Двигательный и вставочный нейрон функции. Типы нейронов

Для чего они нужны? Почему их так много? Что собой представляет чувствительный нейрон? Какую функцию выполняют вставочные и исполнительные нейроны? Давайте познакомимся поближе с этими потрясающими клетками.

Функции

Ежесекундно через наш головной мозг проходит множество сигналов. Процесс не останавливается даже во сне. Организму нужно воспринимать окружающий мир, совершать движения, обеспечивать работу сердца, дыхательной, пищеварительной, мочеполовой системы и т.д. В организации всей этой деятельности участвуют две основные группы нейронов – чувствительные и двигательные.

Когда мы притрагиваемся к холодному или горячему и чувствуем температуру предмета – это заслуга именно чувствительных клеток. Они мгновенно передают полученную с периферии организма информацию. Так обеспечивается рефлекторная деятельность.

Нейроны формируют всю нашу ЦНС. Главные их задачи:

  1. получить информацию;
  2. передать ее по нервной системе.

Эти уникальные клетки способны мгновенно передавать электрические импульсы.

Чтобы обеспечить процесс жизнедеятельности, организм должен обрабатывать огромное количество информации, которая поступает к нему из окружающего мира, реагировать на любой признак изменения условий среды. Чтобы сделать этот процесс максимально эффективным, нейроны делятся по своим функциям на:

  • Чувствительные (афферентные) – это наши проводники в окружающий мир. Именно они воспринимают информацию извне, от органов чувств, и передают их в ЦНС. Особенность в том, что благодаря их контактной деятельности, мы чувствуем температуру, боль, давление, имеем другие чувства. Чувствительные клетки узкой специализации осуществляют передачу вкуса, запаха.
  • Двигательные (моторные, эфферентные, мотонейроны). Двигательные нейроны передают информацию через электрические импульсы от ЦНС к мышечным группам, железам.
  • Промежуточные (ассоциативные, интеркалярные, вставочные). Теперь подробнее разберемся, какую функцию выполняют вставочные нейроны, для чего они вообще нужны, в чем их отличие. Они располагаются между чувствительными и двигательными нейронами. Вставочные нейроны передают нервные импульсы от чувствительных волокон к двигательным. Они обеспечивают «общение» между эфферентными и афферентными нервными клетками. К ним нужно относиться, как к своеобразным природным «удлинителям», длинным полостям, которые помогают транслировать сигнал от сенсорного нейрона к двигательному. Без их участия это было бы невозможно сделать. В этом и заключается их функция.

Сами рецепторы – это специально отведенные для данной функции клетки кожи, мышц, внутренних органов, суставов. Рецепторы могут начинаться еще в клетках эпидермиса, слизистой. Они умеют точно улавливать мельчайшие изменения, как снаружи организма, так и внутри него. Такие изменения могут быть физическими или химическими. Затем они молниеносно преображаются в специальные биоэлектрические импульсы и отправляются непосредственно к сенсорным нейронам. Так сигнал проходит путь от периферии к центру организма, где мозг расшифровывает его значение.

Импульсы от органа в мозг проводят все три группы нейронов – двигательные, чувствительные и промежуточные. Из этих групп клеток и состоит нервная система человека. Такое строение позволяет реагировать на сигналы из окружающего мира. Они обеспечивают рефлекторную деятельность организма.

Если человек перестает чувствовать вкус, запах, снижается слух, зрение, это может указывать на нарушения в ЦНС. В зависимости от того, какие органы чувств задеты, невропатолог может определить, в каком отделе мозга возникли проблемы.

1) Соматическая. Это сознательное управление мышцами скелета.

2) Вегетативная (автономная). Это неконтролируемое сознанием управление внутренними органами. Работа этой системы происходит, даже если человек находится в состоянии сна.

Сенсорные нейроны чаще всего униполярные. Это означает, что они снабжены лишь одним раздваивающимся отростком. Он выходит из тела клетки (сомы) и выполняет сразу функции и аксона, и дендрита. Аксон – это вход, а дендрит чувствительного нейрона – выход. После возбуждения чувствительных сенсорных клеток по аксону и дендриту проходит биоэлектрический сигнал.

Встречаются и биполярные нервные клетки, которые имеют соответственно два отростка. Их можно обнаружить, например, в сетчатке, структурах внутреннего уха.

Тело чувствительной клетки по своей форме напоминает веретено. От тела отходит 1, а чаще 2 отростка (центральный и периферический).

Периферический по своей форме очень напоминает толстую длинную палочку. Он достигает поверхности слизистой или кожи. Такой отросток похож на дендрит нервных клеток.

Второй, противоположный отросток, отходит от противоположной части тела клетки и по форме напоминает тонкую нить, покрытую вздутиями (их называют варикозности). Это аналог нервного отростка нейрона. Данный отросток направлен в определенный отдел ЦНС и так разветвляется.

Чувствительные клетки еще называют периферическими. Их особенность в том, что они непосредственно находятся за периферической нервной системой и ЦНС, но без них работа данных систем немыслима. Например, обонятельные клетки размещены в эпителии слизистой носа.

Как они работают

Функция чувствительного нейрона состоит в приеме сигнала от специальных рецепторов, расположенных на периферии организма, определении его характеристик. Импульсы воспринимаются периферическими отростками чувствительных нейронов, затем они передаются к их телу, а потом по центральным отросткам следуют непосредственно к ЦНС.

Дендриты сенсорных нейронов соединяются с различными рецепторами, а их аксоны – с остальными нейронами (вставочными). Для нервного импульса самым простым путем становится следующий – он должен пройти по трем нейронам: сенсорному, вставочному, моторному.

Самый типичный пример прохождения импульса – когда невропатолог стучит молоточком по коленному суставу. При этом моментально срабатывает простой рефлекс: коленное сухожилие после удара по нему приводит в движение мышцу, которая к нему прикреплена; чувствительные клетки от мышцы передают сигнал по чувствительным нейронам непосредственно в спинной мозг. Там сенсорные нейроны устанавливают контакт с двигательными, а те посылают импульсы обратно в мышцу, приводя ее в сокращение, нога при этом выпрямляется.

Кстати, в спинном мозге у каждого отдела (шейный, грудной, поясничный, крестцовый, копчиковый) находится сразу пара корешков: чувствительный задний, двигательный передний. Они образовывают единый ствол. Каждая из этих пар контролирует свою определенную часть тела и посылает центробежный сигнал, что делать дальше, как располагать конечность, туловище, что делать железе и т.д.

Чувствительные нейроны принимают участие в работе рефлекторной дуги. Она состоит из 5 элементов:

  1. Рецептор. Преобразует в нервный импульс раздражение.
  2. Импульс по нейрону следует от рецептора в ЦНС.
  3. Вставочный нейрон, который расположен в мозге, передает сигнал от нейрона чувствительного к исполнительному.
  4. По двигательному (исполнительному) нейрону основной импульс от мозга проводится к органу.
  5. Орган (исполнительный) – это мышца, железа и т.д. Он реагирует на полученный сигнал сокращением, выделением секрета и т.д.

Вывод

Биология человеческого организма очень продумана и совершенна. Благодаря деятельности множества чувствительных нейронов мы можем взаимодействовать с этим удивительным миром, реагировать на него. Наш организм очень восприимчивый, развитие его рецепторов и чувствительных нервных клеток достигло высочайшего уровня. Благодаря такой продуманной организации ЦНС наши органы чувств могут воспринимать и передавать мельчайшие оттенки вкуса, запаха, тактильных ощущений, звука, цвета.

Нередко мы считаем, что главное в нашем сознании и деятельности организма – это кора и полушария мозга. При этом мы забываем, какие колоссальные возможности обеспечивает мозг спинной. Именно функционирование спинного мозга обеспечивает получение сигналов от всех рецепторов.

Трудно назвать предел этих возможностей. Наш организм очень пластичен. Чем больше человек развивается, тем больше возможностей предоставляется в его распоряжение. Такой простой принцип позволяет нам быстро приспособиться к изменениям окружающего мира.

Вставочные нейроны (также интернейроны, кондукторные или промежуточные, interneuron) – тип , которые обычно расположены в интегральных частях , чьи (выходные элементы) и (отростки) ограничены одной областью мозга.

Эта особенность отличает их от иных , которые часто имеют аксональные проекции вне области мозга, где расположены их клеточные тела и дендриты.

В то время, как на основные сети нейронов возложены функции обработки и хранения информации, а также образование основных источников вывода информации с любой области мозга, то кондукторные нейроны по определению имеют местные аксоны, управляющие активностью.

В качестве нейротрансмиттера сенсорные и моторные нейроны используют глютамат, а кондукторные чаще используют гамма-аминомасляную кислоту () для ингибирования.

Интернейроны работают посредством гиперполяризации больших групп основных клеток. Промежуточные нейроны спинного мозга могут использовать глицин или ГАМК и глицин для ингибирования основных клеток, тогда как вставочные нейроны кортикальных областей или базальных ганглиев могут выделять различные пептиды (холецистокинин, соматостатин, вазоактивный кишечный полипептид, энкефалины, нейпопептид Y, галанин и др.) и ГАМК.

Их разнообразие, как по структуре, так и по функциональности, возрастает со сложностью локальных сетей в обусловленной области мозга, что, вероятно, коррелируется со сложностью функций, выполняемых областью мозга. Соответственно, шестислойный (новая кора больших полушарий), как центр высших психических функций, таких как сознательное восприятие или познание, имеет наибольшее количество типов вставочных нейронов.

Видео о принципе строения и работы interneuron (на английском языке):

Роль вставочных нейронов в работе спинного мозга

Интеграция сигналов обратной сенсорной связи и центральных моторных команд на нескольких уровнях центральной нервной системы играет решающую роль в управлении движением.

Исследования спинного мозга кошки показали, что рецепторные афференты и нисходящие двигательные пути на этом уровне сходятся в общих спинных интернейронах.

Исследования и человека зафиксировали, как интеграция моторных команд и сигналов рецепторных откликов используются для контроля активности мышц во время движения. Во время перемещения совокупность конвергентных входящих сигналов от центрального генератора упорядоченной активности (нейронная сеть, подающая ритмически упорядоченные моторные сигналы без обратной связи), сенсорной обратной связи, нисходящих команд и других присущих свойств, вызванных различными нейромедиаторами, приводит к активности кондукторных нейронов.

Нейротрансмиттеры

Сенсорная информация, передающаяся в спинной мозг, модулируется сложной сетью возбуждающих и ингибирующих вставочных нейронов. Различные нейротрансмиттеры выделяются из различных интернейронов, но два наиболее распространенных нейромедиатора – это ГАМК, — первичный ингибирующий нейротрансмиттер, и глютамат, — первичный возбуждающий нейротрансмиттер. – , активирующий интернейроны путем связывания с рецептором на мембране.

Ингибирующий интернейрон

Суставы контролируются двумя противоположными наборами мышц, называемыми экстензорами и сгибателями, которые должны синхронно работать для обеспечения правильного заданного движения. Когда нервно-мышечное веретено растягивается, а рефлекс растягивания активируется, противоположные мышцы необходимо блокировать, чтобы предотвратить работу мышцы-агониста. Спинной интернейрон ответственный за ее ингибирование. Таким образом, во время умышленного движения ингибирующие вставочные нейроны используются для координации сокращения мышц.

Афферентная иннервация мышц-антагонистов не возможна без работы интернейронов

Нейрон является специфической, электрически возбудимой клеткой в нервной системе человека и обладает уникальными особенностями. Его функции заключаются в обработке, хранении и передаче информации. Нейроны характеризуются сложным строением и узкой специализацией. Они также делятся на три вида. В этой статье подробно описывается вставочный нейрон и его роль в действии центральной нервной системы.

Классификация нейронов

Головной мозг человека насчитывает примерно 65 миллиардов нейронов, которые постоянно взаимодействуют между собой. Эти клетки подразделяются на несколько видов, каждый из которых выполняет свои особенные функции.

Чувствительный нейрон играет роль передатчика информации между органами чувств и центральными отделами человеческой нервной системы. Он воспринимает разнообразные раздражения, которые преобразовывает в нервные импульсы, а далее передает сигнал в головной мозг человека.

Двигательный - посылает импульсы в различные органы и ткани. В основном данный тип задействован в контроле над рефлексами спинного мозга.

За переработку и переключение импульсов отвечает вставочный нейрон. Функции данного типа клеток заключаются в получении и обработке информации от чувствительных и двигательных нейронов, между которыми они находятся. Более того, вставочные (или промежуточные) нейроны занимают 90 % центральной нервной системы человека, а также в больших количествах находятся во всех сферах головного и спинного мозга.

Строение промежуточных нейронов

Вставочный нейрон состоит из тела, аксона и дендритов. Каждая часть имеет свои специфические функции и отвечает за определенное действие. В его теле содержатся все компоненты, из которых созданы клеточные структуры. Важная роль этой части нейрона заключается в генерировании нервных импульсов и выполнении трофической функции. Продолговатый отросток, который несет сигнал от тела клетки, называется аксоном. Он делится на два типа: миелиновый и безмиелиновый. На конце аксона находятся различные синапсы. Третья составляющая нейронов - дендриты. Они являются короткими отростками, которые разветвляются в разные стороны. Их функция заключается в доставке импульсов к телу нейрона, что обеспечивает связь между различными видами нейронов центральной нервной системы.

Сфера воздействия

Что определяет область влияния вставочного нейрона? В первую очередь его собственное строение. В основном у клеток данного типа имеются аксоны, синапсы которых оканчиваются на нейронах этого же центра, что обеспечивает их объединение. Некоторые промежуточные нейроны активируются другими, из иных центров, а затем доставляют информацию в свой нейронный центр. Такие действия усиливают воздействие сигнала, который повторяется в параллельных путях, тем самым удлиняя срок хранения информационных данных в центре. В результате место, куда был доставлен сигнал, увеличивает надежность влияния на исполнительную структуру. Иные вставочные нейроны могут получать активацию от соединений двигательных «братьев» из своего центра. Потом они становятся передатчиками информации назад в свой центр, чем создают обратные связи. Таким образом, вставочный нейрон играет важную роль в образование особых замкнутых сетей, которые продлевают срок хранения информации в нервном центре.

Возбуждающий тип промежуточных нейронов

Вставочные нейроны делятся на два типа: возбуждающие и тормозные. При активации первых облегчается передача данных из одной нейронной группы в другую. Такую задачу выполняют именно «медленные» нейроны, которые имеют способность к длительной активации. Они передают сигналы на протяжении довольно длительного времени. Параллельно с этими действиями промежуточные нейроны активизируют и своих «быстрых» «коллег». Когда усиливается активность «медленных» нейронов, то уменьшается время реакции «быстрых». Одновременно с этим последние несколько замедляют работу «медленных».

Тормозной тип промежуточных нейронов

Вставочный нейрон тормозного типа приходит в активное состояние за счет прямых сигналов, которые поступают в их центр или исходят из него. Данное действие происходит путем обратных связей. Прямое возбуждение данного типа вставочных нейронов является характерным для промежуточных центров чувствительных путей спинного мозга. А в двигательных центрах коры головного мозга происходит активизация вставочных нейронов благодаря обратным связям.

Роль вставочных нейронов в работе спинного мозга

В работе спинного мозга человека важная роль отводится проводящим путям, которые расположены снаружи от пучков, исполняющих проводниковую функцию. Именно по этим дорожкам и передвигаются импульсы, которые посылает вставочный и чувствительный нейроны. Сигналы проходят вверх и вниз по этим путям, передавая различную информацию в соответствующие части мозга. Вставочные нейроны спинного мозга находятся в промежуточно-медиальном ядре, которое, в свою очередь, расположено в заднем роге. Промежуточные нейроны являются важной передней частью спинно-мозжечкового пути. На обратной стороне рога спинного мозга расположены волокна, состоящие из вставочных нейронов. Они образуют боковой спинно-таламический путь, который выполняет особую функцию. Он является проводником, то есть передает сигналы о болевых ощущениях и температурной чувствительности сначала в промежуточный мозг, а потом и в саму кору головного мозга.

Дополнительная информация о вставочных нейронах

В нервной системе человека вставочные нейроны выполняют особую и крайне важную функцию. Они связывают между собой различные группы нервных клеток, передают сигнал из головного мозга в спинной. Хотя именно этот тип является наиболее мелким по размерам. По форме вставочные нейроны напоминают звезду. Основное количество данных элементов располагается в сером веществе головного мозга, а их отростки не выступают за пределы центральной нервной системы человека.

Составляют 90% всех нейронов. Отростки не покидают пределов ЦНС, но обеспечивают многочисленные связи по горизонтали и вертикали.

Особенность: могут генерировать потенциал действия с частотой 1000 в сек. Причина - короткая фаза следовой гиперполяризации.

Вставочные нейроны осуществляют обработку информации; осуществляют связь между эфферентными и афферентными нейронами. Делятся на возбуждающие и тормозные.

Эфферентные нейроны .

Это нейроны, передающие информацию от нервного центра к исполнительным органам.

Пирамидные клетки двигательной зоны коры больших полушарий, посылающие импульсы к мотонейронам передних рогов спинного мозга.

Мотонейроны – аксоны выходят за пределы ЦНС и заканчиваются синапсом на эффекторных структурах.

Терминальная часть аксона ветвится, но есть ответвления и вначале аксона – аксонные коллатерали. Место перехода тела мотонейрона в аксон – аксонный холмик – наиболее возбудимый участок. Здесь генерируется ПД, затем распространяется по аксону.

На теле нейрона огромное количество синапсов. Если синапс образован аксоном возбуждающего интернейрона, то при действии медиатора на постсинаптической мембране возникает деполяризация или ВПСП (возбуждающий постсинаптический потенциал). Если синапс образован аксоном тормозной клетки, то при действии медиатора на постсинаптической мембране возникает гиперполяризация или ТПСП. Алгебраическая сумма ВПСП и ТПСП на теле нервной клетке проявляется в возникновении ПД в аксонном холмике.

Ритмическая активность мотонейронов в нормальных условиях 10 импульсов в секунду, но может возрастать в несколько раз.

Проведение возбуждения.

ПД распространяется за счет местных токов ионов, возникающих между возбужденным и невозбужденным участками мембраны. Так как ПД генерируется без затрат энергии, то нерв обладает самой низкой утомляемостью.

Объединения нейронов .

Существуют разные термины, обозначающие объединения нейронов.

Нервный центр – комплекс нейронов в одном или разных местах ЦНС (например, дыхательный центр).

Нейронные цепи – последовательно соединенные нейроны, выполняющие определенную задачу (с этой точки зрения рефлекторная дуга – тоже нейронные цепи).

Нейронные сети – более обширное понятие, т.к. помимо последовательных цепей имеются параллельные цепи нейронов, а также связи между ними. Нейронные сети – это структуры, выполняющие сложные задачи (например, задачи по обработке информации).

НЕРВНАЯ РЕГУЛЯЦИЯ

| следующая лекция ==>

Нервная ткань — основной структурный элемент нервной системы. В состав нервной ткани входят высокоспециализированные нервные клетки — нейроны , и клетки нейроглии , выполняющие опорную, секреторную и защитную функции.

Нейрон — это основная структурно-функциональная единица нервной ткани. Эти клетки способны принимать, обрабатывать, кодировать, передавать и хранить информацию, устанавливать контакты с другими клетками. Уникальными особенностями нейрона являются способность генерировать биоэлектрические разряды (импульсы) и передавать информацию по отросткам с одной клетки на другую с помощью специализированных окончаний — .

Выполнению функций нейрона способствует синтез в его аксоплазме веществ-передатчиков — нейромедиаторов: ацетилхолина, катехоламинов и др.

Число нейронов мозга приближается к 10 11 . На одном нейроне может быть до 10 000 синапсов. Если эти элементы считать ячейками хранения информации, то можно прийти к выводу, что нервная система может хранить 10 19 ед. информации, т.е. способна вместить практически все знания, накопленные человечеством. Поэтому вполне обоснованным является представление, что человеческий мозг в течение жизни запоминает все происходящее в организме и при его общении со средой. Однако мозг не может извлекать из всю информацию, которая в нем хранится.

Для различных структур мозга характерны определенные типы нейронной организации. Нейроны, регулирующие единую функцию, образуют так называемые группы, ансамбли, колонки, ядра.

Нейроны различаются по строению и функции.

По строению (в зависимости от количества отходящих от тела клетки отростков) различают униполярные (с одним отростком), биполярные (с двумя отростками) и мультиполярные (с множеством отростков) нейроны.

По функциональным свойствам выделяют афферентные (или центростремительные ) нейроны, несущие возбуждение от рецепторов в , эфферентные , двигательные , мотонейроны (или центробежные), передающие возбуждение из ЦНС к иннервируемому органу, и вставочные , контактные или промежуточные нейроны, соединяющие между собой афферентные и эфферентные нейроны.

Афферентные нейроны относятся к униполярным, их тела лежат в спинномозговых ганглиях. Отходящий от тела клетки отросток Т-образно делится на две ветви, одна из которых идет в ЦНС и выполняет функцию аксона, а другая подходит к рецепторам и представляет собой длинный дендрит.

Большинство эфферентных и вставочных нейронов относятся к мультиполярным (рис. 1). Мультиполярные вставочные нейроны в большом количестве располагаются в задних рогах спинного мозга, а также находятся и во всех других отделах ЦНС. Они могут быть и биполярными, например нейроны сетчатки, имеющие короткий ветвящийся дендрит и длинный аксон. Мотонейроны располагаются в основном в передних рогах спинного мозга.

Рис. 1. Строение нервной клетки:

1 — микротрубочки; 2 — длинный отросток нервной клетки (аксон); 3 — эндоплазматический ретикулум; 4 — ядро; 5 — нейроплазма; 6 — дендриты; 7 — митохондрии; 8 — ядрышко; 9 — миелиновая оболочка; 10 — перехват Ранвье; 11 — окончание аксона

Нейроглия

Нейроглия , или глия , — совокупность клеточных элементов нервной ткани, образованная специализированными клетками различной формы.

Она обнаружена Р. Вирховым и названа им нейроглией, что обозначает «нервный клей». Клетки нейроглии заполняют пространство между нейронами, составляя 40% от объема мозга. Глиальные клетки по размеру в 3-4 раза меньше нервных клеток; число их в ЦНС млекопитающих достигает 140 млрд. С возрастом у человека в мозге число нейронов уменьшается, а число глиальных клеток увеличивается.

Установлено, что нейроглия имеет отношение к обмену веществ в нервной ткани. Некоторые клетки нейроглии выделяют вещества, влияющие на состояние возбудимости нейронов. Отмечено, что при различных психических состояниях изменяется секреция этих клеток. С функциональным состоянием нейроглии связывают длительные следовые процессы в ЦНС.

Виды глиальных клеток

По характеру строения глиальных клеток и их расположению в ЦНС выделяют:

  • астроциты (астроглия);
  • олигодендроциты (олигодендроглия);
  • микроглиальные клетки (микроглия);
  • шванновские клетки.

Глиальные клетки выполняют опорную и защитную функции для нейронов. Они входят в структуру . Астроциты являются самыми многочисленными глиальными клетками, заполняющими пространства между нейронами и покрывающими . Они предотвращают распространение в ЦНС нейромедиаторов, диффундирующих из синаптической щели. В астроцитов имеются рецепторы к нейромедиаторам, активация которых может вызывать колебания мембранной разности потенциалов и изменения метаболизма астроцитов.

Астроциты плотно окружают капилляры кровеносных сосудов мозга, располагаясь между ними и нейронами. На этом основании предполагают, что астроциты играют важную роль в метаболизме нейронов, регулируя проницаемость капилляров для определенных веществ .

Одной из важных функций астроцитов является их способность поглотать избыток ионов К+, которые могут накапливаться в межклеточном пространстве при высокой нейронной активности. В областях плотного прилегания астроцитов формируются каналы щелевых контактов, через которые астроциты могут обмениваться различными ионами небольшого размера и, в частности, ионами К+ Это увеличивает возможности поглощения ими ионов К+ Неконтролируемое накопление ионов К+ в межнейронном пространстве приводило бы к повышению возбудимости нейронов. Тем самым астроциты, поглощая избыток ионов К+ из интерстициальной жидкости, предотвращают повышение возбудимости нейронов и формирование очагов повышенной нейронной активности. Появление таких очагов в мозге человека может сопровождаться тем, что их нейроны генерируют серии нервных импульсов, которые называют судорожными разрядами.

Астроциты принимают участие в удалении и разрушении нейромедиаторов, поступающих во внесинаптические пространства. Тем самым они предотвращают накопление в межнейрональных пространствах нейромедиаторов, которое могло бы привести к нарушению функций мозга.

Нейроны и астроциты разделены межклеточными щелями 15-20 мкм, называемыми интерстициальным пространством. Интерстициальные пространства занимают до 12-14% объема мозга. Важным свойством астроцитов является их способность поглощать из внеклеточной жидкости этих пространств СО2, и тем самым поддерживать стабильной рН мозга .

Астроциты участвуют в формировании поверхностей раздела между нервной тканью и сосудами мозга, нервной тканью и оболочками мозга в процессе роста и развития нервной ткани.

Олигодендроциты характеризуются наличием небольшого числа коротких отростков. Одной из их основных функций является формирование миелиновой оболочки нервных волокон в пределах ЦНС . Эти клетки располагаются также в непосредственной близости от тел нейронов, но функциональное значение этого факта неизвестно.

Клетки микроглии составляют 5-20% от общего количества глиальных клеток и рассеяны по всей ЦНС. Установлено, что антигены их поверхности идентичны антигенам моноцитов крови. Это свидетельствует об их происхождении из мезодермы, проникновении в нервную ткань во время эмбрионального развития и последующей трансформации в морфологически распознаваемые клетки микроглии. В связи с этим принято считать, что важнейшей функцией микроглии является защита мозга. Показано, что при повреждении нервной ткани в ней возрастает число фагоцитирующих клеток за счет макрофагов крови и активации фагоцитарных свойств микроглии. Они удаляют погибшие нейроны, глиальные клетки и их структрурные элементы, фагоцитируют инородные частицы.

Шванновские клетки формируют миелиновую оболочку периферических нервных волокон за пределами ЦНС. Мембрана этой клетки многократно обертывается вокруг , и толщина образующейся миелиновой оболочки может превысить диаметр нервного волокна. Длина миелинизированных участков нервного волокна составляет 1-3 мм. В промежутках между ними (перехваты Ранвье) нервное волокно остается покрытым только поверхностной мембраной, обладающей возбудимостью.

Одним из важнейших свойств миелина является его высокое сопротивление электрическому току. Оно обусловлено высоким содержанием в миелине сфингомиелина и других фосфолипидов, придающих ему токоизолирующие свойства. На участках нервного волокна, покрытых миелином, процесс генерации нервных импульсов невозможен. Нервные импульсы генерируются только на мембране перехватов Ранвье, что обеспечивает более высокую скорость проведения нервных импульсов но миелинизированным нервным волокнам в сравнении с немиелинизированными.

Известно, что структура миелина может легко нарушаться при инфекционных, ишемических, травматических, токсических повреждениях нервной системы. При этом развивается процесс демиелинизации нервных волокон. Особенно часто демиелинизация развивается при заболевании рассеянным склерозом. В результате демиелинизации скорость проведения нервных импульсов по нервным волокнам уменьшается, скорость доставки в мозг информации от рецепторов и от нейронов к исполнительным органам падает. Это может вести к нарушениям сенсорной чувствительности, нарушениям движений, регуляции работы внутренних органов и другим тяжелым последствиям.

Структура и функции нейронов

Нейрон (нервная клетка) является структурной и функциональной единицей .

Анатомическая структура и свойства нейрона обеспечивают выполнение его основных функций : осуществление метаболизма, получение энергии, восприятие различных сигналов и их обработка, формирование или участие в ответных реакциях, генерация и проведение нервных импульсов, объединение нейронов в нейронные цепи, обеспечивающие как простейшие рефлекторные реакции, так и высшие интегративные функции мозга.

Нейроны состоят из тела нервной клетки и отростков — аксона и дендритов.

Рис. 2. Строение нейрона

Тело нервной клетки

Тело (перикарион, сома) нейрона и его отростки на всем протяжении покрыты нейрональной мембраной. Мембрана тела клетки отличается от мембраны аксона и дендритов содержанием различных , рецепторов, наличием на ней .

В теле нейрона расположена нейроплазма и отграниченные от нее мембранами ядро, шероховатый и гладкий эндоплазматический ретикулум, аппарат Гольджи, митохондрии. В хромосомах ядра нейронов содержится набор генов, кодирующих синтез белков, необходимых для формирования структуры и осуществления функций тела нейрона, его отростков и синапсов. Это белки, выполняющие функции ферментов, переносчиков, ионных каналов, рецепторов и др. Некоторые белки выполняют функции, находясь в нейроплазме, другие — встраиваясь в мембраны органелл, сомы и отростков нейрона. Часть из них, например ферменты, необходимые для синтеза нейромедиаторов, путем аксонального транспорта доставляются в аксонную терминаль. В теле клетки синтезируются пептиды, необходимые для жизнедеятельности аксонов и дендритов (например, ростовые факторы). Поэтому при повреждении тела нейрона его отростки дегенерируют, разрушаются. Если же тело нейрона сохранено, а поврежден отросток, то происходит его медленное восстановление (регенерация) и восстановление иннервации денервированных мышц или органов.

Местом синтеза белков в телах нейронов является шероховатый эндоплазматический ретикулум (тигроидные гранулы или тела Ниссля) или свободные рибосомы. Содержание их в нейронах выше, чем в глиальных или других клетках организма. В гладком эндоплазматическом ретикулуме и аппарате Гольджи белки приобретают свойственную им пространственную конформацию, сортируются и направляются в транспортные потоки к структурам тела клетки, дендритов или аксона.

В многочисленных митохондриях нейронов в результате процессов окислительного фосфорилирования образуется АТФ, энергия которой используется для поддержания жизнедеятельности нейрона, работы ионных насосов и поддержания асимметрии ионных концентраций но обе стороны мембраны. Следовательно, нейрон находится в постоянной готовности не только к восприятию различных сигналов, но и к ответной реакции на них — генерации нервных импульсов и их использованию для управления функциями других клеток.

В механизмах восприятия нейронами различных сигналов принимают участие молекулярные рецепторы мембраны тела клетки, сенсорные рецепторы, образованные дендритами, чувствительные клетки эпителиального происхождения. Сигналы от других нервных клеток могут поступать к нейрону через многочисленные синапсы, образованные на дендритах или на геле нейрона.

Дендриты нервной клетки

Дендриты нейрона формируют дендритное дерево, характер ветвления и размер которого зависят от числа синаптических контактов с другими нейронами (рис. 3). На дендритах нейрона имеются тысячи синапсов, образованных аксонами или дендритами других нейронов.

Рис. 3. Синаптические контакты интернейрона. Стрелками слева показано поступление афферентных сигналов к дендритам и телу интернейрона, справа — направление распространения эфферентных сигналов интернейрона к другим нейронам

Синапсы могут быть гетерогенными как по функции (тормозные, возбуждающие), так и по типу используемого нейромедиатора. Мембрана дендритов, участвующая в образовании синапсов, является их постсинаптической мембраной, в которой содержатся рецепторы (лигандзависимые ионные каналы) к нейромедиатору, используемому в данном синапсе.

Возбуждающие (глутаматергические) синапсы располагаются преимущественно на поверхности дендритов, где имеются возвышения, или выросты (1-2 мкм), получившие название шипиков. В мембране шипиков имеются каналы, проницаемость которых зависит от трансмембранной разности потенциалов. В цитоплазме дендритов в области шипиков обнаружены вторичные посредники внутриклеточной передачи сигналов, а также рибосомы, на которых синтезируется белок в ответ на поступление синаптических сигналов. Точная роль шипиков остается неизвестной, но очевидно, что они увеличивают площадь поверхности дендритного дерева для образования синапсов. Шипики являются также структурами нейрона для получения входных сигналов и их обработки. Дендриты и шипики обеспечивают передачу информации от периферии к телу нейрона. Мембрана дендритов в покос поляризована благодаря асимметричному распределению минеральных ионов, работе ионных насосов и наличию в ней ионных каналов. Эти свойства лежат в основе передачи по мембране информации в виде локальных круговых токов (электротонически), которые возникают между постсинаптическими мембранами и граничащими с ними участками мембраны дендрита.

Локальные токи при их распространении по мембране дендрита затухают, но оказываются достаточными по величине для передачи на мембрану тела нейрона сигналов, поступивших через синаптические входы к дендритам. В мембране дендритов пока не выявлено потенциалзависимых натриевых и калиевых каналов. Она не обладает возбудимостью и способностью генерировать потенциалы действия. Однако известно, что по ней может распространяться потенциал действия, возникающий на мембране аксонного холмика. Механизм этого явления неизвестен.

Предполагается, что дендриты и шипики являются частью нейронных структур, участвующих в механизмах памяти. Количество шипиков особенно велико в дендритах нейронов коры мозжечка, базальных ганглиев, коры мозга. Площадь дендритного дерева и число синапсов уменьшаются в некоторых полях коры мозга пожилых людей.

Аксон нейрона

Аксон - отросток нервной клетки, не встречающийся в других клетках. В отличие от дендритов, число которых у нейрона различно, аксон у всех нейронов один. Его длина может достигать до 1,5 м. В месте выхода аксона из тела нейрона имеется утолщение — аксонный холмик, покрытый плазматической мембраной, которая вскоре покрывается миелином. Участок аксонного холмика, непокрытый миелином, называют начальным сегментом. Аксоны нейронов вплоть до своих конечных разветвлений покрыты миелиновой оболочкой, прерываемой перехватами Ранвье — микроскопическими безмиелиновыми участками (около 1 мкм).

На всем протяжении аксон (миелинизированного и немиелинизированного волокна) покрыт бислойной фосфолипидной мембраной со встроенными в нее белковыми молекулами, которые выполняют функции транспорта ионов, потенциалзависимых ионных каналов и др. Белки распределены равномерно в мембране немиелинизированного нервного волокна, а в мембране миелинизированного нервного волокна они располагаются преимущественно в области перехватов Ранвье. Поскольку в аксоплазме нет шероховатого ретикулума и рибосом, то очевидно, что эти белки синтезируются в теле нейрона и доставляются в мембрану аксона посредством аксонального транспорта.

Свойства мембраны, покрывающей тело и аксон нейрона , различны. Это различие касается прежде всего проницаемости мембраны для минеральных ионов и обусловлено содержанием различных типов . Если в мембране тела и дендритов нейрона превалирует содержание лигандзависимых ионных каналов (в том числе постсинаптических мембран), то в мембране аксона, особенно в области перехватов Ранвье, имеется высокая плотность потенциалзависимых натриевых и калиевых каналов.

Наименьшей величиной поляризации (около 30 мВ) обладает мембрана начального сегмента аксона. В более удаленных от тела клетки участках аксона величина трансмембранного потенциала составляет около 70 мВ. Низкая величина поляризации мембраны начального сегмента аксона обусловливает то, что в этой области мембрана нейрона обладает наибольшей возбудимостью. Именно сюда и распространяются по мембране тела нейрона с помощью локальных круговых электрических токов постсинаптические потенциалы, возникшие на мембране дендритов и тела клетки в результате преобразования в синапсах информационных сигналов, поступивших к нейрону. Если эти токи вызовут деполяризацию мембраны аксонного холмика до критического уровня (Е к), то нейрон ответит на поступление к нему сигналов от других нервных клеток генерацией своего потенциала действия (нервного импульса). Возникший нервный импульс далее проводится по аксону к другим нервным, мышечным или железистым клеткам.

На мембране начального сегмента аксона имеются шипики, на которых образуются ГАМК-ергические тормозные синапсы. Поступление сигналов по этим от других нейронов может предотвращать генерацию нервного импульса.

Классификация и виды нейронов

Классификация нейронов проводится как по морфологическим, так и по функциональным признакам.

По количеству отростков различают мультиполярные, биполярные и псевдоуниполярные нейроны.

По характеру связей с другими клетками и выполняемой функции различают сенсорные, вставочные и двигательные нейроны. Сенсорные нейроны называют также афферентными нейронами, а их отростки — центростремительными. Нейроны, выполняющие функцию передачи сигналов между нервными клетками, называют вставочными , или ассоциативными. Нейроны, аксоны которых образуют синапсы на эффекторных клетках (мышечных, железистых), относят к двигательным, или эфферентным , их аксоны называют центробежными.

Афферентные (чувствительные) нейроны воспринимают информацию сенсорными рецепторами, преобразуют ее в нервные импульсы и проводят к головного и спинного мозга. Тела чувствительных нейронов находятся в спинальных и черепно-мозговых . Это псевдоуниполярные нейроны, аксон и дендрит которых отходят от тела нейрона вместе и затем разделяются. Дендрит следует на периферию к органам и тканям в составе чувствительных или смешанных нервов, а аксон в составе задних корешков входит в дорсальные рога спинного мозга или в составе черепных нервов — в головной мозг.

Вставочные , или ассоциативные, нейроны выполняют функции переработки поступающей информации и, в частности, обеспечивают замыкание рефлекторных дуг. Тела этих нейронов располагаются в сером веществе головного и спинного мозга.

Эфферентные нейроны также выполняют функцию переработки поступившей информации и передачи эфферентных нервных импульсов от головного и спинного мозга к клеткам исполнительных (эффекторных) органов.

Интегративная деятельность нейрона

Каждый нейрон получает огромное количество сигналов через многочисленные синапсы, расположенные на его дендритах и теле, а также через молекулярные рецепторы плазматических мембран, цитоплазмы и ядра. В передаче сигналов используется множество различных типов нейромедиаторов, нейромодуляторов и других сигнальных молекул. Очевидно, что для формирования ответной реакции на одновременное поступление множества сигналов, нейрон должен обладать способностью их интегрировать.

Совокупность процессов, обеспечивающих обработку поступающих сигналов и формирование на них ответной реакции нейрона, входит в понятие интегративной деятельности нейрона.

Восприятие и обработка сигналов, поступающих к нейрону, осуществляется при участии дендритов, тела клетки и аксонного холмика нейрона (рис. 4).

Рис. 4. Интеграция сигналов нейроном.

Одним из вариантов их обработки и интеграции (суммирования) является преобразование в синапсах и суммирование постсинаптических потенциалов на мембране тела и отростков нейрона. Воспринятые сигналы преобразуются в синапсах в колебание разности потенциалов постсинаптической мембраны (постсинаптические потенциалы). В зависимости от типа синапса полученный сигнал может быть преобразован в небольшое (0,5-1,0 мВ) деполяризующее изменение разности потенциалов (ВПСП — синапсы на схеме изображены в виде светлых кружков) либо гиперполяризующее (ТПСП — синапсы на схеме изображены в виде черных кружков). К разным точкам нейрона могут поступать одновременно множество сигналов, часть из которых трансформируется в ВПСП, а другие — в ТПСП.

Эти колебания разности потенциалов распространяются с помощью локальных круговых токов по мембране нейрона в направлении аксонного холмика в виде волн деполяризации (на схеме белого цвета) и гиперполяризации (на схеме черного цвета), накладывающихся друг на друга (на схеме участки серого цвета). При этом наложении амплитуды волны одного направления суммируются, а противоположных — уменьшаются (сглаживаются). Такое алгебраическое суммирование разности потенциалов на мембране получило название пространственного суммирования (рис. 4 и 5). Результатом этого суммирования может быть либо деполяризация мембраны аксонного холмика и генерация нервного импульса (случаи 1 и 2 на рис. 4), либо ее гиперполяризация и предотвращение возникновения нервного импульса (случаи 3 и 4 на рис. 4).

Для того чтобы сместить разность потенциалов мембраны аксонного холмика (около 30 мВ) до Е к, ее надо деполяризовать на 10-20 мВ. Это приведет к открытию имеющихся в ней потенциалзависимых натриевых каналов и генерации нервного импульса. Поскольку при поступлении одного ПД и его преобразовании в ВПСП деполяризация мембраны может достигать до 1 мВ, а се распространение к аксонному холмику идет с затуханием, то для генерации нервного импульса требуетсяодновременное поступление к нейрону через возбуждающие синапсы 40-80 нервных импульсов от других нейронов и суммирование такого же количества ВПСП.

Рис. 5. Пространственная и временная суммация ВПСП нейроном; а — BПСП на одиночный стимул; и — ВПСП на множественную стимуляцию от разных афферентов; в — ВПСП на частую стимуляцию через одиночное нервное волокно

Если в это время к нейрону поступит некоторое количество нервных импульсов через тормозные синапсы, то его активация и генерация ответного нервного импульса будет возможной при одновременном увеличении поступления сигналов через возбуждающие синапсы. В условиях, когда сигналы, поступающие через тормозные синапсы вызовут гиперполяризацию мембраны нейрона, равную или превышающую по величине деполяризацию, вызванную сигналами, поступающими через возбуждающие синапсы, деполяризация мембраны аксонного холмика будет невозможна, нейрон не будет генерировать нервные импульсы и станет неактивным.

Нейрон осуществляет также временное суммирование сигналов ВПСП и ТПСП, поступающих к нему почти одновременно (см. рис. 5). Вызываемые ими изменения разности потенциалов в околосинаптических областях также могут алгебраически суммироваться, что и получило название временного суммирования.

Таким образом, каждый генерируемый нейроном нервный импульс, равно как и период молчания нейрона, заключает информацию, поступившую от множества других нервных клеток. Обычно чем выше частота поступающих к нейрону сигналов от других клеток, тем с большей частотой он генерирует ответные нервные импульсы, посылаемые им по аксону к другим нервным или эффекторным клеткам.

В силу того что в мембране тела нейрона и даже его дендритов имеются (хотя и в небольшом числе) натриевые каналы, потенциал действия, возникший на мембране аксонного холмика, может распространяться на тело и некоторую часть дендритов нейрона. Значение этого явления недостаточно ясно, но предполагается, что распространяющийся потенциал действия на мгновение сглаживает все имевшиеся на мембране локальные токи, обнуляет потенциалы и способствует более эффективному восприятию нейроном новой информации.

В преобразовании и интеграции сигналов, поступающих к нейрону, принимают участие молекулярные рецепторы. При этом их стимуляция сигнальными молекулами может вести через инициированные (G-белками, вторыми посредниками) изменения состояния ионных каналов, трансформации воспринятых сигналов в колебание разности потенциалов мембраны нейрона, суммированию и формированию ответной реакции нейрона в виде генерации нервного импульса или его торможению.

Преобразование сигналов метаботропными молекулярными рецепторами нейрона сопровождается его ответом в виде запуска каскада внутриклеточных превращений. Ответной реакцией нейрона в этом случае может быть ускорение общего метаболизма, увеличение образования АТФ, без которых невозможно повышение его функциональной активности. С использованием этих механизмов нейрон интегрирует полученные сигналы для улучшения эффективности своей собственной деятельности.

Внутриклеточные превращения в нейроне, инициированные полученными сигналами, часто ведут к усилению синтеза белковых молекул, выполняющих в нейроне функции рецепторов, ионных каналов, переносчиков. Увеличивая их количество, нейрон приспосабливается к характеру поступающих сигналов, усиливая чувствительность к более значимым из них и ослабляя — к менее значимым.

Получение нейроном ряда сигналов может сопровождаться экспрессией или репрессией некоторых генов, например контролирующих синтез нейромодуляторов пептидной природы. Поскольку они доставляются в аксонные терминали нейрона и используются в них для усиления или ослабления действия его нейромедиаторов на другие нейроны, то нейрон в ответ на полученные им сигналы может в зависимости от получаемой информации оказывать более сильное или более слабое влияние на контролируемые им другие нервные клетки. С учетом того что модулирующее действие нейропептидов способно продолжаться в течение длительного времени, влияние нейрона на другие нервные клетки также может продолжаться долго.

Таким образом, благодаря способности интегрировать различные сигналы нейрон может тонко реагировать на них широким спектром ответных реакций, позволяющих эффективно приспосабливаться к характеру поступающих сигналов и использовать их для регуляции функций других клеток.

Нейронные цепи

Нейроны ЦНС взаимодействуют друг с другом, образуя в месте контакта разнообразные синапсы. Возникающие при этом нейронные пени многократно увеличивают функциональные возможности нервной системы. К наиболее распространенным нейронным цепям относят: локальные, иерархические, конвергентные и дивергентные нейронные цепи с одним входом (рис. 6).

Локальные нейронные цепи образуются двумя или большим числом нейронов. При этом один из нейронов (1) отдаст свою аксонную коллатераль нейрону (2), образуя на его теле аксосоматический синапс, а второй — образует аксоном синапс на теле первого нейрона. Локальные нейронные сети могут выполнять функцию ловушек, в которых нервные импульсы способны длительно циркулировать по кругу, образованному несколькими нейронами.

Возможность длительной циркуляции однажды возникшей волны возбуждения (нервного импульса) за счет передачи но кольцевой структуре, экспериментально показал профессор И.А. Ветохин в опытах на нервном кольце медузы.

Круговая циркуляция нервных импульсов по локальным нейронным цепям выполняет функцию трансформации ритма возбуждений, обеспечивает возможность длительного возбуждения после прекращения поступления к ним сигналов, участвует в механизмах запоминания поступающей информации.

Локальные цепи могут выполнять также тормозную функцию. Примером ее является возвратное торможение, которое реализуется в простейшей локальной нейронной цепи спинного мозга, образуемой а-мотонейроном и клеткой Реншоу.

Рис. 6. Простейшие нейронные цепи ЦНС. Описание в тексте

При этом возбуждение, возникшее в мотонейроне, распространяется по ответвлению аксона, активирует клетку Реншоу, которая тормозит а-мотонейрон.

Конвергентные цепи образуются несколькими нейронами, на один из которых (обычно эфферентный) сходятся или конвергируют аксоны ряда других клеток. Такие цепи широко распространены в ЦНС. Например, на пирамидные нейроны первичной моторной коры конвергируют аксоны многих нейронов чувствительных полей коры. На моторные нейроны вентральных рогов спинного мозга конвергируют аксоны тысяч чувствительных и вставочных нейронов различных уровней ЦНС. Конвергентные цепи играют важную роль в интеграции сигналов эфферентными нейронами и осуществлении координации физиологических процессов.

Дивергентные цепи с одним входом образуются нейроном с ветвящимся аксоном, каждая из ветвей которого образует синапс с другой нервной клеткой. Эти цепи выполняют функции одновременной передачи сигналов от одного нейрона на многие другие нейроны. Это достигается за счет сильного ветвления (образования нескольких тысяч веточек) аксона. Такие нейроны часто встречаются в ядрах ретикулярной формации ствола мозга. Они обеспечивают быстрое повышение возбудимости многочисленных отделов мозга и мобилизацию его функциональных резервов.