указывают на снижение эффективности кровообращения.

3.2.2. Определение среднего времени циркуляции

Среднее время циркуляции (Тцирк) - показатель, соответ­ствующий времени, в течение которого через сердце проходит объем крови, равный ОЦК. Он равен обратной величине КЭЦ, но выраженной в секундах:

3.2.3. Определение общего периферического сопротивления

Основная функция сосудов заключается в доставке тканям организма крови. Кровь продвигается по сосудам благодаря компресси­онному действию сердечной мышцы. Практически вся работа миокарда затрачивается на продвижение крови по сосудам. Основную часть общего гидравлического сопротивления всей системы составляет сопротивление артериол. При определении общего гидравлического сопротивления сосудов главным об­разом оценивается сопротивление мелких артериол и арте­рий - периферическое сопротивление. ОПС = АДср x 8/ МО, где АДср - среднее АД, МО - объемный кровоток, л/мин; 8 - коэффициент, учитывающий перевод единиц давления в мегапаскали, а единицу объемного кровотока (литр в мину­ту) - в кубические метры в секунду.

При увеличении массы тела МО несколько возрастает.Изформулы следует, что в этом случае ОПС уменьшается. Этот вывод можно сделать также на основании логических рас­суждений. В теле большей массы суммарный просвет функцио­нирующих артериол больше, следовательно, ОПС их меньше. Чтобы уменьшить влияние массы тела на вариабельность по­казателя ОПС и дать ему оценку, рекомендуется определять ВИ периферического сопротивления (ВИПС). Его рассчитыва­ют на основании общефизического представления о параллель­ных сопротивлениях и обнаруженной зависимости между МО и массой тела, возведенной в степень 0,857. ВИПС = 8 х АДср / ВИ. ВИПС показывает, какое сопротивление кровотоку оказыва­ет в среднем условный килограмм (кг0"857) массы тела исследуе­мого человека.

Вторым показателем, учитывающим антропометрические особенности человека при оценке ОПС, является удельное пе­риферическое сопротивление (УПС). УПС = АДср / СИ х 8. Нередко возникает необходимость для оценки ОПС исполь­зовать его объемный индекс (ОИПС). Он показывает, какое сопротивление кровотоку оказывает масса ткани, приходящая­ся на единицу объема (кубический метр) циркулирующей крови. ОИПС = ОПС х ОЦК [кН с/м2]. В практической работе ОИПС лучше определять по формуле: ОИПС = АДср / КЕЦ х 8. В норме ОИПС составляет 400-500 кН с/м2. С возрастом он аналогично ОПС увеличивается.

3.2.4. Общее входное сопротивление артериальной системы

Кро­ме транспортной функции, т. е. доставки крови к органам, артерии благодаря присущим им эластическим свойствам выполняют демпфирующую роль. Это способствует превра­щению пульсирующего тока крови на выходе из желудочка сердца в равномерный ток в капиллярах. Эластическая стенка аорты, легко растягиваясь, создает дополнительную емкость для размещения УО крови. В резуль­тате этого уменьшается гидравлическое сопротивление на входе в аорту, увеличивается количество выбрасываемой из сердца крови за время систолы (при данном напряжении миокарда), работа желу­дочков приобретает эко­номный изотонический ха­рактер.

Входное сопротивление, оказываемое артериальной системой току крови, не­посредственно при выбро­се из сердца не соответст­вует ОПС. Условно можно считать, что оно образова­но двумя параллельными сопротивлениями. Помимо периферического сопротив­ления в его состав входит сопротивление эластичес­кой ткани артериальных стенок, расширяющихся под действием пропульсивных сил. Так как ОПС и входное эластическое сопротивление (ВЭС) расположены параллельно, общее их сопротивление (ОВС) имеет величину меньшую, чем каждое из них в отдельности. Общее входное сопротивление определяют, исходя из сред­него систолического давления и средней скорости объемного высброса крови из сердца в аорту (V): ОВС = АДсист / V В практической работе используют формулу: ОВС = АДсист х Тизгн /

Физиология различает два вида гемодинамической нагрузки на желудочки сердца: пред- и постнагрузку.


Это нагрузка объёмом крови, которым заполняется полость желудочка перед началом изгнания. В клинической практике мерой преднагрузки является конечно-диастолическое давление (КДД) в полости желудочка (правого - КДДп, левого - КДДл). Это давление определяется только инвазивным методом. В норме КДДп = 4-7 мм Hg, КДДл = 5-12 мм Hg.


Для правого желудочка косвенным показателем может быть величина центрального венозного давления (ЦВД). Для левого желудочка очень информативным показателем может быть давление наполнения левого желудочка (ДНЛЖ), которое возможно определить неинвазивным (реографическим) методом.


Увеличение преднагрузки

К увеличению преднагрузки (справа или слева) любого происхождения желудочек приспосабливается к новым условиям работы по закону О.Франка и Е.Старлинга. Е.Старлинг так охарактеризовал эту закономерность: "ударный объём пропорционален конечному диастолическому объему":

Суть закона состоит в том, что чем больше растягиваются мышечные волокна желудочка при его избыточном наполнении, тем больше сила их сокращения в последующую систолу.

Правомочность этого закона была подтверждена многочисленными исследованиями, даже на клеточном уровне (сила сокращения кардиомиоцита является функцией длины саркомера перед началом его сокращения). Главный вопрос в законе О.Франка и Е.Старлинга в том, почему сверхнормальное увеличение длины мышечного волокна увеличивает силу его сокращения?

Здесь уместно привести ответ Ф.З.Меерсона (1968 г.). Сила сокращения мышечного волокна определяется количеством актино-миозионовых связей, которые могут возникнуть в мышечном волокне одновременно. Удлинение волокна до определенного предела так меняет взаимное расположение актиновых и миозиновых нитей, что при сокращении возрастает либо количество актино-миозиновых связей (точнее скорость их образования), либо контрактильная сила, которую каждая такая связь развивает.


До какой границы (предела) действует приспособительная реакция О.Франка и Е.Старлинга, когда изменение длины волокна изменяет напряжение, а оно изменяет силу сокращения?

Этот закон действует, пока длина мышечного волокна увеличивается на 45% сверх обычной длины при нормальном заполнении желудочка (т.е. примерно в 1,5 раза). Дальнейший рост диастолического давления в желудочке увеличивает длину мышечного волокна в малой мере, т.к. волокна становятся трудно растяжимыми потому, что в процесс вовлекается трудно растяжимый соединительно-тканный эластический каркас самих волокон.


Ориентиром, контролируемым в клинических условиях, для правого желудочка может быть повышение ЦВД более 120 мм Н 2 О (норма 50-120). Это косвенный ориентир. Непосредственным ориентиром является повышение КДДп до 12 мм Hg. Ориентиром для левого желудочка является увеличение КДДл (ДНЛЖ) до 18 мм Hg. Иными словами, когда КДДп в пределах от 7 до 12 или КДДл в пределах от 12 до 18 мм Hg, то правый или левый желудочек уже работает по закону О.Франка и Е.Старлинга.


При приспособительной реакции О.Франка и Е.Старлинга, УО левого желудочка не зависит от диастолического артериального давления (ДАД) в аорте, а систолическое артериальное давление (САД) и ДАД в аорте не изменяются. Эту приспособительную реакцию сердца S.Sarnoff назвал гетерометрической регуляцией (heteros по греч. - другой; применительно к теме раздела - регуляция посредством другой длины волокна).


Надо отметить, что еще в 1882 г. Fick и в 1895 г. Blix отметили, что "закон сердца таков же, как закон скелетной мышцы, а именно, что механическая энергия, освобождающаяся при переходе из состояния покоя в состояние сокращения, зависит от площади "химически сокращающихся поверхностей", т.е. от длины мышечного волокна".

В желудочках, как и во всей сосудистой системе, какая-то часть объема крови является заполняющей и какая-то часть является растягивающей, она то и создает КДД.


Поскольку приспособительная реакция сердца, подчиняющаяся закону, имеет определенную границу, за которой этот закон О.Франка и Е.Старлинга уже не действует, то возникает вопрос: а можно ли усилить эффект этого закона? Ответ на этот вопрос имеет очень важное значение для врачей анестезистов и интенсивистов. В исследованиях E.H.Sonnenblick (1962-1965 г.г.) было установлено, что при чрезмерной преднагрузке миокард способен значительно увеличивать силу сокращения под воздействием положительно инотропных средств. Изменяя функциональные состояния миокарда посредством воздействия инотропных средств (Са, гликозиды, норадреналин, дофамин) при одном и том же притоке крови (одно и то же растяжение волокон), он получил целое семейство «кривых Е.Старлинга» со смещением кверху от исходной кривой (без действия инотропика).

Рисунок 4. График изменения кривой напряжения без инотропного средства и с ним при одинаковой длине мышечного волокна


Из рисунка 4 видно, что:

1. Увеличение напряжения (Т2) при использовании инотропного средства и неизменной исходной длине мышечного волокна (L1) за тот же отрезок времени (t1) связано с ускорением образования актиномиозиновых связей (V2 > V1);

2. С инотропным средством получается такой же эффект величины Т1, как и без него, за меньший отрезок времени - t2 (3).

3. С инотропным средством получаемый эффект величины Т1 достигается как бы при меньшей длине волокна L2 (3).


Уменьшение преднагрузки.

Обусловлено уменьшением притока крови в полость желудочка. Это может быть вследствии уменьшения ОЦК, сужения сосудов в МКК, сосудистой недостаточности, органических изменений в сердце (стеноз АВ - клапанов справа или слева).


Вначале включаются следующие приспособительные элементы:

1. Усиливается изгнание крови из предсердия в желудочек.

2. Увеличивается скорость расслабления желудочка, что способствует его заполнению, т.к. основная масса крови поступает в фазу быстрого наполнения.

3. Увеличивается скорость сокращения мышечных волокон и возрастания напряжения, благодаря чему поддерживается фракция изгнания и уменьшается остаточный объем крови в полости желудочка.

4. Увеличивается скорость изгнания крови из желудочков, что способствует сохранению продолжительности диастолы и заполнения желудочка кровью.


Если совокупность этих приспособительных элементов оказывается недостаточной, то развивается тахикардия, направленная на поддержание СВ.


Это нагрузка сопротивлением току крови при изгнании её из полости желудочка. В клинической практике мерой постнагрузки является величина общего легочного сопротивления (ОЛС) для МКК, равная в норме 150-350 дин*с*см-5, и общего периферического сосудистого сопротивления (ОПСС) для БКК, равная в норме 1200-1700 дин*с*см-5. Косвенным признаком изменения постнагрузки для левого желудочка может быть величина АДср, равная в норме 80-95 мм Hg.

Однако в физиологии классическим представлением о постнагрузке является давление над полулунными клапанами перед изгнанием крови желудочками. Иными словами это конечно-диастолическое давление над полулунными клапанами в легочной артерии и аорте. Естественно, чем больше периферическое сопротивление сосудов, тем больше конечно-диастолическое давление над полулунными клапанами.


Увеличение постнагрузки.

Такая ситуация возникает при функциональном сужении артериальных периферических сосудов, хоть в МКК, хоть в БКК. Она может быть обусловлена органическими изменениями в сосудах (первичная лёгочная гипертензия или гипертоническая болезнь). Это может быть при сужении выходного отдела из правого или левого желудочка (подклапанные, клапанные стенозы).


Закон, по которому желудочек приспосабливается к нагрузке сопротивлением, впервые открыл Г.Анреп (1912г., лаборатория Е.Старлинга).

Дальнейшие исследования этого закона были продолжены самим Е.Старлингом и далее многими известными физиологами. Результаты каждого исследования были опорой и толчком к следующему.

Г. Анреп установил, что при увеличении сопротивления в аорте, вначале кратковременно объём сердца увеличивается (похоже на приспособительную реакцию О.Франка и Е.Старлинга). Однако затем объём сердца постепенно уменьшается до новой, больше исходной, величины и далее остается стабильным. При этом, несмотря на увеличение сопротивления в аорте, УО остается прежним.


Приспособительную реакцию сердца по закону Г. Анрепа и А. Хилла при увеличении нагрузки сопротивлением Ф.З.Меерсон объясняет следующим образом (1968 г.): по мере повышения нагрузки сопротивлением количество актиномиозиновых связей увеличивается. А количество свободных центров, способных реагировать между собой, в актиновых и миозиновых волокнах уменьшается. Поэтому с каждой, всё большей, нагрузкой количество вновь образующихся актиномиозиновых связей уменьшается в единицу времени.


Одновременно уменьшается и скорость сокращения, и количество механической и тепловой энергии, освобождающейся при распаде актиномиозиновых связей, постепенно приближаясь к нулю.

Очень важно, что количество актиномиозиновых связей увеличивается, а их распад уменьшается. Это означает, что с увеличением нагрузки наступает пересократимость актиномиозиновых волокон, что и ограничивает эффективность работы сердца.


Итак, когда нагрузка сопротивлением увеличивается на 40-50%, адекватно ей увеличивается мощность и сила мышечного сокращения. При большем увеличении нагрузки эффективность этой приспособительной реакции утрачивается из-за потери мышцей способности расслабляться.


Другим фактором, со временем ограничивающим эту приспособительную реакцию, является, как было установлено Ф.З.Меерсоном и его сотрудниками (1968 г.), снижение сопряжения окисления и фосфорилирования на 27-28% на участке - «цитохром с» - «кислород», при этом в миокарде уменьшается количество АТФ и особенно креатинфосфата (КФ).

Значит, закон Г. Анрепа и А. Хилла обеспечивает приспособление сердечной мышцы к нагрузке сопротивлением путём увеличения мощности желудочка, приводящей к увеличению силы сокращения без изменения исходной длины мышечного волокна.


Приспособительную реакцию Г. Анрепа и А. Хилла S.Sarnoff назвал гомеометрической регуляцией (homoios по греч. - подобный; применительно к теме раздела - регуляция посредством такой же длины волокна).

Здесь также важен вопрос: можно ли усилить эффект закона Г. Анрепа и А. Хилла? Исследования E.H. Sonnenblick (1962-1965 г.г.) показали, что при чрезмерной постнагрузке миокард способен увеличивать мощность, скорость и силу сокращения под воздействием положительно инотропных средств.

Уменьшение постнагрузки.

Связано с уменьшением давления над полулунными клапанами. При нормальном ОЦК уменьшение постнагрузки становится возможным только при единственном обстоятельстве - при увеличении объема сосудистого русла, т.е. при сосудистой недостаточности.

Уменьшение давления над полулунными клапанами способствует укорочению периода повышения внутрижелудочкового давления и уменьшению самой величины этого давления перед началом изгнания крови. Это уменьшает потребность миокарда в кислороде и его энергозатраты на напряжение.

Однако все это уменьшает линейную и объемную скорость кровотока. В связи с этим уменьшается и венозный возврат, что ухудшает наполнение желудочков. В таких условиях единственно возможной приспособительной реакцией становится увеличение ЧСС, направленное на поддержание СВ. Как только тахикардия станет сопровождаться снижением СВ, эта приспособительная реакция переходит в разряд патологической.


Совокупность всех исследований, выполненных О.Франком, Е.Старлингом, Г.Анрепом, А.Хиллом и другими физиологами того периода позволила выделить два варианта сокращения сердечного волокна: изотоническое и изометрическое сокращения.


В соответствии с этим выделены два варианта работы желудочков сердца.


1. Когда желудочек работает преимущественно с нагрузкой по объему - он работает по варианту изотонического сокращения. При этом тонус мышцы изменяется в меньшей мере (изотония), преимущественно изменяется длина и поперечное сечение мышцы.


2. Когда желудочек работает преимущественно с нагрузкой по сопротивлению - он работает по варианту изометрического сокращения. При этом преимущественно изменяется напряжение мышцы (тонус), а её длина и поперечное сечение изменяются в меньшей мере или почти не изменяются (изометрия).

При работе желудочка с нагрузкой по сопротивлению (даже при функциональном изменении ОЛС или ОПСС) многократно увеличивается потребность миокарда в кислороде. Поэтому исключительно важным является обеспечение такого больного в первую очередь кислородом.

Врачам нередко приходится усиливать работу сердца инотропными средствами. В физиологии кровообращения (в т.ч. и клинической) под инотропизмом понимается (Ф.З. Меерсон, 1968 г.) регулирование скорости сокращения и расслабления, и поэтому мощности и эффективности работы сердца при неизменных размерах желудочка.

Инотропизм направлен не на сверхнормальное увеличение силы сокращений сердца, а на поддержание силы сокращений, в лучшем случае близкой к норме.

Инотропизм отличается от закона О.Франка и Е.Старлинга тем, что при этом не изменяется исходная длина волокон миокарда. Он отличается от закона Г. Анрепа и А. Хилла тем, что при этом увеличивается не только скорость сокращения, но и (главное!) скорость расслабления волокон миокарда (чем предупреждается пересократимость, или контрактура, миокарда).


Однако при искусственной инотропной регуляции работы сердца норадреналином и др. аналогичными средствами может быть серьезная опасность. Если резко и значительно уменьшить введение инотропного средства или прекратить введение его, то может резко снизиться тонус миокарда.

Возникает острая тоногенная дилатация желудочка. Его полость увеличивается, резко снижается внутрижелудочковое давление. В этих условиях, чтобы достигнуть прежней величины напряжения необходимы большие затраты энергии.


Процесс наращивания напряжения является самым главным потребителем энергии в сердечном цикле. Кроме того, он идет в первую очередь. В физиологии существует закон, что первый процесс всегда старается как можно полнее использовать наличную энергию, чтобы завершить его целиком и полностью. Остаток энергии расходуется на выполнение следующего процесса и т.д. (т.е. каждый предыдущий процесс как Людовик XV: "после нас хоть потоп").

За процессом увеличения напряжения идет работа по перемещению крови из желудочков в сосуды. Из-за того, что на напряжение затрачивается почти вся наличная энергия, а на изгнание ее недостает, от напряжения начинает отставать работа желудочков по перемещению крови. В результате общая эффективность сердца снижается. С каждым таким неполноценным сокращением прогрессивно увеличивается остаточный объем крови в полости желудочка и, в конце концов, наступает асистолия.

Человеческое тело пронизано сетью вен, артерий и капилляров. По ним проходит непрерывная циркуляция крови. связывает органы и системы органов в единую систему.

Кровь является одной из тканей организма. В своем составе имеет плазму (жидкую составляющую желтого цвета) и клеточные элементы. Если рассмотреть сосуд в продольном разрезе, то видно, что наверху находится плазма, снизу - клетки крови. Процесс осаждения клеток крови осуществляется с помощью центрифугирования.

Плазма состоит из водной составляющей. В ней растворены такие вещества:

  • белки
  • углеводы
  • липиды
  • ферменты, гормоны, витамины, ионы

Клеточные элементы представлены:

  • Эритроцитами. Под микроскопом выглядят как двояковогнутые диски. За их образование отвечает красный костный мозг. Живет эритроцит в течение 127 дней, а затем разрушается в селезенке. Ее называют кладбищем эритроцитов.
  • Лейкоцитами. В отличие от эритроцитов, они образуются не только в красном костном мозге, но и в селезенке и лимфоузлах. Количество лейкоцитов не является перманентным числом - оно меняется в течение всего дня.
  • . Костный мозг отвечает за их формирование. Благодаряним происходит свертывание крови. Из-за наличия в тромбоцитах железа, меди и дыхательных ферментов они отвечают за перенос кислорода к клеткам.

Кровь состоит из плазмы и растворенных в ней клеток, отвечающих за различные функции.

Количество крови

Количество крови в организме взрослого человека составляет приблизительно 4-5 л. Это усредненный показатель. Он зависит от массы тела. Чтобы получить более точные данные, нужно вес умножить на 7%.

Процентное соотношение - не постоянная величина, она варьируется от 5 до 9%. Колебания имеют кратковременный характер и выступают следствием влияния внутренних и внешних факторов.

В медицинской практике разработаны методы точного определения количества крови. С этой целью в вену вводят специальное контрастное вещество, являющиеся безвредным коллоидным красителем. Оно выводится из кровяной системы не сразу.

После распределения контраста по кровеносной системе осуществляется забор крови и определяется концентрация контрастного вещества в крови.

Кровь представлена следующими составляющими:

  • Циркулирующая (периферическая) кровь. Движется по кровеносным сосудам и прокачивается сердцем.
  • Депонированная (резервная). Это запасы крови, которые сосредоточены в селезенке и печени. Они выбрасываются при физических и умственных нагрузках, когда организму необходимо максимальное поступление питательных веществ и кислорода. Заболевания печени и селезенки приводят к тому, что экстренные ситуации для человека могут иметь летальный исход.
  • Органами кроветворения - красным костным мозгом.
  • Органами кроворазрушения. Эритроциты разрушаются в селезенке, лимфоциты - в легких.

От состояния данных четырех составляющих зависит общее здоровье человека.

Узнать подробнее об анализах крови и ее показателях вы сможете из следующего видео:

Функции крови

Роль крови огромная. Она выступает частью системы - сложного и уникального человеческого организма.

  • Транспортная. Переносит углекислый газ, кислород и питательные вещества. Кровь также транспортирует продукты обмена, излишки воды и солей, токсины к почкам, потовым железам и толстому кишечнику. Невыполнение экскреторной функции привело бы к засорению организма ядами и его отравлению.
  • Терморегулирующая. За выработку тепла отвечает , мышцы и кишечник. Кровь регулирует количество тепла: не происходит перегрева одних и замерзания других частей тела. Даже кончики пальцев рук и ног получают тепло благодаря выполнению кровью терморегулирующей функции.
  • Гомеостатическая. Кровь поддерживает кислотный и водно-солевой баланс. Из межтканевой жидкости и клеток удаляются лишние вещества и поступают недостающие. Так поддерживается постоянство внутренней среды в организме.
  • Защитная. За эту функцию отвечают иммунные клетки под названием лимфоциты. Если болезнетворные бактерии, вирусы или токсины смогли попасть в организм через первый барьер (иммунные клетки слизистой носа, бронхов, легких, глотки), то в кровеносной системе их активно атакуют лимфоциты.
  • Гуморальная. Кровь вместе с железами внутренней секреции (поджелудочной и , гипофиз, надпочечники) выполняют важную роль. Эндокринная система вырабатывает гормоны в кровь, которая она доставляет в нужные места.

Кровь связывает между собой множество систем, заставляя их работать в комплексе.

Кровеносная система выполняет различные функции: транспортную, защитную, гуморальную, гомеостатическую. Сбой в ее работе может привести к серьезным проблемам со здоровьем.

Группы крови

У человека уникальным идентификатором, передающимся по наследству, является группа крови. Три группы крови были открыты в 1900 году, чуть позже появилась информация о четвертой. На сегодняшний день обнаружено около 100 групп крови, но основными считаются только четыре из них.

Открытие групп крови стало важным прорывом в медицине. До 20-ого века манипуляции по переливанию крови проводили только в экстренных случаях, так как они заканчивались летальным исходом из-за несовместимости групп крови. Разделение на четыре группы позволило сберечь жизни пациентов.

Группу крови будущий ребенок наследует от одного из родителей. Она формируется во время раннего внутриутробного развития. Определяют ее после рождения вместе с резус-фактором.

Основу деления групп крови составляет система АВ0. В сыворотке крови (плазме) находятся антитела, а в эритроцитах (красных кровяных тельцах) - антигены.

Антигены в эритроцитах могут, как присутствовать (А и/или В), так и отсутствовать (0). Антитела к антигенам А и В в сыворотке крови присутствуют или отсутствуют. На основе этих данных лаборантами определяется группа крови.

Знание своей группы крови может спасти вашу жизнь или жизнь близкому, который экстренно нуждается в переливании крови.

  • 1-ая группа крови подходит всем людям
  • 2-ая группа подходит людям со 2-ой и 4-ой группами крови
  • 3-я группа совместима с 3-ей и 4-ой
  • 4-ая группа переливается исключительно людям с 4-ой группой крови

К переливанию крови по таким правилам прибегают, если нет времени, и пациент нуждается в немедленной помощи. В больницах переливают исключительно идентичные группы.

Если по определенным причинам вы не знаете свою группу крови, это можно и нужно быстро исправить. Обратитесь в местную поликлинику и получите направление на анализ крови на определение группы крови. Результаты лабораторного исследования будут получены на следующий день.

Вместе с группой крови определяется резус-фактор. Эта информация особенно необходима девушкам, планирующим беременность. Женщинам с отрицательным резус-фактором нужно обязательно сказать об этом гинекологу, чтобы он помог избежать резус-конфликта.

Существует ряд теорий, согласно которым по вкусовым предпочтениям определяется группа крови:

  • 1-ая: люди питаются мясом
  • 2-ая: предпочтение отдается кашам и овощам
  • 3-я: любовь к молочной продукции
  • 4-ая: нет выраженных предпочтений

Такое деление является условным, но имеет право на существование, ведь основываясь на группе крови, часто подбирается индивидуальная диета.

Группа крови - идентификатор человека, знание которого может спасти жизнь. Поэтому знать свою группу крови нужно в обязательном порядке.

♦ Рубрика: .

Читай для Здравия на сто процентов: