Какие защитные рефлексы дыхательной системы. Рефлекторная регуляция дыхания

Воздухоносные пути делятся на верхние и нижние. К верхним относятся носовые ходы, носоглотка, к нижним гортань, трахея, бронхи. Трахея, бронхи и бронхиолы являются проводящей зоной легких. Конечные бронхиолы называются переходной зоной. На них имеется небольшое количество альвеол, которые вносят небольшой вклад в газообмен. Альвеолярные ходы и альвеолярные мешочки относятся к обменной зоне.

Физиологичным является носовое дыхание. При вдыхании холодного воздуха происходит рефлекторное расширение сосудов слизистой носа и сужение носовых ходов. Это способствует лучшему прогреванию воздуха. Его увлажнение происходит за счет влаги, секретируемой железистыми клетками слизистой, а также слезной влаги и воды, фильтрующейся через стенку капилляров. Очищение воздуха в носовых ходах происходит благодаря оседанию частиц пыли на слизистой.

В воздухоносных путях возникают защитные дыхательные рефлексы. При вдыхании воздуха, содержащего раздражающие вещества, возникает рефлекторное урежение и уменьшение глубины дыхания. Одновременно суживается голосовая щель и сокращается гладкая мускулатура бронхов. При раздражении ирритантных рецепторов эпителия слизистой гортани, трахеи, бронхов, импульсы от них поступают по афферентным волокнам верхнегортанного, тройничного и блуждающего нервов к инспираторным нейронам дыхательного центра. Происходит глубокий вдох. Затем мышцы гортани сокращаются и голосовая щель смыкается. Активируются экспираторные нейроны и начинается выдох. А так как голосовая щель сомкнута давление в легких нарастает. В определенный момент голосовая щель открывается и воздух с большой скоростью выходит из легких. Возникает кашель. Все эти процессы координируется центром кашля продолговатого мозга. При воздействии пылевых частиц и раздражающих веществ на чувствительные окончания тройничного нерва, которые находятся в слизистой оболочке носа, возникает чихание. При чихании также первоначально активируется центр вдоха. Затем происходит форсированный выдох через нос.

Различают анатомическое, функциональное и альвеолярное мертвое пространство. Анатомическим называется объем воздухоносных путей - носоглотки, гортани, трахеи, бронхов, бронхиол. В нем не происходит газообмена. К альвеолярному мертвому пространству относят объем альвеол которые не вентилируются или в их капиллярах нет кровотока. Следовательно они также не участвуют в газообмене. Функциональным мертвым пространством является сумма анатомического и альвеолярного. У здорового человека объем альвеолярного мертвого пространства очень небольшой. Поэтому величина анатомического и функционального пространств практически одинакова и составляет около 30% дыхательного объема. В среднем 140 мл. При нарушении вентиляции и кровоснабжения легких объем функционального мертвого пространства значительно больше анатомического. Вместе с тем, анатомическое мертвое пространство играет важную роль в процессах дыхания. Воздух в нем согревается, увлажняется, очищается от пыли и микроорганизмов. Здесь формируются дыхательные защитные рефлексы - кашель, чихание. В нем происходит восприятие запахов и образуются звуки.

Дыхательные рефлексы

Важное биологическое значение, особенно в связи с ухудшением экологических условий и загрязнением атмосферы, имеют защитные дыхательные рефлексы – чихание и кашель . Чихание – раздражение рецепторов слизистой оболочки полости носа, например пылевыми частицами или газообразными наркотическими веществами, табачным дымом, водой вызывает сужение бронхов, брадикардию, снижение сердечного выброса, сужение просвета сосудов кожи и мышц. Различные химические и механические раздражения слизистой оболочки носа вызывают глубокий сильный выдох – чихание, способствующее стремлению избавиться от раздражителя. Афферентным путем этого рефлекса является тройничный нерв. Кашель – возникает при раздражении механо- и хеморецепторов глотки, гортани, трахеи и бронхов. При этом после вдоха сильно сокращаются мышцы выдоха, резко повышается внутригрудное и внутрилегочное давление, открывается голосовая щель и воздух из дыхательных путей под большим напором высвобождается наружу и и удаляет раздражающий агент. Кашлевый рефлекс является основным легочным рефлексом блуждающего нерва.

Дыхательный центр продолговатого мозга

Дыхательный центр, совокупность нескольких групп нервных клеток (нейронов), расположенных в разных отделах центральной нервной системы, преимущественно в ретикулярной формации продолговатого мозга. Постоянная координированная ритмическая активность этих нейронов обеспечивает возникновение дыхательных движений и их регуляцию в соответствии с возникающими в организме изменениями. Импульсы от Д. ц. поступают в двигательные нейроны передних рогов шейного и грудного отделов спинного мозга, от которых возбуждение передаётся к дыхательной мускулатуре. Активность Д. ц. регулируется гуморально, т. е. составом омывающей его крови и тканевой жидкости, и рефлекторно, в ответ на импульсы, поступающие от рецепторов в дыхательной, сердечно-сосудистой, двигательной и др. системах, а также от высших отделов центральной нервной системы. Состоит из центра вдоха и центра выдоха.

Дыхательный центр состоит из нервных клеток (дыхательных нейронов), для которых характерна периодическая электрическая активность в одну из фаз дыхания. Нейроны дыхательного центра локализованы двусторонне в продолговатом мозге в виде двух вытянутых столбов вблизи obex - точки, где центральный канал спинного мозга впадает в четвертый желудочек. Эти два образования дыхательных нейронов в соответствии с их положением относительно дорсальной и вентральной поверхности продолговатого мозга обозначают как дорсальная и вентральная дыхательные группы

Дорсальная дыхательная группа нейронов образует вентролатеральную часть ядра одиночного тракта. Дыхательные нейроны вентральной дыхательной группы расположены в области n. ambiguus каудальнее уровня obex, n. retroambigualis непосредственно ростральнее obex и представлены комплексом Бетзингера, который находится непосредственно вблизи n. retrofacialis вентролатеральных отделов продолговатого мозга. В состав дыхательного центра входят нейроны двигательных ядер черепно-мозговых нервов (обоюдное ядро, ядро подъязычного нерва), которые иннервируют мышцы гортани и глотки.

Взаимодействие нейронов инспираторных и экспираторных зон

Дыхательные нейроны, активность которых вызывает инспирацию или экспирацию, называются соответственно инспираторными или экспираторными. Между группами нейронов, управляющими вдохом и выдохом, существуют реципрокные отношения. Возбуждение экспираторного центра сопровождается торможением в инспираторном центре и наоборот. Инспираторные и экспираторные нейроны в свою очередь делятся на «ранние» и «поздние». Каждый дыхательный цикл начинается с активизации «ранних» инспираторных нейронов, затем возбуждаются «поздние» инспираторные нейроны. Также последовательно возбуждаются экспираторные нейроны, которые тормозят инспираторные нейроны и прекращают вдох. Современные исследователи показали, что нет четкого разделения на инспираторный и экспираторный отделы, а есть скопления дыхательных нейронов с определенной функцией

Представление об ауторитме дыхания. Влияние ph крови на процесс дыхания.

Если происходит снижение pH артериальной крови по сравнению с нормальным уровнем, равным 7,4, вентиляция легких увеличивается. При возрастании pH выше нормы вентиляция уменьшается, хотя и в несколько меньшей степени.

Ауторитмия – это волны возбуждения и соответствующие им «шевеления» животного, происходящие с определённой периодичностью. ауторитмия - самопроизвольная активность центральной нервной системы, которая осуществляется без какого бы то ни было воздействия афферентной стимуляции и проявляются в ритмизированных и скоординированных движениях организма.

Пневмотоксический центр варолиева мота. Взаимодействие с дыхательным центром продолговатого мозга

В варолиевом мосту находятся ядра дыхательных нейронов образующих пневмотаксический центр. Считается, что дыхательные нейроны моста участвуют в механизме смены вдоха и выдоха и регулируют величину дыхательного объема. Дыхательные нейроны продолговатого мозга и варолиева моста связаны между собой восходящими и нисходящими нервными путями и функционируют согласованно. Получив импульсы от инспираторного центра продолговатого мозга, пневмотаксический центр посылает их и экспираторному центру продолговатого мозга, возбуждая последний. Инспираторные нейроны тормозятся. Разрушения мозга между продолговатым мозгом и мостом удлиняет фазу вдоха.

Спинной мозг; мотонейроны ядер межреберных нервов и ядра диафрагмального нерва, взаимодействие с дыхательным центром продолговатого мозга. В передних рогах спинного мозга на уровне - располагаются мотонейроны, образующие диафрагмальный нерв. Диафрагмальный нерв - смешанный нерв, который осуществляет чувствительную иннервацию плевры и перикарда, - входит в состав шейного сплетения; образуется передними ветвями нервов СЗ-С5. Отходит с обеих сторон шеи от шейного сплетения третьего, четвертого (и иногда пятого) шейных спинномозговых нервов и направляется вниз к диафрагме, проходя между легкими и сердцем (между средостенной плеврой и перикардом). Проходящие по этим нервам от головного мозга импульсы вызывают периодические сокращения диафрагмы во время дыхания.

Мотонейроны, иннервирующие межреберные мышцы, находятся в передних рогах на уровнях - ( - - мотонейроны инспираторных мышц, - - экспираторных). Двигательные ветви межреберных нервов иннервируют аутохтонные мышцы (вдоха) груди и мышцы живота. Установлено, что одни регулируют преимущественно дыхательную, а другие познотоническую активность межреберных мышц.

Роль коры больших полушарий в регуляции дыхания. Определенные зоны коры больших полушарий осуществляют произвольную регуляцию дыхания в соответствии с особенностями влияния на организм факторов внешней среды и связанными с этим гомеостатическими сдвигами.

Помимо дыхательного центра, расположенного в стволе мозга, на состояние функции дыхания влияют и корковые зоны, обеспечивающие его произвольную регуляцию. Расположены они в коре соматомоторных отделов и медиобазальных структур головного мозга. Есть мнение, что моторные и премоторные области коры по воле человека облегчают, активируют дыхание, а кора медиобазальных отделов больших полушарий тормозит, сдерживает дыхатель­ные движения, влияя и на состояние эмоциональной сферы, а также степень сбалансированности вегетативных функций. Эти отделы коры больших полу­шарий влияют и на адаптацию функции дыхания к сложным движениям, свя­занным с поведенческими реакциями, и приспосабливают дыхание к текущим ожидаемым метаболическим сдвигам.

Регуляция кровяного давления, кровотока

В вентролатеральных отделах продолговатого мозга сосредоточены образования, соответствующие по своим характеристикам тем представлениям, которые вкладывают в понятие «вазомоторный центр». Здесь сконцентрированы нервные элементы, играющие ключевую роль в тонической и рефлекторной регуляции кровообращения. В вентральных отделах продолговатого мозга расположены нейроны, изменение тонической активности которых ведет к активации симпатических преганглионарных нейронов. Структуры этих отделов мозга контролируют выброс вазопрессина клетками супраоптического и паравентрикулярного ядер гипоталамуса.

Доказаны проекции нейронов каудальной части вентральных отделов продолговатого мозга к клеткам его ростральной части, что свидетельствует о возможности тонического угнетения активности этих клеток. Функционально значимы связи структур вентральных отделов продолговатого мозга с ядром солитарного тракта, которое играет ключевую роль в обработке афферентации от хемо- и барорецепторов сосудов.

В продолговатом мозге расположены нервные центры, тормозящие деятельность сердца (ядра блуждающего нерва). В ретикулярной формации продолговатого мозга находится сосудодвигательный центр, состоящий из двух зон: прессорной и депрессорной. Возбуждение прессорной зоны приводит к сужению сосудов, а возбуждение депрессорной зоны - к их расширению. Сосудодвигательный центр и ядра блуждающего нерва постоянно посылают импульсы, благодаря которым поддерживается постоянный тонус: артерии и артериолы постоянно несколько сужены, а сердечная деятельность замедлена.

В. Ф. Овсянниковым (1871) было установлено, что нервный центр, обеспечивающий определенную степень сужения артериального русла - сосудодвигательный центр - находится в продолговатом мозге. Локализация этого центра определена путем перерезки ствола мозга на разных уровнях. Если перерезка произведена у собаки или кошки выше четверохолмия, то АД не изменяется. Если перерезать мозг между продолговатым и спинным мозгом, то максимальное давление крови в сонной артерии понижается до 60-70 мм рт.ст. Отсюда следует, что сосудодвигательный центр локализован в продолго­ватом мозге и находится в состоянии тонической активности, т. е. длительного постоянного возбуждения. Устранение его влияния вызывает расширение сосудов и падение АД.

Более детальный анализ показал, что сосудодвигательный центр продолговатого мозга расположен на дне IV желудочка и состоит из двух отделов - прессорного и депрессорного. Раздражение прессорного отдела сосудодвигательного центра вызывает сужение артерий и подъем, а раздражение второго - расширение артерий и падение АД.

Считают, что депрессорный отдел сосудодвигательного центра вызывает расширение сосудов, понижая тонус прессорного отдела и снижая, таким образом, эффект сосудосуживающих нервов.

Влияния, идущие от сосудосуживающего центра продолговатого мозга, приходят к нервным центрам симпатической части вегетативной нервной системы, расположенным в боковых рогах грудных сегментов спинного мозга, регулирующих тонус сосудов отдельных участков тела. Спинномозговые центры способны через некоторое время после выключения сосудосуживающего центра продолговатого мозга немного повысить давление крови, снизившееся вследствие расширения артерий и артериол.

Кроме сосудодвигательных центров продолговатого и спинного мозга, на состояние сосудов оказывают влияние нервные центры промежуточного мозга и больших полушарий.

Гипоталамическая регуляция висцеральных функций

Если стимулировать электрическим током различные зоны гипоталамуса, то можно вызвать и сужение и расширение сосудов. Импульс передается по волокнам заднего продольного пучка. Часть волокон проходят через области, не переключаются и идут к вазомоторным нейронам. Информация поступает от осморецепторов, они улавливают состояние воды внутри и внеклетки, содержащейся в гипоталамусе. Активация осморецепторов вызывает гормональный эффект – выброс вазопрессина, а это вещество обладает сильным сосудосуживающим действием, он обладает удерживающим свойством.

Особое значение НЭС (нейроэндокринной регуляции) имеет в регуляции висцеральных (“отно-сящихся к внутренним органам”) функций организма. Установлено, что эфферентные влияния ЦНС на висцеральные функции реализуются в норме и при патологии как вегетативными, так и эндокринными аппаратами (Speckmann, 1985). В отличие же от коры гипоталамус, очевидно, постоянно участвует в управлении работой висцеральных систем организма. Обеспечивает постоянство внутренней среды. Контроль за действием симпатической и парасимпатической систем, иннервирующих внутренние органы, сосуды, гладкую мускулатуру, железы внутренней и внешней секреции, осуществляет “висцеральный мозг”, который представлен центральными вегетативными аппаратами (вегетативные ядра) гипоталамической области (О.Г.Газенко и соавт., 1987). В свою очередь, гипоталамус находится под

контролем определенных областей коры (в частности, лимбической) больших полушарий.

Координация деятельности всех трех частей автономной нервной системы осуществляется сегментарными и надсегментарными центрами (аппаратами) при участии коры большого мозга. В сложноорганизованном отделе промежуточного мозга -- гипоталамической области, находятся ядра, имеющие непосредственное отношение к регуляции висцеральных функций.

Хемо и барорецепторы кровеносных сосудов

Афферентные импульсы от барорецепторов поступают к сосудодвигательному центру продолговатого мозга. Эти импульсы оказывают тормозное влияние на симпатические центры и возбуждающее на парасимпатические. В результате снижается тонус симпатических сосудосуживающих волокон (или так называемый вазомоторный тонус), а также частота и сила сердечных сокращений. Поскольку импульсация от барорецепторов наблюдается в широком диапазоне значений артериального давления, их тормозные влияния проявляются даже при «нормальном» давлении. Иными словами барорецепторы оказывают постоянное депрессорное действие. При повышении давления импульсация от барорецепторов возрастает, и сосудодвигательный центр затормаживается сильнее; это приводит к еще большему расширению сосудов, причем сосуды в разных областях расширяются в разной степени. При падении давления импульсация от барорецепторов уменьшается и развиваются обратные процессы, приводящие, в конечном счете, к повышению давления. Возбуждение хеморецепторов приводит к снижению частоты сокращений сердца и сужению сосудов в результате прямого действия на циркуляторные центры продолговатого мозга. При этом эффекты, связанные с сужением сосудов, преобладают над последствиями снижения сердечного выброса, и вследствие этого артериальное давление повышается.

барорецепторы расположены в стенках артерий. Увеличение артериального давления приводит к растяжению барорецепторов, сигналы от которых поступают в центральную нервную систему. Затем сигналы обратной связи направляются к центрам автономной нервной системы, а от них - к сосудам. В результате давление понижается до нормального уровня. Барорецепторы чрезвычайно быстро реагируют на изменения артериального давления.

Хеморецепторы чувствительны к химическим компонентам крови. артериальные хеморецепторы реагируют на изменения концентрации в крови кислорода, углекислоты, водородных ионов, питательных веществ и гормонов, уровня осмотического давления; благодаря хеморецепторам поддерживается гомеостаз.

При вдыхании па­ров веществ, раздражающих рецепторы слизистой оболочки дыха­тельных путей (хлор, аммиак), происходит рефлектор­ный спазм мышц гортани, бронхов и задержка дыхания.

К защитным рефлексам следует отнести также короткие резкие выдохи – кашель и чихание . Кашель возникает при раздражении бронхов. Происходит глубокий вдох, за которым следует усиленный резкий выдох. Голосовая щель открывается, происхо­дит выброс воздуха, сопровождаемый звуком кашля. Чихание воз­никает при раздражении слизистых оболочек носовой полости. Про­исходит резкий выдох, как при кашле, но язык блокирует заднюю часть ротовой полости и воздух выходит через нос. При чихании и кашле из дыхательных путей удаляются инородные частицы, слизь и т.п.

Проявления эмоционального состояния человека (смех и плач) не что иное, как долгие вдохи, за которыми следуют короткие, рез­кие выдохи. Зевота – долгий вдох и долгий, постепенный выдох. Зевота нужна для того, чтобы про­вентилировать лёгкие перед сном, а так же увеличить насыщение крови кислородом.

ЗАБОЛЕВАНИЯ ОРГАНОВ ДЫХАНИЯ

Органы дыхательной системы подвержены многим инфекцион­ным заболеваниям. Среди них различают воздушно-ка­пельные и капельно-пылевые ин­фекции. Первые передаются при непосредственном контакте с боль­ным (при кашле, чиха­нии или разговоре), вторые – при контакте с предметами, которыми пользовался больной. Наиболее распространены вирусные инфекции (грипп) и острые респираторные заболевания (ОРЗ, ОРВИ, ангина, туберкулёз, бронхиальная астма).

Грипп и ОРВИ пе­редаются воздушно-капельным путём. У больного поднимается температура, появляются озноб, ломота в теле, головная боль, ка­шель и насморк. Нередко после этих заболеваний, особенно грип­па, наблюдаются серьёзные осложнения как результат нарушения работы внутренних органов – лёгких, бронхов, сердца и др.

Туберкулёз лёгких вызывает бактерия – палочка Коха (по имени описавшего её учёного). Этот возбудитель широко распространён в природе, но иммунная систе­ма активно подавляет его развитие. Однако при неблагоприятных условиях (сырость, недостаточное питание, сниженный иммунитет) болезнь может перейти в острую форму, приводящую к физическому разрушению лёгких.



Распространённое заболевание лёгких – бронхиальная астма . При этом заболевании сокращаются мышцы стенок бронхов, развивается приступ удушья. Причина астмы – аллергическая реакция на: бытовую пыль, шерсть животных, пыльцу растений и т. п. Для купирования удушья применяют ряд препаратов. Некоторые из них вводят в виде аэро­золей, и они действуют непосредственно на бронхи.

Органы дыхания подвержены также онкологическим заболевания, чаще всего у хронических курильщи­ков.

Для ранней диагности­ки заболеваний лёгких применяют флюорографию – фотографическое изображения грудной клетки, просвечиваемой рентгеновс­ким излучением.

Насморк, который представляет собой воспаление носовых про­ходов, носит название ринит . Ринит может давать осложнения. Из носоглотки воспаление по слуховым трубам доходит до полости средне­го уха и вызвать его воспаление – отит .

Тонзиллит – воспаление нёбных миндалин (гланд) . Острый тонзиллитангина. Чаще всего тонзиллит вызывается бактериями. Ангина также страшна своими осложнениями на суставы и сердце. Воспаление задней стенки горла называют фарингитом . Если оно затрагивает голосовые связки (голос хрип­лый), то это ларингит .

Разрастания лимфоидной ткани у выхода из носовой полости в носоглотку называют аденоидами . Если аденоиды затрудняют проход воздуха из носовой полости, то их приходится удалять.

Наиболее часто встречающееся заболевание лёгких – бронхит . При бронхите слизистая воздухоносных путей воспаляется и набухает. Просвет бронхов сужается, дыхание затрудняется. Накопление слизи приводит к постоянному желанию от­кашляться. Основная причина острого бронхита – вирусы и мик­робы. Хронический бронхит приводит к необратимым поражениям бронхов. Причина хронического бронхита – длительное воздействие вредных примесей: табачного дыма, производных загрязнений, выхлопных газов. Особо опасно курение, так как смола, образующаяся при сго­рании табака и бумаги, не выводится из лёгких и оседает на стенках воздухоносных путей, убивая клетки слизистой. Если воспалительный процесс распространяется на лёгочную ткань, то развивается пневмония , или воспаление лёгких.

Дыхание происходит легко и свободно, так как листки плевры свободно скользят друг по другу. При воспалении плевры тре­ние при дыхательных движениях резко возрастает, дыхание за­трудняется и становится болезненным. Это бактериальное заболевание называется плевритом .

Вопросы для самостоятельной подготовки


1. Основные функции дыхательной системы.

2. Строение полости носа.

3. Строение гортани.

4. Механизм звукообразования.

5. Строение трахеи и бронхов.

6. Строение правого и левого легкого. Границы легких.

7. Строение альвеолярного дерева. Лёгочный ацинус.

На активность нейронов дыхательного центра выраженное влияние оказывают рефлекторные воздействия. Различают постоянные и непостоянные (эпизодические) рефлекторные влияния на дыхательный центр.

Постоянные рефлекторные влияния возникают в результате раздражения рецепторов альвеол (рефлекс Геринга - Брейера), корня легкого и плевры (пульмоторакальный рефлекс), хеморецепторов дуги аорты и каротидных синусов (рефлекс Гейманса), механорецепторов указанных сосудистых областей, проприорецепторов дыхательных мышц.

Наиболее важным рефлексом этой группы является рефлекс Геринга -Брейера. В альвеолах легких заложены механорецепторы растяжения и спадения, являющиеся чувствительными нервными окончаниями блуждающего нерва. Рецепторы растяжения возбуждаются при обычном и максимальном вдохе, т. е. любое увеличение объема легочных альвеол возбуждает эти рецепторы. Рецепторы спадения становятся активными только в условиях патологии (при максимальном спадении альвеол).

В экспериментах на животных установлено, что при увеличении объема легких (вдувание в легкие воздуха) наблюдается рефлекторный выдох, выкачивание же воздуха из легких приводит к быстрому рефлекторному вдоху. Указанные реакции не возникали при перерезке блуждающих нервов. Следовательно, нервные импульсы в центральную нервную систему поступают по блуждающим нервам.

Рефлекс Геринга - Брейера относится к механизмам саморегуляции дыхательного процесса, обеспечивая смену актов вдоха и выдоха. При растяжении альвеол во время вдоха нервные импульсы от рецепторов растяжения по блуждающему нерву идут к экспираторным нейронам, которые возбуждаясь, тормозят активность инспираторных нейронов, что приводит к пассивному выдоху. Легочные альвеолы спадаются, и нервные импульсы от рецепторов растяжения уже не поступают к экспираторным нейронам. Активность их падает, что создает, условия для повышения возбудимости инспипараторной части дыхательного центра и активного вдоха. Кроме того, активность инспираторных нейронов повышается при нарастании концентрации углекислого газа в крови, что также способствует осуществлению акта вдоха.

Таким образом, саморегуляция дыхания осуществляется на основе взаимодействия нервного и гуморального механизмов регуляции активности нейронов дыхательного центра.

Пульмоторакальный рефлекс возникает при возбуждении рецепторов, заложенных в легочной ткани и плевре. Проявляется этот рефлекс при растяжении легких и плевры. Рефлекторная дуга замыкается на уровне шейных и грудных сегментов спинного мозга. Конечным эффектом рефлекса является изменение тонуса дыхательной мускулатуры, благодаря чему происходит увеличение или уменьшение среднего объема легких.

К дыхательному центру постоянно идут нервные импульсы от проприорецепторов дыхательных мышц. Во время вдоха происходит возбуждение проприорецепторов дыхательных мышц и нервные импульсы от них поступают к инспираторным нейронам дыхательного центра. Под влиянием нервных импульсов активность инспираторных нейронов тормозится, что способствует наступлению выдоха.

Непостоянные рефлекторные влияния на активность дыхательных нейронов связаны с возбуждением разнообразных по своим функциям экстеро- и интерорецепторов.

К непостоянным рефлекторным воздействиям, оказывающим влияние на активность дыхательного центра, относятся рефлексы, возникающие при раздражении рецепторов слизистой оболочки верхних дыхательных путей, носа, носоглотки, температурных и болевых рецепторов кожи, проприорецепторов скелетных мышц, интерорецепторов. Так, например, при внезапном вдыхании паров аммиака, хлора, сернистого ангидрида, табачного дыма и некоторых других веществ происходит раздражение рецепторов слизистой оболочки носа, глотки, гортани, что приводит к рефлекторному спазму голосовой щели, а иногда даже мускулатуры бронхов и рефлекторной задержке дыхания.

При раздражении эпителия дыхательных путей накопившейся пылью, слизью, а также попавшими химическими раздражителями и инородными телами наблюдаются чиханье и кашель. Чиханье возникает при раздражении рецепторов слизистой оболочки носа, а кашель - при возбуждении рецепторов гортани, трахеи, бронхов.

Кашель и чиханье начинаются с глубокого вдоха, который возникает рефлекторно. Затем происходит спазм голосовой щели и одновременно активный выдох. Вследствие этого давление в альвеолах и воздухоносных путях значительно возрастает. Следующее за этим раскрытие голосовой щели приводит к выбросу воздуха из легких толчком в дыхательные пути и наружу через нос (при чиханье) или через рот (при кашле). Пыль, слизь, инородные тела увлекаются этой струей воздуха и выбрасываются из легких и дыхательных путей.

Кашель и чиханье в условиях нормы относят к категории защитных рефлексов. Эти рефлексы называют защитными потому, что они препятствуют попаданию вредных веществ в дыхательные пути или же способствуют их удалению.

Раздражение температурных рецепторов кожи, в частности холодовых, приводит к рефлекторной задержке дыхания. Возбуждение болевых рецепторов кожи, как правило, сопровождается учащением дыхательных движений.

Возбуждение проприорецепторов скелетных мышц обусловливает стимуляцию акта дыхания. Повышенная активность дыхательного центра в этом случае является важным приспособительным механизмом, обеспечивающим увеличенные потребности организма в кислороде при мышечной работе.

Раздражение интерорецепторов, например механо-рецепторов желудка при его растяжении, приводит к торможению не только сердечной деятельности, но и дыхательных движений.

При возбуждении механорецепторов сосудистых рефлексогенных зон (дуга аорты, каротидные синусы) в результате изменения величины артериального давления наблюдаются сдвиги в активности дыхательного центра. Так, повышение артериального давления сопровождается рефлекторной задержкой дыхания, понижение приводит к стимуляции дыхательных движений.

Таким образом, нейроны дыхательного центра чрезвычайно чувствительны к воздействиям, обусловливающим возбуждение экстеро-, проприо- и интерорецепторов, что приводит к изменению глубины и ритма дыхательных движений в соответствии с условиями жизнедеятельности организма.

На активность дыхательного центра оказывает влияние коры головного мозга. Регуляция дыхания корой больших полушарий имеет свои качественные особенности. В опытах с прямым раздражением электрическим током отдельных областей коры головного мозга было показано выраженное влияние ее на глубину и частоту дыхательных движений. Результаты исследований М. В. Сергиевского и его сотрудников, полученные при непосредственном раздражении различных участков коры больших полушарий электрическим током в острых, полухронических и хронических опытах (вживленные электроды), свидетельствуют о том, что нейроны коры не всегда оказывают однозначное влияние на дыхание. Конечный эффект зависит от ряда факторов, главным образом от силы, продолжительности и частоты применяемых раздражений, функционального состояния коры головного мозга и дыхательного центра.

Важные факты были установлены Э. А. Асратяном и его сотрудниками. Было обнаружено, что у животных с удаленной корой головного мозга отсутствовали приспособительные реакции внешнего дыхания на изменения условий жизнедеятельности. Так, мышечная активность у таких животных не сопровождалась стимуляцией дыхательных движений, а приводила к длительной одышке и дискоординации дыхания.

Для оценки роли коры головного мозга в регуляции дыхания большое значение имеют данные, полученные с помощью метода условных рефлексов. Если у человека или животных звук метронома сопровождать вдыханием газовой смеси с повышенным содержанием углекислого газа, то это приведет к увеличению легочной вентиляции. Через 10…15 сочетаний изолированное включение метронома (условный сигнал) вызовет стимуляцию дыхательных движений - образовался условный дыхательный рефлекс на избранное количество ударов метронома в единицу времени.

Учащение и углубление дыхания, которые наступают до начала физической работы или спортивных состязаний, также осуществляются по механизму условных рефлексов. Эти изменения в дыхательных движениях отражают сдвиги в активности дыхательного центра и имеют приспособительное значение, способствуя подготовке организма к выполнению работы, требующей большой затраты энергии и усиления окислительных процессов.

По мнению М.Е. Маршака, корковая: регуляция дыхания обеспечивает необходимый уровень легочной вентиляции, темп и ритм дыхания, постоянство уровня углекислого газа в альвеолярном воздухе и артериальной крови.

Приспособление дыхания к внешней среде и сдвигам, наблюдаемым во внутренней среде организма, связано с обширной нервной информацией, поступающей в дыхательный центр, которая предварительно перерабатывается, главным образом в нейронах моста мозга (варолиев мост), среднего и промежуточного мозга и в клетках коры головного мозга.

Таким образом, регуляция активности дыхательного центра сложна. По М.В. Сергиевскому, она состоит из трех уровней.

Первый уровень регуляции представлен спинным мозгом. Здесь располагаются центры диафрагмальных и межреберных нервов. Эти центры обусловливают сокращение дыхательных мышц. Однако этот уровень регуляции дыхания не может обеспечить ритмичную смену фаз дыхательного цикла, так как огромное количество афферентных импульсов от дыхательного аппарата, минуя спинной мозг, направляется непосредственно в продолговатый мозг.

Второй уровень регуляции связан с функциональной активностью продолговатого мозга. Здесь находится дыхательный центр, который воспринимает разнообразные афферентные импульсы, идущие от дыхательного аппарата, а также от основных рефлексогенных сосудистых зон. Этот уровень регуляции обеспечивает ритмичную смену фаз дыхания и активность спинномозговых мотонейронов, аксоны которых иннервируют дыхательную мускулатуру.

Третий уровень регуляции - это верхние отделы головного мозга, включающие и корковые нейроны. Только при наличии коры полушарий головного мозга возможно адекватное приспособление реакций системы дыхания к изменяющимся условиям существования организма.

Регуляция дыхания осуществляется путем рефлекторных реакций, возникающих в результате возбуждения специфических рецепторов, заложенных в легочной ткани, сосудистых рефлексогенных зонах и других участках. Центральный аппарат регуляции дыхания представляют образования спинного мозга, продолговатого мозга и вышележащих отделов нервной системы. Основная функция управления дыханием осуществлянется дыхательными нейронами ствола головного мозга, которые передают ритмические сигналы в спинной мозг к мотонейронам дыхательных мышц.

Дыхательный нервный центр – это совокупность нейронов центральной нервной системы, обеспечивающих координированную ритмическую деятельность дыхательных мышц и постоянное приспособление внешнего дыхания к изменяющимся условиям внутри организма и в окружающей среде. Основная (рабочая) часть дыхательного нервного центра расположена в продолговатом мозгу. В ней различают два отдела: инспираторный (центр вдоха) и экспираторный (центр выдоха). Дорсальная группа дыхательных нейронов продолговатого мозга состоит преимущественно из инспираторных нейронов. Они частично дают поток нисходящих путей, вступающих в контакт с мотонейронами диафрагмального нерва. Вентральная группа дыхательных нейронов посылает преимущественно нисходящие волокна к мотонейронам межреберных мышц. В передней части варолиева моста обнаружена область, названная пневмотаксическим центром. Этот центр имеет отношение к работе как экспи-, так и инспираторного его отделов. Важной частью дыхательного нервного центра является группа нейронов шейного отдела спинного мозхга (III-IV шейные сегменты), где расположены ядра диафрагмальных нервов.

К моменту рождения ребенка дыхательный центр способен давать ритмическую смену фаз дыхательного цикла, но эта реакция очень несовершенна. Дело заключается в том, что к рождению дыхательный центр еще не сформирован, его формирование заканчивается к 5-6 годам жизни. Это подтверждается тем, что именно к этому периоду жизни детей дыхание у них становится ритмичным и равномерным. У новорожденных же оно неустойчиво как по частоте, так и глубине и ритму. У них дыхание диафрагмальное и практически мало отличается во время сна и бодроствования (частота от 30 до 100 в минуту). У детей 1 года количество дыхательных движений днем в пределах 50-60, а ночью – 35-40 в минуту, неустойчивое и диафрагмальное. В возрасте 2-4 лет – частота становится в пределах 25-35 и носит преимущественно диафрагмальный тип. У 4-6 – летних детей частота дыхания 20-25, смешанное – грудное и диафрагмальное. К 7 –14 годам достигает уровня 19-20 в минуту, оно является в это время смешанным. Таким образом, окончательное формирование нервного центра практически относится к этому возрастному периоду.

Как же происходит возбуждение дыхательного центра? Один из важнейших путей его возбуждения - это автоматия. Единой точки зрения на природу автоматии нет, но имеются данные о том, что в нервных клетках дыхательного центра возможно возникновение вторичной деполяризации (по принципу диастолической деполяризации в сердечной мышце), которая, достигая критического уровня, и дает новый импульс. Однако одним из основных путей возбуждения дыхательного нервного центра является его раздражение углекислотой. На прошлой лекции мы отметили, что углекислоты много остается в крови, оттекающей от легких. Она и выполняет функцию основого раздражителя нервных клеток продолговатого мозга. Это опосредуется через специальные образования - хеморецепторы , расположенные непосредственно в структурах продолговатого мозга («центральные хеморецепторы»). Они очень чувствительны к напряжению углекислого газа и кислотно-щелочному состоянию омывающей их межклеточной мозговой жидкости.

Углекислота может легко диффундировать из кровеносных сосудов головного мозга в спинномозговую жидкость и стимулировать хеморецепторы продолговатого мозга. Это еще один путь возбуждения дыхательного центра.

Наконец, его возбуждение может осуществляться и рефлекторно. Все рефлексы, обеспечивающие регуляцию дыхания мы условно подразделяем на: собственные и сопряженные.

Собственные рефлексы дыхательной системы – это такие рефлексы, которые берут начало в органах дыхательной системы и в ней же заканчиваются. В первую очередь к этой группе рефлексов следует отнести рефлекторный акт с механорецепторов легких . В зависимости от, локализации и вида, воспринимаемых раздражений, характера рефлекторных ответов на раздражение различают три вида таких рецепторов: рецепторы рпастяжения, ирритантные рецепторы и юкстакапиллярные рецепторы легких.

Рецепторы растяжения легких находятся, преимущественно в гладких мышцах воздухоносных путей (трахее, бронхах). Таких рецепторов в каждом легком около 1000 и связаны они с дыхательным центром крупными миелинизированными афферентными волокнами блуждающего нерва с высокой скоростью проведения. Непосредственным раздражителем этого типа механорецепторов является внутреннее напряжение в тканях стенок воздухоносных путей. При растяжении легких во время вдоха частота этих импульсов возрастает. Раздувание легких вызывает рефлекторное торможение вдоха и переход к выдоху. При перерезке блуждающих нервов эти реакции прекращаются, и дыхание становится замедленным и глубоким. Указанные реакции называют рефлексом Геринга-Брейера. Этот рефлекс воспроизводится у взрослого человека, когда дыхательный объем превосходит 1 л (при физической нагрузке, например). Он имеет большое значение у новорожденных.

Ирритантные рецепторы или быстро адаптирующиеся механорецепторы воздухоносных путей, рецепторы слизистой оболочки трахеи и бронхов. Они реагируют на резкие изменения объема легких, а также при действии на слизистую трахеи и бронхов механических или химических раздражителей (пылевых частиц, слизи, паров едких веществ, табачного дыма и т.п.). В отличие от легочных рецепторов растяжения ирритантные рецепторы обладают быстрой адаптацией. При попадании в дыхательные пути мельчайших инородных тел (пыли, частиц дыма), активация ирритантных рецепторов вызывает у человека кашлевой рефлекс. Его рефлекторная дуга такова – от рецепторов информация через верхнегортанный, языкоглоточный, тройничный нерв идет к соотвествующим структурам мозга, отвечающим за выдох (срочный выдох – кашель ). Если изолированно возбуждаются рецепторы носовых дыхательных путей, то это вызывает другой срочный выдох - чихание.

Юкстакапиллярные рецепторы – расположены вблизи капилляров альвеол и дыхательных бронхов. Раздражителем этих рецепторов является повышение давления в малом круге кровообращения, а также увеличение объема интерстициальной жидкости в легких. Это наблюдается при застое крови в малом круге кровообращения, отеке легких, повреждениях легочной ткани (например, при пневмонии). Импульсы от этих рецепторов направляются к дыхательному центру по блуждающему нерву, вызывая появление частого поверхностного дыхания. При заболеваниях вызывает ощущение одышки, затрудненного дыхания. Может быть не только учащенное дыхание (тахипное), но и рефлекторное сужение бронхов.

Еще различают большую группу собственных рефлексов, которые берут свое начало от проприорецепторов дыхательной мускулатуры. Рефлекс от проприорецепторов межреберных мышц осуществляется во время вдоха, когда эти мышцы, сокращаясь, посылают информацию через межреберные нервы к экспираторному отделу дыхательного центра и в результате наступает выдох. Рефлекс от проприорецепторов диафрагмы осуществляется в ответ на ее сокращение во времявдоха, в результате информация поступает по диафрагмальным нервам вначале в спинной, а потом в продолговатый мозг в экспираторный отдел дыхательного центра и наступает выдох.

Таким образом, все собственные рефлексы дыхательной системы осуществляются во время вдоха и заканчиваются выдохом.

Сопряженные рефлексы дыхательной системы – это рефлексы, которые начинаются за ее пределами. К этой группе рефлексов, прежде всего, относится рефлекс на сопряжение деятельности системы кровообращения и дыхания. Такой рефлекторный акт начинается от периферических хеморецепторов сосудистых рефлексогенных зон. Наиболее чувствительные из них находятся в области синокаротидной зоны. Синокаротидный хеморецептивный сопряженный рефлекс – осуществляется при накоплении углекислого газа в крови. Если его напряжение растет, то происходит возбуждение наиболее высоковозбудимых хеморецепторов (а они именно в этой зоне и находятся в синокаротидном тельце), возникающая волна возбуждения идет от них по IX паре черпномозговых нервов и достигает экспираторного отдела дыхательного центра. Возникает выдох, который и усиливает выброс лишней углекислоты в окружающее пространство. Таким образом, система кровообращения (она, кстати, при осуществлении этого рефлекторного акта также работает более интенсивно, возрастает частота сердечных сокращений, скорость кровотока) влияет на деятельность системы дыхания.

Другой разновидностью сопряженных рефлексов дыхательной системы является многочисленная группа экстероцептивных рефлексов. Они берут свое начало от тактильных (вспомните реакцию дыхания на осязание, прикосновение), температурных (тепло – увеличивает, холод – уменьшает дыхательную функцию), болевых (слабые и средней силы раздражители – усиливают, сильные – угнетают дыхание) рецепторов.

Проприорецептивные сопряженные рефлексы дыхательной системы осуществляются вследствие раздражения рецепторов скелетных мышц, суставов, связок. Это наблюдается при выполнении физической нагрузки. Почему это происходит? Если в состоянии покоя человеку необходимо 200-300 мл кислорода в минуту, то при физической нагрузке этот объем должен значительно возрости. В этих условиях увеличивается и МО, артериовенозная разница по кислороду. Увеличение этих показателей сопровождается повышением потребления кислорода. Далее все зависит от объема работы. Если работа длится 2-3 минуты и мощность ее достаточно велика, то потребление кислорода непрерывно растет с самого начала работы и снижается лишь после ее прекращения. Если же продолжительность работы больше, то потребление кислорода, нарастая в первые минуты, поддерживается в дальнейшем на постоянном уровне. Потребление кислорода возрастает тем более, чем тяжелее физическая работа. Наибольшее количество кислорода, которое организм может поглотить за 1 минуту при предельно тяжелой для него работе, называется максимальное потребление кислорода (МПК). Работа, при которой человек достигает своего уровня МПК, должна длиться не более 3 минут. Существует много способов определения МПК. У не занимающихся спортом или физическими упражнениями людей величина МПК не превышает 2,0-2,5 л/мин. У спортсменов она может быть выше более чем в два раза. МПК является показателем аэробной производительности организма. Эта способность человека совершать очень тяжелую физическую работу, обеспечивая свои энергетические расходы за счет кислорода, поглощаемого непосредственно во время работы. Известно, что даже хорошо тренированный человек может работать при потреблении кислорода на уровне 90-95% от уровня своего МПК не более 10-15 минут. Тот, кто имеет большую аэробную производительность, тот достигает лучших результатов в работе (спорте) при относительно одинаковой технической и тактической подготовленности.

Почему при физической работе возникает увеличение потребления кислорода? В этой реакции можно выделить несколько причин: раскрытие дополнительных капилляров и увеличение крови в них, сдвиг кривой диссоциации гемоглобина вправо и вниз, увеличение температуры в мышцах. Для того, чтобы мышцы могли совершать определенную работу, им нужна энергия, запасы которой в них восстанавливаются при доставке кислорода. Таким образом, существует зависимость между мощностью работы и количеством кислорода, которое требуется для работы. То количество крови, которое требуется для работы, называется кислородным запросом. Кислородный запрос может достигать при тяжелой работе до 15-20 л в минуту и более. Однако максимум потребления кислорода в два-три раза меньше. Можно ли выполнить работу, если минутный кислородный запас превышает МПК? Чтобы правильно ответить на этот вопрос, надо вспомнить, для чего используется кислород при мышечной работе. Он необходим для восстановления богатых энергией химических веществ, обеспечивающих мышечное сокращение. Кислород обычно взаимодействует с глюкозой, и она, окисляясь, освобождает энергию. Но глюкоза может расщепляться и без кислорода, т.е. анаэробным путем, при этом тоже выделяется энергия. Кроме глюкозы, есть и другие вещества, способные расщепляться без кислорода. Следовательно, работа мышц может быть обеспечена и при недостаточном поступлении кислорода в организм. Однако в этом солучае образуется много кислых продуктов и для их ликвидации нужен кислород, ибо они разрушаются путем окисления. То количество кислорода, которое требуется для окисления продуктов обмена, образовавшихся при физической работе, называется кислородный долг. Он возникает во время работы и ликвидируется в восстановительном периоде после нее. На его ликвидацию уходит от нескольких минут до полутора часов. Все зависит от длительности и интенсивности работы. Основную роль в образовании кислородного долга составляет молочная кислота. Чтобы продолжить работу при наличии в крови большого ее количества, организм должен иметь мощные буферные системы и его ткани должны быть приспособлены к работе при недостатке кислорода. Такое приспособление тканей служит одним из факторов, обеспечивающих высокую анаэробную производительность.

Все это усложняет регуляцию дыхания при физической работе, так как потребление кислорода в организме возрастает и его недостаток в крови приводит к раздражению хеморецепторов. Сигналы от них идут в дыхательный центр, в результате дыхание учащается. При мышечной работе много образуется углекислоты, которая поступает в кровь и она может действовать на дыхательный центр непосредственно черех центральные хеморецепторы. Если недостаток кислорода в крови приводит преимущественно к учащению дыхания, то избыток углекислоты вызывает его углубление. При физической работе оба эти фактора действуют олновременно, вследствие чего происходит и учащение, и углубление дыхания. Наконец, импульсы идущие от работающих мышц, достигают дыхательного центра и усиливают его работу.

При функционировании дыхательного центра все отделы его функционально взаимосвязаны. Это достигается следующим механизмом. При накоплении углекислоты возбуждается инспираторный отдел дыхательного центра, от него информация идет в пневматоксический отдел центра, потом к экспираторному его отделу. Последний, кроме того, возбуждается за счет целой гаммы рефлекторных актов (с рецепторов легких, диафрагмы, межреберных мышц, дыхательных путей, хеморецепторов сосудов). Вследствие его возбуждения через специальный тормозный ретикулярный нейрон угнетается деятельность центра вдоха и на смену ему приходит выдох. Так как центр вдоха тормозится, то он не посылает далее импульсы в пневматоксический отдел, а от него прекращается поток информации в центр выдоха. К этому моменту накапливается в крови углекислота и снимаются тормозные влияния со стороны экспираторного отдела дыхательного центра. Вследствие такого перераспределения потока информации возбуждается центр вдоха и наступает на смену выдоху вдох. И все вновь повторяется.

Важным элементом в регуляции дыхания является блуждающий нерв. Именно через его волокна идут основные влияния на центр выдоха. Поэтому в случае его повреждения (также как и при повреждении пневматоксического отдела дыхательного центра) дыхание изменяется так, что вдох остается нормальным, а выдох резко затягивается. Такой тип дыхания называют вагус-диспноэ .

Мы уже отмечали выше, что при подъме на высоту происходит увеличение легочной вентиляции, обусловленное стимуляцией хеморецепторов сосудистых зон. Одновременно с этим возрастает частота сердечных сокращений и МО. Эти реакции несколько улучшают кислородный транспорт в организме, но не надолго. Поэтому при длительном пребывании в горах по мере адаптации к хронической гипоксии начальные (срочные) реакции дыхания постепенно уступают место более экономному приспособлению газотранспортной системы организма. Так, у постоянных жителей больших высот реакция дыхания на гипоксию оказывается резко ослабленной (гипоксическая глухота ) и легочная вентиляция поддерживается почти на том же уровне, что и у живущих на равнине. Зато при длительном проживании в условиях высокогорья возрастает ЖЕЛ, повышается КЕК, в мышцах становится больше миоглобина, в митохондриях усиливается активность ферментов, обеспечивающих биологическое окисление и гликолиз. У людей, живущих в горах, кроме того, понижена чувствительность тканей организма, в частности, центральной нервной системы, к недостаточному снабжению кислородом.

На высотах боле 12000 м давление воздуха очень мало и в этих условиях даже дыхание чистым кислородом не решает проблемы. Поэтому при полетах на этой высоте необходимы герметические кабины (самолеты, космические корабли).

Человеку иногда приходиться работать и в условиях повышенного давления (водолазные работы). На глубине в крови начинает растворяться азот и при быстром подъеме из глубины он не успевает выделяться из крови, газовые пузырьки вызывают эмболию сосудов. Состояние, возникающее при этом, называется кесонная болезнь. Она сопровождается болями в суставах, головокружением, одышкой, потерей сознания. Поэтому азот в смесях воздуха заменяют нерастворимыми газами (например, гелием).

Человек может произвольно задерживать дыхание не более чем на 1-2 минуты. После предварительной гипервентиляции легких эта задержка дыхания увеличивается до 3-4 минут. Однако затяжное, например, ныряние после гипервентиляции таит в себе серъезную опасность. Быстрое падение оксигенации крови может вызвать внезапную потерю сознания, а в этом состоянии пловец (даже опытный) под влиянием стимула, вызванного ростом парциального напряжения углекислоты в крови, может вдохнуть воду и захлебнуться (утонуть).

Итак, в заключение лекции я должен Вам напомнить, что здоровое дыхание это – через нос, как можно реже, с задерджкой во время вдоха и, особенно, после него. Удлиняя вдох, мы стимулируем работу симпатического отдела вегетативной нервной системы, со всеми вытекающими отсюда последствиями. Удлиняя выдох, мы удерживаем больше и дольше в крови углекислоту. А это оказыавает положительное влияние на тонус кровеносных сосудов (снижает его), со всеми вытекающими отсюда последствиями. Благодаря этому кислород может в такой ситуации пройти в самые отдаленные сосуды микроциркуляции, препятствуя нарушению их функции и развитию многочисленных заболеваний. Правильное дыхание – это профилактика и лечение большой группы заболеваний не только дыхательной системы, но и других органов и тканей! Дышите на здоровье!