Генная терапия ex vivo и in vivo. Генная терапия: как лечат генетические заболевания

Генная терапия - это лечение наследственных, ненаследственных, которое осуществляется путем введения в клетки пациента других генов. Целью терапии является устранение генных дефектов либо придание клеткам новых функций. Намного проще ввести в клетку здоровый, полноценно работающий ген, чем исправлять дефекты в имеющемся.

Генная терапия ограничивается исследованиями в соматических тканях. Это связано с тем, что любое вмешательство в половые и зародышевые клетки может дать совершенно непредсказуемый результат.

Применяемая в настоящее время методика эффективна при лечении как моногенных, так и мультифакториальных заболеваний (злокачественные опухоли, некоторые виды тяжелых сердечно-сосудистых, вирусных заболеваний).

Около 80% всех проектов генной терапии касаются ВИЧ-инфекции и В настоящее время ведутся исследования таких как гемофилия В, муковисцидоз, гиперхолестеринемия.

Лечение подразумевает:

· выделение и размножение отдельных типов клеток пациента;

· введение чужеродных генов;

· отбор клеток, в которых «прижился» чужеродный ген;

· вживление их больному (например, посредством переливания крови).

Генная терапия основывается на введении клонированных ДНК в ткани больного. Самыми эффективными методами при этом считаются инъекционные и аэрозольные вакцины.

Генная терапия работает в двух направлениях:

1. Лечение моногенных заболеваний. К ним относятся нарушения в работе головного мозга, которые связаны с какими-либо повреждениями клеток, которые вырабатывают нейромедиаторы.

2. Лечение Основные подходы, использующиеся в данной области:

· генетическое усовершенствование иммунных клеток;

· повышение иммунореактивности опухоли;

· блок экспрессии онкогенов;

· защита здоровых клеток от химиотерапии;

· ввод генов-супрессоров опухоли;

· производство противоопухолевых веществ здоровыми клетками;

· продукция противоопухолевых вакцин;

· локальное воспроизведение нормальных тканей при помощи антиоксидантов.

Использование генной терапии имеет много плюсов и в некоторых случаях является единственным шансом на нормальную жизнь для больных людей. Тем не менее, эта область науки до конца не изучена. Существует международный запрет на испытания на половых и доимплантационных зародышевых клетках. Это сделано с целью предотвращения нежелательных генных конструкций и мутаций.

Разработаны и общепризнанны некоторые условия, при которых допускаются клинические испытания:

    Ген, перенесенный в клетки-мишени, должен быть активен продолжительное время.

    В чужеродной среде ген должен сохранять свою эффективность.

    Перенос гена не должен вызывать негативных реакций в организме.

Существует ряд вопросов, которые и сегодня остаются актуальными для многих ученых по всему миру:

    Смогут ли ученые, работающие в области генной терапии, разработать полную генокоррекцию, которая не будет представлять угрозы потомству?

    Будет ли необходимость и полезность генотерапевтической процедуры для отдельной супружеской пары превосходить риск этого вмешательства для будущего человечества?

    Оправданы ли подобные процедуры, учитывая в будущем?

    Каким образом будут соотноситься подобные процедуры на человеке с вопросами гомеостаза биосферы и общества?

В заключении можно отметить, что генетическая терапия на современном этапе предлагает человечеству пути лечения самых тяжелых заболеваний, которые совсем недавно считались неизлечимыми и смертельными. Однако, в то же время, развитие этой науки ставит перед учеными новые проблемы, которые необходимо решать уже сегодня.

Статья на конкурс «био/мол/текст»: «Миша родился 12 февраля здоровым ребенком. Но в 1,5 месяца я стала замечать, что на всех фотографиях малыш занимает одну и ту же позу, как будто его ножки неподвижны. Уже через несколько недель нам поставили диагноз, посочувствовали и посоветовали начать планировать второго, здорового ребенка ». Из-за роковой комбинации генов Миша, как и остальные дети с этим заболеванием, был вынужден всю свою короткую жизнь бороться за каждое движение. Бороться отчаянно, изо всех сил, но в конце концов проиграть. Спинальная мышечная атрофия (СМА ) относится к числу генетических аномалий, перед которыми человечество пока бессильно. Однако успехи генной терапии, за которыми сегодня наблюдает медицинский мир, могут перевести и СМА, и другие тяжелые наследственные патологии в разряд излечимых. Более того - излечимых еще внутриутробно.

Генеральный спонсор конкурса - компания «Диаэм» : крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.

Спонсором приза зрительских симпатий выступил медико-генетический центр .

«Книжный» спонсор конкурса - «Альпина нон-фикшн »

Природа ошибается, человек исправляет

Концепция генной терапии элегантна и красива, как все гениальное . Она заключается в доставке с помощью векторных систем здорового генетического материала в клетку с целью заменить им «ошибочные» гены, с которыми сопряжены различные заболевания (рис. 1).

«Биомолекула» уже писала подробно о том, какие возможности открывает генная терапия в лечении рака и наследственных аномалий, в частности, пигментного ретинита .

И если в 80-х годах прошлого века, когда о генной терапии заговорили довольно громко, ее теория многим казалась продолжением сценария ленты «Назад в будущее », то сегодня она стала реальностью, открывающей новые, поистине безбрежные перспективы.

Тем не менее очевидно, что генная терапия имеет ряд ограничений, особенно когда речь идет о наследственных заболеваниях. Прежде всего, патологический процесс в таких случаях может начаться еще внутриутробно. К моменту, когда заболевание, наконец, диагностируют, - а это порой происходит спустя годы после рождения ребенка, - могут развиться необратимые повреждения клеток и органов, что значительно сужает терапевтические возможности или вообще сводит их на нет .

Шанс решить эту проблему появился благодаря современной пренатальной диагностике, которая позволяет обнаружить хромосомные дефекты уже на ранних стадиях беременности. Получив любой фетальный материал с помощью инвазивных методик, можно быстро и достоверно диагностировать генетические заболевания. А в случаях с гемоглобинопатиями необходимость в инвазивных манипуляциях и вовсе отпадает: чтобы их выявить, достаточно исследовать фетальные ДНК, полученные из клеток крови матери .

Современные пренатальные диагностические методики в комбинации с достижениями генной терапии предоставляют уникальную возможность исправить «ошибку» природы и вмешаться в патологический процесс еще до необратимого повреждения клеток. Обеспечить лечение различных заболеваний ребенка в утробе матери или, по крайней мере, сдержать прогрессирование болезни, по всей вероятности, может фетальная генная терапия , или генная терапия плода .

Идея фетальной генной терапии далеко не нова: всего через несколько лет после первой попытки проведения генной терапии у взрослых, в 1994 году исследователи начали всерьез обсуждать применение инновационной методики внутриутробно . Сегодня, когда лечение генетических заболеваний в утробе матери уже практически превратилось из фантастической перспективы в реальность, опубликована масса работ, где подробно изучена фетальная генная терапия и ее преимущества по сравнению с генной терапией взрослых.

Пренатально vs постнатально

Предваряя вопросы о целесообразности внутриутробной коррекции генетической аномалии, сразу же остановимся на преимуществах генной терапии плода по сравнению с постнатальной генной терапией.

Широкие возможности воздействия на органы и системы

Известно, что при многих генетических заболеваниях (к примеру, буллезном эпидермолизе или кистозном фиброзе) бывает довольно сложно повлиять на основные звенья патологического процесса практически сразу после рождения. Коррекция же мутантных генов у развивающегося плода позволяет быстро увеличить популяцию стволовых клеток, обеспечив большой пул трансфицированных клеток и, как следствие, выраженный терапевтический эффект.

Упрощенное производство клинического вектора, переносящего генетический материал

Дозировка вирусного вектора, с помощью которого переносят генетический материал, зависит от массы тела. Благодаря малому размеру плода удается достигнуть гораздо более высокого биораспределения вектора при той же его дозировке, что в ходе генной терапии взрослого. Это позволяет сэкономить и время, и средства. Представить, насколько существенна экономия, помогают простые сравнительные данные: так, плод в 14–16 недель беременности (оптимальный срок индуцирования вектора) весит около 100 г, в то время как средняя масса тела взрослого составляет около 60 кг.

Повышение эффективности терапии за счет неполноценного иммунного ответа

Ряд исследований продемонстрировал, что гуморальный иммунитет к аденовирусам и аденоассоциированным вирусам (AAV) (рис. 2) определенных серотипов, которые обычно используются в качестве векторов, может приводить к неудаче при экспрессии трансгена . Это может стать одним из критических барьеров для успешной трансплантации.

В группу риска попадают около 50% взрослых, имеющих приобретенный иммунный ответ к этим вирусным векторам . Но даже при отсутствии чувствительности введение вектора у взрослых нередко приводит к развитию иммунного ответа, снижающего длительность и уровень трансгенной экспрессии. Так, после внутримышечной инъекции аденовирусного вектора с геном белка дистрофина взрослым мышам с миодистрофией Дюшенна образуются антитела к дистрофину , что сопряжено со значительным снижением эффективности экспрессии. В то же время плод в утробе матери иммунологически незрел, что позволяет доставлять вирусный вектор и трансгенный продукт без ограничения, которое накладывает иммунный ответ .

Очевидные преимущества фетальной терапии по сравнению с постнатальной коррекцией обеспечивают ее более высокую эффективность и целесообразность, особенно при тяжелых, опасных для жизни заболеваниях. Даже в случаях, когда полного излечения достигнуть невозможно, фетальная генная терапия может влиять на патологические звенья заболевания, облегчая его течение и улучшая прогноз. А, следовательно, именно она может стать единственной терапевтической альтернативой прекращению беременности для тысяч семей. Тем более что число заболеваний, которые потенциально могут оказаться под контролем при внедрении генной терапии плода в клиническую практику, поистине огромно.

Перспективы и возможности

Генная терапия плода, предположительно, способна взять под контроль множество опасных патологий. Лишь малая их толика представлена в таблице 1.

Таблица 1. Заболевания, которые могут контролироваться с помощью фетальной генной терапии .
Заболевание Геннотерапевтический препарат Целевые клетки и/или орган Возраст манифестации заболевания Распространенность Продолжительность жизни
Кистозный фиброз CFTR (трансмембранный регулятор) Эпителиальные клетки дыхательных путей и кишечника Третий триместр беременности 1:4000 Около 35 лет
Мышечная дистрофия Дюшенна Дистрофин Миоциты 2 года 1:4500 25 лет
Спинальная мышечная атрофия Белок SMN Мотонейроны 6 месяцев (тип I) 1:10 000 2 года
Гемофилия Фактор свертывания крови VIII или IX Гепатоциты 1 год 1:6000
Бета-талассемия Глобин Прекурсоры эритроцитов До года 1:2700 До 20 лет
Болезнь Гоше Глюкоцереброзидаза Гепатоциты 9,5 лет 1:59 000 Менее 2 лет
Дефекты цикла мочевины Орнитина транскарбамилаза Гепатоциты 2 дня 1:30 000 2 дня
Буллезный эпидермолиз Коллаген тип VII Кератиноциты Рождение 1:40 000 При корректной терапии нормальная продолжительность жизни
Гипоксическая ишемическая энцефалопатия Нейротрофические факторы Кортикальные нейроны Рождение 1:1000 При корректной терапии нормальная продолжительность жизни
Тяжелая внутриматочная задержка роста Плацентарные факторы роста Трофобласт Плод 1:500 Несколько дней

Кроме того, к числу патологий, которые, предположительно, могут поддаваться контролю с помощью фетальной терапии, относятся :

  • Иммунодефицитные расстройства - синдром «голых» лимфоцитов , гипоплазия хряща, синдром Чедиака-Хигаши , хроническая гранулематозная болезнь , синдром Костмана , дефицит адгезии лейкоцитов, синдром Оменна , синдром Вискотта-Олдрича .
  • Гемоглобинопатии - резус-болезнь, врожденная эритропоэтическая порфирия.
  • Заболевания, сопряженные с дефицитом активности ферментов , - болезнь Гоше, болезнь Краббе , метахроматическая лейкодистрофия , мукополисахаридозы , болезнь Волмана , болезнь Ниманна-Пика .
  • Другие - конгенитальный дискератоз , семейный гемафагоцитический лимфогистиоцистоз , инфантильный остеопетроз , синдром Швахмана-Даймонда и др.

Список заболеваний, которые могут оказаться «по плечу» фетальной генной терапии, поражает воображение: предположительно, эта методика позволит вмешаться в ранее неподвластные человеку патологические процессы, обусловленные моногенными заболеваниями. Их количество, по данным Всемирной организации здравоохранения, достигает десяти тысяч . Тем не менее важно учитывать существование ряда ограничений, и в первую очередь рисков для матери и плода, сопряженных с проведением внутриутробной генной терапии.

Страхи и риски

Специфические риски пренатального переноса генов кардинально отличаются от рисков постнатальной генной терапии. Они включают краткосрочные неблагоприятные реакции и долгосрочные постнатальные эффекты. Их актуальность обостряется в связи с тем, что гипотетически экспрессия генов плода может оказывать непредсказуемое действие как на пренатальное, так и на постнатальное развитие .

Прежде всего, непосредственно сама процедура переноса связана с увеличением вероятности выкидыша, хориоамнионита и преждевременных родов. В исследованиях зафиксированы воспалительные реакции на вектор, в частности, инфильтрация печени и некроз печени при фетальной генной терапии овец .

Успех фетальной генной терапии может быть нейтрализован иммунным ответом плода, и это несет определенные риски для конечного результата. Гуморальный и клеточный ответы на введение вектора или трансгенного белка при посредстве трансдукторных систем клеток может элиминировать продукты переноса или нивелировать трансгенную экспрессию. При этом в исследованиях продемонстрирована зависимость силы иммунного ответа от срока гестации. Значительные иммунные реакции на введение лентивирусного вектора на ранних и средних сроках беременности зарегистрированы не были, тогда как при введении аденовирусного вектора на поздних сроках наблюдался мощный гуморальный ответ против капсидного антигена .

Одна из чрезвычайно важных проблем фетальной генной терапии заключается в потенциальном риске, который возникает при передаче плоду донорских последовательностей ДНК. Поскольку векторная интеграция в зародышевые клетки, по всей вероятности, будет носить случайный характер, она теоретически может иметь катастрофические последствия для плода. По сути, ребенок, получивший внутриутробно донорский генетический материал, рождается мутантом. Этическая составляющая генной терапии тревожит умы ученых и богословов. Последние еще со времен рождения самой известной в истории науки овечки предупреждают об опасностях, которые несет человечеству вмешательство в замысел божий.

Еще один важный аспект обусловлен вероятностью мутагенеза в клетках плода, приводящего к дефекту какого-либо функционального гена, что в конечном счете может стать причиной теперь уже нового, приобретенного генетического заболевания или злокачественной опухоли. Ее вероятность выглядит еще более реальной с учетом данных исследования на мышах, в ходе которого экспрессия генов у зародышей мышей дала толчок развитию опухоли печени .

В этом контексте могут оказаться далеко не случайными результаты двух исследований, продемонстрировавших развитие серьезных побочных эффектов после успешной генной терапии Х-сцепленного комбинированного иммунодефицита: в первом случае была зафиксирована манифестация моноклонального лимфопролиферативного заболевания, а во втором - альфа/бета Т-клеточной пролиферации. И в первом, и во втором случаях ретровирусный вектор интегрировался в непосредственной близости от гена LMO2 в пролиферирующих Т-клетках .

Теоретически генная терапия ex vivo может быть более безопасной по сравнению с in vivo фетальным введением вектора. Хотя это и не исключает вероятность мутагенеза в клетках, которые ретровирально трансдуцируются in vitro , введение мутагена можно легче определять и контролировать. Тем не менее полностью исключить эти осложнения, увы, нельзя.

И, наконец, фетальная генная терапия повышает восприимчивость клеток зародыша к трансдукции . Низкоуровневая ретровирусная трансдукция в предшественники зародышевых клеток наблюдалась в мужских и женских гонадах после внутрибрюшинного введения вектора эмбрионам овец и обезьян соответственно . Анализ факторов, приводящих к непреднамеренной трансдукции, показал, что восприимчивость зародышевой ткани к ней зависит от гестационного возраста с более высокими показателями трансдукции на ранней стадии беременности .

С точки зрения потенциальных рисков очевидно, что фетальная генная терапия может быть обоснованным методом лечения только тяжелых генетических заболеваний, других вариантов коррекции которых не существует. И среди них, безусловно, болезнь Гоше, возможность внутриутробной генной терапии которой продемонстрировали в исследовании, опубликованном совсем недавно.

Первый пошел: болезнь Гоше

В июле 2018 года журнал Nature Medicine опубликовал результаты исследования на мышах, проведенного под руководством Симона Уоддингтона (Simon Waddington ) из лондонского Института женского здоровья. Результаты работы продемонстрировали эффективность фетальной генной терапии в лечении нейродегенеративных заболеваний и, в частности, болезни Гоше . Это самая частая форма среди редких наследственных ферментопатий, в основе которой лежит дефицит активности лизосомного фермента глюкозоцереброзидазы (рис. 3), обусловленный мутациями в гене глюкозилцерамидазы . В зависимости от характера мутаций, может развиваться тяжелая нейропатическая форма заболевания, манифестирующая с младенчества, или форма с более постепенным началом и менее выраженными симптомами. В то время как более легкие формы болезни Гоше хорошо поддаются заместительной терапии, тяжелая форма пока остается летальной. Признаки неизлечимой формы болезни Гоше появляются в первые месяцы жизни и включают прогрессирующую мышечную гипотонию, задержку и регресс психомоторного развития и другие неврологические признаки.

В ходе исследования Уоддингтон с соавторами продемонстрировал, что интракраниальное введение аденоассоциированного вирусного вектора 9 (AAV9) эмбриону мышей на 16 день гестации приводило к повышению экспрессии глюкозоцереброзидазы, что останавливало нейродегенерацию. При этом активность фермента в головном мозге была сравнима с таковой у здоровых мышей. Несмотря на то, что у больных грызунов все же диагностировался воспалительный процесс в головном мозге, они развивались достоверно лучше, чем мыши из группы контроля, которых пришлось усыпить через две недели после лечения из-за тяжести заболевания.

Мыши, подвергшиеся фетальной генной терапии, жили, по крайней мере, 18 недель, были фертильными и мобильными. Интересно, что введение вектора постнатально также облегчало течение заболевания, однако было менее эффективным, чем пренатальная экспрессия.

Поскольку AAV9 был способен проникать в мозг из кровотока, команда Уоддингтона провела еще один эксперимент, в ходе которого ввели значительно более высокую дозу вектора не в головной мозг, а непосредственно в кровь зародышей мышей. Мыши после экспрессии были в основном неотличимы от здоровых особей, но, поскольку по условиям эксперимента продолжительность их жизни составила только 55 дней, ученые не смогли сделать выводы о долгосрочной эффективности внутривенной генной терапии.

Эксперимент Уоддингтона стал самой сложной на сегодня работой, в ходе которой была проведена фетальная генная терапия у животных. Сегодня команда работает с корпорацией Apollo Therapeutics , объединившей усилия трех британских университетов и трех крупнейших фармацевтических компаний. Уоддингтон с коллегами преследуют новую цель: на сей раз перед ними стоит задача получить доклинические данные и потенциально протестировать лечение людей. И пока скептики размышляют над кругом возможностей применения фетальной генной терапии у человека, который может значительно сужаться из-за того, что болезнь Гоше не входит в пренатальные тесты, команда Уоддингтона уверенной поступью шагает в будущее. Будущее, где смогут выздоравливать дети с болезнью Гоше, миодистрофией Дюшенна, СМА и многими другими редкими, но сегодня, увы, неизлечимыми заболеваниями.

Литература

  1. 12 методов в картинках: генная инженерия. Часть II: инструменты и техники ;
  2. Immune responses to gene therapy vectors: influence on vector function and effector mechanisms . Gene Ther . 11 , S10-S17;
  3. Soyoung C. Gilchrist, Martin P. Ontell, Stefan Kochanek, Paula R. Clemens. (2002). Immune Response to Full-Length Dystrophin Delivered to Dmd Muscle by a High-Capacity Adenoviral Vector . Molecular Therapy . 6 , 359-368;
  4. Heather A. Hartman, Avery C. Rossidis, William H. Peranteau. (2018). In Utero Gene Therapy and Genome Editing . Curr Stem Cell Rep . 4 , 52-60;
  5. Anna L. David, Donald Peebles. (2008). . Best Practice & Research Clinical Obstetrics & Gynaecology . 22 , 203-218;
  6. Сводка с генотерапевтических фронтов. Новая стратегия нейтрализации гемофилии ;
  7. Charles Coutelle. (2008). Why Bother?: Is In Utero Gene Therapy Worth the Effort? . Molecular Therapy . 16 , 219-220;
  8. Mike Themis, Simon N. Waddington, Manfred Schmidt, Christof von Kalle, Yoahe Wang, et. al.. (2005). Oncogenesis Following Delivery of a Nonprimate Lentiviral Gene Therapy Vector to Fetal and Neonatal Mice . Molecular Therapy . 12 , 763-771;
  9. European Society of Gene Therapy (ESGT) Press release, Bernd Gansbacher. (2003). Report of a second serious adverse event in a clinical trial of gene therapy for X-linked severe combined immune deficiency (X-SCID) . J. Gene Med. . 5 , 261-262;
  10. Giulia Massaro, Citra N. Z. Mattar, Andrew M. S. Wong, Ernestas Sirka, Suzanne M. K. Buckley, et. al.. (2018). Fetal gene therapy for neurodegenerative disease of infants . Nat Med . 24 , 1317-1323.

Сегодня наконец-то генная терапия начинает оправдывать надежды, когда-то на нее возлагавшиеся. В последние шесть лет в результате введения специфических функциональных генов в части тела пациента удалось восстановить зрение у 40 больных с наследственной слепотой. Достигнуты блестящие результаты в борьбе с различными формами лейкоза: из 120 испытуемых у нескольких больных достигнута ремиссия, длящаяся уже три года. Генная терапия показала свою результативность и в борьбе с гемофилией - наследственным заболеванием, иногда приводящим к гибели пациента. Теперь больному не нужно принимать в высоких дозах препараты, повышающие свертываемость крови и обладающие опасными побочными эффектами.

Положительные результаты были встречены с большим энтузиазмом еще и потому, что на генной терапии поставили крест 15 лет назад после безвременной кончины Джесси Гелсингера (Jesse Gelsinger), подростка с редким расстройством системы пищеварения. Иммунная система молодого человека отреагировала на введение чужеродного гена так бурно, что организм не выдержал. Успехи генной терапии, достигнутые в 1990-е гг.. оказались далеко не столь впечатляющими, как ожидалось.

Все это заставило пересмотреть некоторые из применявшихся методик и более трезво оценить возможности использования генной терапии для устранения различных патологий. Пришлось расстаться с иллюзиями и вернуться к фундаментальным исследованиям. Прежде всего нужно было установить причину возможных побочных эффектов (наподобие тех, что привели к гибели Гелсингера) и научиться их избегать. Больше внимания следовало уделять общению с больными и их родственниками, чтобы принимаемое ими решение было осознанным.

Перелом в ситуации произошел шесть лет назад, после того как с помощью генной терапии удалось вылечить восьмилетнего мальчика по имени Кори Хаас (Corey Haas), страдавшего дегенеративным заболеванием глаз. Вначале в результате генных манипуляций в пораженной сетчатке левого глаза начал вырабатываться недостающий белок, и уже через четыре дня после операции мальчик побывал в зоопарке и к своему неописуемому восторгу понял, что он видит синее небо и разноцветные воздушные шарики. Через три года аналогичные манипуляции были проделаны с правым глазом. Теперь Кори видит так хорошо, что может ходить на охоту со своим дедушкой.

Пока генная терапия не вошла в арсенал практикующих врачей, но есть надежда, что в ближайшие десять лет это произойдет. В 2012 г. в Европе была предпринята попытка применить ее для устранения редкой, но чрезвычайно мучительной патологии, так называемого семейного дефицита липопротеинлипазы. Ожидается, что в США разрешение на использование генной терапии в медицине будет получено в 2016 г.. и тогда ей предстоит наверстать то, что было упущено за десять лет бездействия.

Жестокое разочарование

Неудачи, постигшие исследователей на ранних этапах применения генной терапии на практике, наглядно показали, как трудно предвидеть все последствия введения в организм чужеродных генов. Слишком часто самые безопасные системы их доставки оказывались недостаточно эффективными, а некоторые наиболее эффективные- небезопасными: возникает слишком бурная иммунная реакция, как это было в случае с Гелсингером или развивается лейкоз.

Для того чтобы понять, что становится спусковым крючком для побочных эффектов, и выяснить, как уменьшить риск их возникновения, генетики сосредоточились на тщательном изучении наиболее распространенной системы доставки генов: конструировании вирусов, действующих как микроскопический шприц для инъекций.

Прежде всего из вирусной ДНК была удалена значительная ее часть, чтобы высвободить место для генов, предназначенных для введения в организм больного. (Такая процедура одновременно лишала вирус способности к размножению.) Трансформированный вирус, несущий целевые гены, инъецировали в нужную часть тела, где он встраивал их в соответствующие области клеточной ДНК в зависимости от типа вируса.

В тот период, когда Гелсингер участвовал в качестве добровольца в клинических испытаниях генной терапии, самой распространенной системой доставки чужеродных генов в организм человека были аденовирусы, которые обычно вызывают нетяжелое инфекционное заболевание верхних дыхательных путей. По данным исследователей из Пенсильванского университета, оптимальный результат дает инъекция вируса в печень; именно здесь находятся клетки, вырабатывающие пищеварительный фермент, который отсутствовал у Гелсингера. Функциональную копию гена этого фермента ввели в инактивированную вирусную частицу и инъецировали триллион таких частиц в печень больного.

К несчастью, некоторые частицы попали не только в клетки печени, как им полагалось, но и в огромное количество макрофагов- крупных клеток, «сторожевых» иммунной системы, а также в дендритные клетки, оповещающие последнюю о вторжении чужеродных агентов. Иммунная система немедленно начала разрушать все инфицированные клетки, и этот бурный процесс в конце концов погубил больного.

Жесткость иммунного ответа поразила исследователей. Ни у одного из 17 других добровольцев ничего подобного не наблюдалось. Было известно, что аденовирус может вызывать иммунную реакцию, но если не считать инцидента с одной обезьяной, которой инъецировали аденовирус, немного отличающийся от описанного выше, то случай с Гелсингером был уникальным. «Человеческая популяция намного более гетерогенна, чем популяция животных, - говорит Джеймс Уилсон (James Wilson) из Пенсильванского университета, разработавший систему доставки целевых генов, которую и использовали в клинических испытаниях с участием Гелсингера.- И в нашем случае один больной в чем-то существенно отличался от остальных». Возможно, трагедии не произошло бы, если бы доза вируса была меньше - не триллион частиц, а несколько миллиардов. Еще один недочет заключался в том, что ни сам больной, ни его родственники не были проинформированы о гибели обезьяны в аналогичных испытаниях, и никто не знал, какое решение они бы приняли, если бы знали об инциденте.

Трагедия, произошедшая с Гелсингером не была последней. Вскоре была предпринята попытка устранить с помощью генной терапии другую патологию - тяжелый комбинированный иммунодефицит XI (SCID-X1). В испытаниях участвовали 20 детей; у пяти из них развился лейкоз, один ребенок умер. И опять виновата была система доставки, хотя в данном случае использовался другой вектор - ретровирус, встраивающий целевые гены непосредственно в клеточную ДНК. Точное их положение в геноме немного варьирует, и иногда они включаются вблизи онкогена, что при определенных условиях приводит к возникновению рака.

Пересмотр технологии

Трагические последствия применения ретро- и аденовирусов в качестве векторов заставили обратиться к другим переносчикам. В результате были выбраны два вируса.

Первый из них, аденоассоциированный вирус (AAV), не вызывает у человека никаких инфекций. Большинство из нас в тот или иной период своей жизни становятся его носителями, и именно благодаря этому на него вряд ли отреагирует иммунная система, когда он будет выполнять функцию вектора. У AAVесть еще одна особенность, помогающая минимизировать риск побочных эффектов: он представлен множеством разновидностей (серотипов), каждый из которых предпочитает инфицировать клетки «своего» органа или ткани. Так, для AAV2 это глаза, для AAV8- печень, для AAV9- сердечная мышца и мозг. Можно выбрать разновидность вируса, оптимальную для целевой части тела, и минимизировать иммунный ответ и другие нежелательные эффекты. Кроме того, AAVue включает свой генетический материал в геном клетки-хозяина, а потому не может вызвать рак, случайным образом активировав онкогены.

Аденоассоциированный вирус впервые проходил тестирование на способность доставлять генетический материал в нужные ткани в 1996 г. Испытания проводились на добровольцах, страдающих муковисцидозом. С тех пор было идентифицировано 11 серотипов данного вируса, а из их компонентов сконструированы сотни безопасных, селективно действующих векторов. Сейчас проходят испытания переносчики на основе AAV-вирусов для применения генной терапии при таких патологиях, как болезни Паркинсона и Альцгеймера, а также при гемофилии, мышечной дистрофии, сердечной недостаточности и слепоте.

Второй вирус, как ни удивительно, - ослабленный вариант вируса иммунодефицита человека, возбудителя СПИДа. Забудем на время о его плохой репутации и остановимся на его преимуществах как вектора. ВИЧ - член рода Lentivirus семейства рстровирусов. Он поражает клетки иммунной системы и - что очень важно - не активирует онкогены.

Если удалить гены, отвечающие за летальное действие ВИЧ, то мы получим превосходный вектор с широкими возможностями. Так считает Стюарт Нейлор (Stuart Naylor), бывший научный руководитель английской компании Oxford Biomedica. В отличие от более мелкого AAV, «обезвреженный» ВИЧ пригоден для переноса сразу нескольких генов. Он нетоксичен и не вызывает иммунной реакции. Лишенные способности вызывать инфекцию лентивирусы проходят тестирование на возможность применения для устранения различных патологий, в частности аденолейкодистрофии. На сегодня уже несколько мальчиков с таким диагнозом благодаря генной терапии смогли вернуться в школу.

Параллельно с клиническими испытаниями с применением AAVn ВИЧ ведется работа по модификации старых вирусных векторов с тем, чтобы их можно было использовать при определенных обстоятельствах. Так, ретровирусы (за исключением ВИЧ) генетически модифицируют, чтобы они не вызывали лейкоза.

Не отвергнут окончательно даже аденовирус, применение которого привело к гибели Гелсингера. Его вводят теперь только в те части тела, где он вряд ли вызовет иммунную реакцию. Одно из возможных его применений - генная терапия ксеротомии (сухости во рту) у пациентов, подвергавшихся облучению в связи с раком областей головы и шеи. при котором повреждаются слюнные железы.

Национальные институты здравоохранения проводят клиническое испытание (с привлечением небольшого числа добровольцев) подхода, основанного на введении в соответствующие клетки генов, опосредующих образование каналов для прохождения воды в слюнные железы. Поскольку последние невелики по размерам и более или менее изолированы, а доза вируса в 1 тыс. раз меньше той, что когда-то получил Гелсингер, вероятность излишне сильной иммунной реакции сведена к минимуму. Вирусные частицы, не достигшие клеток-мишеней, по мнению разработчиков, должны разрушаться в слюне, выплевываться вместе с ней либо проглатываться, что опять-таки уменьшает риск развития иммунной реакции. За период с 2006 г. таким способом удалось существенно улучшить состояние 11 пациентов.

Новые мишени

Воодушевленные успехом, медицинские генетики расширили область применения генной терапии и попытались с ее помощью устранять генетические дефекты ненаследственного характера.

Так, в Пенсильванском университете уже используют этот подход в борьбе с одним из наиболее часто встречающихся у детей онкологических заболеваний - острым лимфобластным лейкозом (ALL). Примерно 20% детей с таким диагнозом традиционная химиотерапия не помогает.

Генная терапия в таких случаях особенно сложна и основывается на применении химерных рецепторов антигенов (CAR). Подобно химерам из древнегреческой мифологии, состоящим из частей тела разных животных, эти рецепторы представляют собой комплекс из двух компонентов иммунной системы, в норме в организме не встречающийся. Т-клетки, к которым его присоединяют, приобретают способность отыскивать специфические белки, содержащиеся в лейкозных клетках в большем количестве, чем в нормальных, и разрушать аномальные клетки. Первыми испытуемыми были взрослые пациенты с хроническим лейкозом: полученные результаты внушали оптимизм. Исход испытаний на больных детях превзошел все ожидания.

Когда в мае 2010 г. у Эмили Уайтхед (Emily Whitehead) обнаружили лейкоз, ей было девять лет. Два курса химиотерапии результата не дали. Весной 2012 г. провели третий курс, который мог бы убить взрослого, но девочка выжила, хотя у нее возникли нарушения в почках, печени и селезенке. По словам лечащего врача Брюса Левина (Bruce Levine). «Эмили была на волосок от смерти».

Тогда у нее взяли кровь, выделили Т-клетки и ввели в них лентивирус. в геном которого предварительно включили целевые гены. После инъекции химерных Т-клеток обратно в организм пациентки ее состояние стало быстро улучшаться. Через три недели 25% Т-клеток ее костного мозга были генетически модифицированы и начали «охоту» на раковые клетки. «В апреле девочка полностью облысела. - вспоминает Левин, - а к августу приобрела прежний облик и была готова к школе».

Модифицированные Т-клетки вряд ли будут работать до конца ее жизни, но процедуру всегда можно повторить. А пока эта симпатичная девочка с густыми каштановыми волосами избавлена от раковых клеток. Осенью 2013 г. сразу несколько групп медицинских генетиков сообщили об использовании CAR-методики для лечения 120 больных с той же формой лейкоза, что у Эмили Уайтхед, а также с другими формами. У пятерых взрослых и 19 из 22 детей наступила ремиссия.

Перспективы

Теперь перед специалистами по генной терапии стоит очередная задача: им нужно получить разрешение Управления по контролю качества пищевых продуктов и лекарственных препаратов (FDA) на применение своей более безопасной, чем все прежние, векторной системы в клинике. Необходимо организовать III фазу клинических испытаний с участием большой группы добровольцев. Обычно на это уходит от одного года до пяти лет. По состоянию на конец 2013 г. примерно 5% из 2 тыс. испытаний дошли до этой фазы. Дальше других продвинулись создатели методики лечения с помощью генной терапии пациентов, страдающих болезнью Лебера (двусторонней потерей зрения, обусловленной мутацией в митохондриальной ДНК: данная патология была у восьмилетнего Хааса). Уже нескольким десяткам больных удалось вернуть зрение с помощью генной терапии.

Введение

С каждым годом в научных журналах появляется всё больше статей о медицинских клинических исследованиях, в которых, так или иначе, применялось лечение, основанное на введении различных генов - генная терапия. Это направление выросло из таких хорошо развивающихся разделов биологии, как молекулярная генетика и биотехнология.

Зачастую, когда обычные (консервативные) методы уже перепробованы, именно генная терапия может помочь пациентам выжить и даже полностью выздороветь. Например, это касается наследственных моногенных заболеваний, то есть таких, которые вызваны дефектом в одном-единственном гене, а также и многих других . Или, к примеру, генная терапия может выручить и спасти конечность тем больным, у которых сужен просвет сосудов в нижних конечностях и вследствие этого развилась стойкая ишемия окружающих тканей, то есть эти ткани испытывают сильный недостаток питательных веществ и кислорода, которые в норме разносятся кровью по организму . Хирургическими манипуляциями и лекарствами таких пациентов лечить зачастую не получается, зато если локально заставить клетки выбрасывать наружу больше белковых факторов, которые повлияли бы на процесс образования и прорастания новых сосудов, то ишемия стала бы гораздо менее выраженной и жить больным станет гораздо легче.

Генную терапию сегодня можно определить как лечение заболеваний путем введения генов в клетки пациентов с целью направленного изменения генных дефектов или придания клеткам новых функций. Первые клинические испытания методов генной терапии были предприняты совсем недавно - 22 мая 1989 года в целях диагностики рака. Первым наследственным заболеванием, в отношении которого были применены методы генной терапии, оказался наследственный иммуннодефицит .

С каждым годом число успешно проведенных клинических испытаний лечения различных заболеваний с использованием генной терапии растёт, и к январю 2014 г. достигло 2 тысяч .

Вместе с тем и в современных исследованиях по генной терапии необходимо учитывать, что последствия манипулирования генами или «перетасованными» (рекомбинантными) ДНК in vivo (лат. буквально "в живом") изучены недостаточно. В странах с наиболее продвинутым уровнем исследований в этой области, особенно в США, медицинские протоколы с использованием смысловых последовательностей ДНК подвергаются обязательной экспертизе в соответствующих комитетах и комиссиях. В США таковыми являются Консультативный комитет по рекомбинантным ДНК (Recombinant DNA Advisory Committee, RAC) и Управление по лекарствам и пищевым продуктам (Food and Drug Administration, FDA) с последующим обязательным утверждением проекта директором Национальных институтов здоровья (National Institutes of Health) .

Итак, мы определились, что данное лечение основано на том, что если какие-то ткани организма испытывают недостаток некоторых отдельных белковых факторов, то это можно исправить введением в эти ткани соответствующих генов, кодирующих белки, и всё станет более или менее замечательно. Сами белки вводить не получится, потому что наш организм тут же среагирует неслабой иммунной реакцией, да и длительность действия была бы недостаточной. Теперь следует определиться с методом доставки гена в клетки.

Трансфекция клеток

Для начала стоит ввести определения некоторых терминов.

Транспорт генов осуществляется благодаря вектору - это молекула ДНК, используемая как «транспортное средство» для искусственного переноса генетической информации в клетку. Выделяют множество разновидностей векторов: плазмидные, вирусные, а также космиды, фазмиды, искусственные хромосомы и т.д. Принципиально важно, что векторы (в частности, плазмидные) обладают характерными для них свойствами:

1. Точка начала репликации (ori) - последовательность нуклеотидов, с которой начинается удвоение ДНК. Если векторная ДНК не сможет удваиваться (реплицироваться), то необходимый лечебный эффект не будет достигнут, потому что она просто быстро расщепится внутриклеточными ферментами-нуклеазами, а из-за недостатка матриц будет в итоге образовано гораздо меньше молекул белка. Следует отметить, что эти точки специфичны для каждого биологического вида, то есть если векторную ДНК предполагается получать путём её размножения в культуре бактерий (а не просто химическим синтезом, что обычно гораздо дороже), то потребуются отдельно две точки начала репликации - для человека и для бактерий;

2. Сайты рестрикции - специфические короткие последовательности (чаще палиндромные), которые узнаются специальными ферментами (эндонуклеазы рестрикции) и разрезаются ими определённым образом - с образованием «липких концов» (рис.1).

Рис.1 Образование "липких концов" с участием рестриктаз

Эти сайты необходимы для того, чтобы сшить векторную ДНК (которая, по сути, является «болванкой») с нужными терапевтическими генами в единую молекулу. Такая сшитая из двух или нескольких частей молекула зовётся «рекомбинантной»;

3. Понятно, что нам желательно бы получить миллионы копий рекомбинантной молекулы ДНК. Опять-таки, если мы имеем дело с культурой клеток бактерий, то далее эту ДНК нужно выделить. Проблема заключается в том, что далеко не все бактерии проглотят нужную нам молекулу, некоторые не станут этого делать. Чтобы эти две группы всё-таки различить, в векторную ДНК вставляют селективные маркёры - участки устойчивости к определённым химическим веществам; теперь если в среду добавить эти самые вещества, то выживут только те, которые обладают устойчивостью к ним, а остальные погибнут.

Все эти три составляющие можно наблюдать и в самой первой искусственно синтезированной плазмиде (рис.2).

Рис.2

Сам процесс внедрения плазмидного вектора в определённые клетки называется трансфекцией . Плазмида - это довольно короткая и обычно кольцевая молекула ДНК, которая находится в цитоплазме бактериальной клетки. Плазмиды не связаны с бактериальной хромосомой, они могут реплицироваться независимо от нее, могут выбрасываться бактерией в окружающую среду или, наоборот, поглощаться (процесс поглощения - трансформация ). С помощью плазмид бактерии могут обмениваться генетической информацией, например, передавать устойчивость к определённым антибиотикам.

Плазмиды существуют в бактериях в естественных условиях. Но никто не может помешать исследователю искусственно синтезировать плазмиду, которая будет обладать нужными для него свойствами, вшить в нее ген-вставку и внедрить в клетку. В одну и ту же плазмиду можно вшивать разные вставки .

Методы генной терапии

Существует два основных подхода, различающиеся природой клеток-мишеней:

1. Фетальная, при которой чужеродную ДНК вводят в зиготу (оплодотворённую яйцеклетку) или эмбрион на ранней стадии развития; при этом ожидается, что введённый материал попадёт во все клетки реципиента (и даже в половые клетки, обеспечив тем самым передачу следующему поколению). В нашей стране она фактически запрещена ;

2. Соматическая, при которой генетический материал вводят уже родившемуся в неполовые клетки и он не передаётся половым клеткам.

Генная терапия in vivo основана на прямом введении клонированных (размноженных) и определенным образом упакованных последовательностей ДНК в определённые ткани больного. Особенно перспективным для лечения генных болезней in vivo представляется введение генов с помощью аэрозольных или инъецируемых вакцин. Аэрозольная генотерапия разрабатывается, как правило, для лечения лёгочных заболеваний (муковисцидоз, рак легких).

Разработке программы генной терапии предшествует много этапов. Это и тщательный анализ тканеспецифической экспрессии соответствующего гена (т. е., синтеза на матрице гена какого-то белка в определённой ткани), и идентификация первичного биохимического дефекта, и исследование структуры, функции и внутриклеточного распределения его белкового продукта, а также биохимический анализ патологического процесса. Все эти данные учитываются при составлении соответствующего медицинского протокола.

Важно, что при составлении схем коррекции генов оценивается эффективность трансфекции, степень исправления первичного биохимического дефекта в условиях клеточных культур (in vitro, "в пробирке") и, что особенно важно, in vivo на животных - биологических моделях. Только после этого можно приступать к программе клинических испытаний .

Прямая доставка и клеточные носители терапевтических генов

Существует множество методов внедрения чужеродной ДНК в эукариотическую клетку: некоторые зависят от физической обработки (электропорация, магнетофекция и т.д.), другие - от применения химических материалов или биологических частиц (например, вирусов), которые используются как переносчики. Сразу стоит оговориться, что обычно комбинируются химические и физические методы (например, электропорация + окутывание ДНК липосомами)

Прямые методы

1. Трансфекция на химической основе может быть классифицирована на несколько видов: с использованием вещества циклодекстрина, полимеров, липосом или наночастиц (с или без химической или вирусной функционализации, т.е. модификации поверхности).
а) Один из самых дешевых методов - использование фосфата кальция. Он повышает эффективность включения ДНК в клетки в 10-100 раз. ДНК образует с кальцием прочный комплекс, что обеспечивает его эффективное поглощение. Недостаток - ядра достигает всего около 1 - 10% ДНК. Метод используется in vitro для переноса ДНК в клетки человека (рис.3);

Рис.3

б) Применение сильноразветвленных органических молекул - дендример, для связывания ДНК и переноса её в клетку (рис.4);

Рис.4

в) Очень эффективным методом для трансфекции ДНК является внедрение её через липосомы - малые, окруженные мембраной тельца, которые могут сливаться с клеточной цитоплазматической мембраной (ЦПМ), представляющая собой двойной слой из липидов. Для эукариотических клеток трансфекция производится эффективнее с применением катионных липосом, потому что клетки к ним более чувствительны. Процесс имеет своё название - липофекция. Этот метод сегодня считается одним из самых безопасных. Липосомы нетоксичны и неиммуногенны. Однако, эффективность переноса генов с помощью липосом ограничена, поскольку внесенная ими ДНК в клетках обычно сразу же захватывается лизосомами и разрушается. Введение ДНК в клетки человека с помощью липосом сегодня является главным при терапии in vivo (рис.5);

Рис.5

г) Еще один метод - использование катионных полимеров, таких как диэтиламиноэтил-декстран или полиэтиленимин. Отрицательно заряженные молекулы ДНК связываются с положительно заряженными поликатионами, и этот комплекс далее проникает в клетку путём эндоцитоза. ДЭАЭ-декстран изменяет физические свойства плазматической мембраны и стимулирует поглощение этого комплекса клеткой. Главный недостаток метода заключается в том, что ДЭАЭ-декстран в высоких концентрациях токсичен. Метод не получил распространения в генотерапии;

д) С помощью гистонов и других ядерных белков. Эти белки, содержащие много положительно заряженных аминокислот (Lys, Arg), в естественных условиях помогают компактно уложить длинную цепь ДНК в сравнительно небольшое ядро клетки.

2. Физические методы:

а) Электропорация - очень популярный метод; мгновенное повышение проницаемости мембраны достигается за счет того, что клетки подвергаются коротким воздействиям интенсивного электрического поля. Показано, что в оптимальных условиях количество трансформантов может достигать 80% выживших клеток. На человеке на сегодняшний день не используется (рис.6).

Рис.6

б) «Cell squeezing» - метод, изобретенный в 2013 г. Он позволяет доставить молекулы в клетки путём "мягкого сдавливания" клеточной мембраны. Метод исключает возможность токсичности или неправильного попадания по мишени, так как он не зависит от внешних материалов или электрических полей;

в) Сонопорация - метод искусственного переноса чужеродных ДНК в клетки с помощью воздействия на них ультразвуком, вызывающим открывание пор в клеточной мембране;
г) Оптическая трансфекция - метод, при котором производится крошечное отверстие в мембране (около 1 мкм в диаметре) при использовании сильносфокусированного лазера;
д) Гидродинамическая трансфекция - метод доставки генетических конструкций, белков и т.д. путем контролируемого повышения давления в капиллярах и межклеточной жидкости, что вызывает кратковременное повышение проницаемости клеточных мембран и образование в них временных пор. Осуществляется быстрой инъекцией в ткань, доставка при этом является неспецифичной. Эффективность доставки для скелетной мышцы - от 22 до 60% ;

е) Микроинъекция ДНК - введение в ядро клетки животных с помощью тонких стеклянных микротрубочек (d=0,1-0,5 мкм). Недостаток - сложность метода, высока вероятность разрушения ядра либо ДНК; можно трансформировать ограниченное число клеток. Не используется для человека.

3. Методы на основе частиц.

а) Прямой подход к трансфекции - генная пушка, при этом ДНК сцепляют в наночастицу с инертными твердыми веществами (чаще золото, вольфрам), которая затем «выстреливает» направленно в ядра клеток-мишеней. Этот метод применяется in vitro и in vivo для введения генов, в частности, в клетки мышечных тканей, например при таком заболевании, как миодистрофия Дюшена. Размеры частиц золота - 1-3 мкм (рис.7).

Рис.7

б) Магнитофекция - метод, использующий силы магнетизма для доставки ДНК в клетки-мишени. Сначала нуклеиновые кислоты (НК) ассоциируются с магнитными наночастицами, а далее, под действием магнитного поля, частицы загоняются в клетку. Эффективность почти 100%-ная, отмечена явная нетоксичность. Уже через 10-15 мин частицы регистрируются в клетке - это гораздо быстрее других методик.
в) Импалефекция (impalefection; "impalement", букв. "сажание на кол" + "infection") - метод доставки с применением наноматериалов, таких как углеродные нанотрубки и нановолокна. При этом клетки буквально протыкаются подстилкой из нанофибрилл . Приставка «нано» применяется для обозначения их очень маленьких размеров (в пределах миллиардных долей метра) (рис.8).

Рис.8

Отдельно стоит выделить такой метод, как РНК-трансфекция: в клетку доставляется не ДНК, а молекулы РНК - их «преёмники» в цепи биосинтеза белка; при этом активизируются специальные белки, разрезающие РНК на короткие фрагменты -- т.н. малые интерферирующих РНК (миРНК). Эти фрагменты связываются с другими белками и, в конце концов, это приводит к угнетению экспрессии клеткой соответствующих генов. Таким образом можно заблокировать в клетке действие тех генов, которые потенциально на данный момент приносят больше вреда, чем пользы. Широкое применение РНК-трансфекция нашла, в частности, в онкологии.

Основные принципы доставки генов с использованием плазмидных векторов рассмотрены. Теперь можно перейти к рассмотрению вирусных методов. Вирусы - это неклеточные формы жизни, чаще всего представляющие собой молекулу нуклеиновой кислоты (ДНК или РНК), обёрнутой в белковую оболочку. Если вырезать из генетического материала вируса все те последовательности, которые вызывают возникновение заболеваний, то весь вирус также можно успешно превратить в «транспортное средство» для нашего гена.

Процесс внедрения ДНК в клетку, опосредованное вирусом, называется трансдукцией .
На практике чаще всего используют ретровирусы, аденовирусы и аденоассоциированные вирусы (AAV). Для начала стоит разобраться, каким должен быть идеальный кандидат для трансдукции среди вирусов. Критерии таковы, что он должен быть:

Стабилен;
. ёмок, то есть вмещать достаточное количество ДНК;
. инертным в отношении метаболических путей клетки;
. точным - в идеале, должен встраивать свой геном в конкретный локус генома ядра хозяина и др.

В реальной жизни очень сложно скомбинировать хотя бы несколько пунктов, так что обычно выбор происходит при рассмотрении каждого индивидуального случая в отдельности (рис.9).

Рис.9

Из всех трёх перечисленных наиболее используемых вирусов самыми безопасными и одновременно самыми точными являются AAV. Их почти что единственный недостаток - сравнительно малая ёмкость (ок. 4800 п.н.), которая, однако, оказывается достаточной для многих генов .

Помимо перечисленных методов достаточно часто генная терапия применяется в комбинации с клеточной: при этом сначала в питательную среду высаживают культуру определённых клеток человека, после этого тем или иным способом внедряют в клетки нужные гены, некоторое время культивируют и снова пересаживают в организм хозяина. В результате клеткам можно вернуть их нормальные свойства. Так, к примеру, модифицировали белые клетки крови человека (лейкоциты) при лейкемии (рис.10).

Рис.10

Судьба гена после его попадания в клетку

Так как с вирусными векторами всё более-менее ясно в силу их свойства более эффективно доставлять гены до конечной цели - ядра, то остановимся на судьбе плазмидного вектора.

На данном этапе мы добились того, что ДНК прошла первый большой барьер - цитоплазматическую мембрану клетки.

Далее, в комплексе с другими веществами, оболочкой или без, ей необходимо достигнуть клеточного ядра, чтобы специальный фермент - РНК-полимераза - синтезировала молекулу информационной РНК (иРНК) на матрице ДНК (этот процесс называется транскрипция ). Только после этого иРНК выйдет в цитоплазму, образует комплекс с рибосомами и согласно генетическому коду синтезируется полипептид - например, фактор роста сосудов (VEGF), который начнёт выполнять определённую терапевтическую функцию (в данном случае - запустит процесс образования ветвлений сосудов в ткани, подверженной ишемии).

Что касается экспрессии введенных генов в требуемом типе клеток, то эта задача решается с помощью регуляторных элементов транскрипции. Ткань, в которой происходит экспрессия, часто определяется комбинацией специфичного для этой ткани энхансера («усиливающей» последовательности) с определенным промотором (последовательность нуклеотидов, с которой РНК-полимераза начинает синтез), который может быть индуцируемым . Известно, что активность генов можно модулировать in vivo внешними сигналами, а так как энхансеры могут работать с любым геном, то в вектора можно вводить еще инсуляторы, которые помогают энхансеру работать независимо от его положения и могут вести себя как функциональные барьеры между генами. Каждый энхансер содержит набор участков связывания активирующих или супрессирующих белковых факторов . С помощью промоторов можно также регулировать уровень экспрессии генов. Например, есть металлотионеиновые или температурочувствительные промоторы; промоторы, управляемые гормонами.

Экспрессия гена зависит от его положения в геноме. В большинстве случаев существующие вирусные методы приводят лишь к случайному встраиванию гена в геном. Чтобы исключить такую зависимость, при конструировании векторов снабжают ген известными нуклеотидными последовательностями, которые позволяют гену экспрессироваться независимо от места его встраивания в геном.

Наиболее простой путь регуляции экспрессии трансгена - это обеспечение его индикаторным промотором, который чувствителен к физиологическому сигналу, такому, как выделение глюкозы или гипоксия. Такие «эндогенные» контролирующие системы могут быть полезны в некоторых ситуациях, таких, как осуществление глюкозозависимого контроля продукции инсулина. Более надежны и универсальны «экзогенные» системы контроля, когда экспрессия гена контролируется фармакологически введением маленькой лекарственной молекулы. В настоящее время известны 4 основные системы контроля - регулируемые тетрациклином (Tet), стероидом насекомых, экдизоном или его аналогами, антипрогестиновым препаратом майфпристоном (RU486) и химическими димеризаторами, такими, как рапамицин и его аналоги. Все они включают лекарственно зависимое привлечение домена активации транскрипции к основному промотору, ведущему нужный ген, но отличаются по механизмам этого привлечения .

Заключение

Обзор данных позволяет прийти к заключению, что, несмотря на усилия многих лабораторий мира, все уже известные и испытанные in vivo и in vitro векторные системы далеки от совершенства . Если проблема доставки чужеродной ДНК in vitro практически решена, а ее доставка в клетки-мишени разных тканей in vivo успешно решается (главным образом путем создания конструкций, несущих рецепторные белки, в том числе и антигены, специфичные для тех или иных тканей), то другие характеристики существующих векторных систем - стабильность интеграции, регулируемая экспрессия, безопасность - все еще нуждаются в серьезных доработках.

Прежде всего, это касается стабильности интеграции. До настоящего времени интеграция в геном достигалась только при использовании ретровирусных либо аденоассоциированных векторов. Повысить эффективность стабильной интеграции можно путем совершенствования генных конструкций типа рецептор-опосредованных систем либо путем создания достаточно стабильных эписомных векторов (то есть ДНК-структур, способных к длительному пребыванию внутри ядер). В последнее время особое внимание уделяется созданию векторов на базе искусственных хромосом млекопитающих. Благодаря наличию основных структурных элементов обычных хромосом такие мини-хромосомы длительно удерживаются в клетках и способны нести полноразмерные (геномные) гены и их естественные регуляторные элементы, которые необходимы для правильной работы гена, в нужной ткани и в должное время.

Генная и клеточная терапия открывает блестящие перспективы для восстановления утраченных клеток и тканей и генно-инженерного конструирования органов, что, несомненно, существенно расширит арсенал методов для медико-биологических исследований и создаст новые возможности для сохранения и продления жизни человека .

Генная терапия

Баранов В.С. Генная терапия – медицина XXI века // Соросовский образовательный журнал. – 1999. – № 3. – С. 63–68. (Санкт-Петербургский государственный университет)

© Баранов В.С., текст

© Соросовский образовательный журнал, 1999

© А. Афонин, обработка и публикация html-версии, 2006

<http :// afonin -59- bio . narod . ru >

<http :// afonin -59- salix . narod . ru >

ВВЕДЕНИЕ

Решающие достижения молекулярной биологии и генетики в изучении тонкой структуры генов эукариот, их картировании на хромосомах млекопитаю­щих, и прежде всего человека, впечатляющие успехи проекта "Геном человека" в идентификации и клонировании генов, мутации которых приводят к мно­гочисленным наследственным болезням, и, нако­нец, бурный рост в области биотехнологии и генной инженерии явились необходимыми предпосылками для того, чтобы от опытов на животных и теоретиче­ских построений уже в 1989 году предпринять пер­вые попытки лечения моногенных болезней.

Что же такое генная терапия? Подразумевает ли она лечение с помощью гена как лекарственного препарата или только лечение путем коррекции мутантного гена? Эти и многие другие вопросы неми­нуемо возникают при рассмотрении такого много­обещающего, а возможно, и потенциально опасного для человечества направления медицины грядуще­го XXI века, как генная терапия.

КРАТКАЯ ИСТОРИЧЕСКАЯ СПРАВКА

Генную терапию на современном этапе можно определить как лечение наследственных, мультифакториальных и ненаследственных (инфекцион­ных) заболеваний путем введения генов в клетки пациентов с целью направленного изменения ген­ных дефектов или придания клеткам новых функ­ций. Первые клинические испытания методов ген­ной терапии были предприняты 22 мая 1989 года с целью генетического маркирования опухоль-инфильтрующих лимфоцитов в случае прогрессирую­щей меланомы. Первым моногенным наследствен­ным заболеванием, в отношении которого были применены методы генной терапии, оказался на­следственный иммунодефицит, обусловленный мутацией в гене аденозиндезаминазы (ADA ). 14 сентя­бря 1990 года в Бетесде (США) четырехлетней девочке, страдающей этим достаточно редким заболеванием (1:100000), были пересажены ее собст­венные лимфоциты, предварительно трансформи­рованные вне организма (ex vivo ) геном ADA (ген ADA + ген пео + ретровирусный вектор). Лечебный эффект наблюдался в течение нескольких месяцев, после чего процедура была повторена с интервалом 3…5 месяцев. За три года терапии в общей слож­ности проведены 23 внутривенные трансфузии ADA - трансформированных Т-лимфоцитов без видимых неблагоприятных эффектов. В результате лечения состояние пациентки настолько улучшилось, что она смогла вести нормальный образ жизни и не бо­яться случайных инфекций. Столь же успешным оказалось и лечение второй пациентки с этим забо­леванием. В настоящее время клинические испыта­ния генной терапии этого заболевания проводятся в Италии, Франции, Великобритании и Японии.

В 1997 году число допущенных к клиническим испытаниям протоколов уже составляло 175, более 2000 пациентов приняли участие в их реализации . Большинство таких проектов (около 80%) каса­ются лечения онкологических заболеваний, а также ВИЧ-инфекции (СПИДа). Вместе с тем и в совре­менных исследованиях по генной терапии необхо­димо учитывать, что последствия манипулирования генами или рекомбинантными ДНК in vivo изучены недостаточно.

В странах с наиболее продвинутым уровнем ис­следований в этой области, особенно в США, меди­цинские протоколы с использованием смысловых последовательностей ДНК подвергаются обяза­тельной экспертизе в соответствующих комитетах и комиссиях. В США таковыми являются Консульта­тивный комитет по рекомбинантным ДНК (Recombinant DNA Advisory Committee, RAC) и Управление по лекарствам и пищевым продуктам (Food and DrugAdministration, FDA) с последующим обяза­тельным утверждением проекта директором Наци­ональных институтов здоровья (National Institutes of Health). В Европе такие протоколы составляют и утверждают в соответствии с рекомендациями Ев­ропейской рабочей группы по переносу генов и ген­ной терапии (European Working Group on HumanGene Transfer and Therapy).

МЕТОДЫ ГЕНЕТИЧЕСКОЙ ТРАНСФЕКЦИИ В ГЕННОЙ ТЕРАПИИ

Решающим условием успешной генотерапии яв­ляется обеспечение эффективной доставки, то есть трансфекции (в широком смысле) или трансдукции (при использовании вирусных векторов) чужерод­ного гена в клетки-мишени, обеспечение длитель­ного функционирования его в этих клетках и созда­ние условий для полноценной работы гена (его экспрессии). Трансфекция может проводиться с ис­пользованием чистой ("голой" - naked) ДНК, леги­рованной (встроенной) в соответствующую плазмиду, или комплексированной ДНК (плазмидная ДНК, соединенная с солями, белками (трансферрин), ор­ганическими полимерами (DEAE-декстран, поли­лизин, липосомами или частицами золота), или ДНК в составе вирусных частиц, предварительно лишенных способности к репликации.

Основные методы доставки чужеродных генов в клетки разделяются на химические, физические и биологические. Эффективность трансфекции и интеграционная способность трансдуцированной чу­жеродной ДНК при различных способах трансфек­ции в ДНК-клетки мишени неодинакова. Только вирусные векторы или генетические конст­рукции, включающие вирусные последовательнос­ти, способны к активной трансдукции, а в некото­рых случаях и к длительной экспрессии чужеродных генов. Из более 175 уже одобренных протоколов клинических испытаний по генотерапии более 120 предполагают использовать вирусную трансдукцию и около 100 из них основаны на применении ретровирусных векторов.

Обзор данных позволяет прийти к заключению, что, несмотря на усилия многих лабораторий мира, все уже известные и испытанные in vivo и in vitro век­торные системы далеки от совершенства. Если проблема доставки чужеродной ДНК in vitro прак­тически решена, а ее доставка в клетки-мишени разных тканей in vivo успешно решается (главным образом путем создания конструкций, несущих рецепторные белки, в том числе и антигены, специфичные для тех или иных тканей), то другие харак­теристики существующих векторных систем – стабильность интеграции, регулируемая экспрес­сия, безопасность – все еще нуждаются в серьезных доработках.

Прежде всего это касается стабильности интег­рации. До настоящего времени интеграция в геном достигалась только при использовании ретровирусных либо аденоассоциированных векторов. Повысить эффективность стабильной ин­теграции можно путем совершенствования генных конструкций типа рецептор-опосредованных сис­тем, либо путем создания достаточно ста­бильных эписомных векторов (то есть ДНК-струк­тур, способных к длительной персистенции внутри ядер).

Рецептор-опосредованный перенос генов заключается в следующем. ДНК-последовательность нужного гена соединяют с определенным веществом (например, гликопротеином), который обладает высоким сродством к определенному мембранному рецептору трансформируемой клетки (например, гепатоцита). Полученный комплекс соединяют с аденовирусом, обеспечивающим проникновение генной конструкции в ядро клетки. Такой комбинированный вектор обеспечивает эффективную адресную доставку гена в определенные клетки.

В последнее время особое внимание уделяет­ся созданию векторов на базе искусственных хромо­сом млекопитающих (Mammalian Artificial Chromosomes). Благодаря наличию основных структурных элементов обычных хромосом такие мини-хромосо­мы длительно удерживаются в клетках и способны нести полноразмерные (геномные) гены и их естественные регуляторные элементы, которые необходи­мы для правильной работы гена, в нужной ткани и в должное время.

ПРИНЦИПЫ ГЕННОЙ ТЕРАПИИ

В зависимости от способа введения экзогенных ДНК в геном пациента генная терапия может прово­диться либо в культуре клеток (ех vivo), либо непосредственно в организме (in vivo ). Клеточная генная терапия или терапия ех vivo предполагает выделение и культивирование специфических типов клеток пациента in vitro , введение в них чужеродных генов (например, усиливающих иммунный ответ организма), отбор трансфецированных клонов клеток и реинфузию (введение) их тому же пациенту. В настоящее время в большин­стве допущенных к клиническим испытаниям про­грамм генной терапии используется именно этот подход.

Генная терапия in vivo основана на прямом вве­дении клонированных и определенным образом упакованных последовательностей ДНК в специфические ткани больного. Особенно перспектив­ным для лечения генных болезней invivo представ­ляется введение генов с помощью аэрозольных или инъецируемых вакцин. Аэрозольная генотерапия разрабатывается, как правило, для лечения пульмонологических заболеваний (муковисцидоз, рак легких).

Разработке программы генной терапии предше­ствуют тщательный анализ тканеспецифической экспрессии соответствующего гена, идентификация первичного биохимического дефекта, исследование структуры, функции и внутриклеточного распреде­ления его белкового продукта, а также биохимический анализ патологического процесса. Все эти данные учитываются при составлении соответству­ющего медицинского протокола. Апробацию процедуры генокоррекции наследственного заболева­ния проводят на первичных культурах клеток больного, в которых в норме функционально активен данный ген. На этих клеточных моделях оцени­вают эффективность выбранной системы переноса экзогенной ДНК, определяют экспрессию вводимой генетической конструкции, анализируют ее взаимодействие с геномом клетки, отрабатывают способы коррекции на биохимическом уровне.

Используя культуры клеток, можно разработать систему адресной доставки рекомбинантных ДНК, однако проверка надежности работы этой системы может быть осуществлена только на уровне целого организма. Поэтому такое внимание в программах по генной терапии уделяется экспериментам in vivo на естественных или искусственно полученных мо­делях соответствующих наследственных болезней у животных. Успешная коррекция генетических дефектов у таких животных и отсутствие нежела­тельных побочных эффектов генной терапии явля­ются важнейшей предпосылкой для разрешения клинических испытаний.

Таким образом, стандартная схема генокоррекции наследственного дефекта включает серию по­следовательных этапов. Она начинается созданием полноценно работающей (экспрессирующейся) ге­нетической конструкции, содержащей смысловую (кодирующую белок) и регуляторную части гена. На следующем этапе решается проблема вектора, обес­печивающего эффективную, а по возможности и адресную доставку гена в клетки-мишени. Затем проводится трансфекция (перенос полученной конструкции) в клетки-мишени, оценивается эф­фективность трансфекции, степень коррегируемости первичного биохимического дефекта в условиях клеточных культур (in vitro ) и, что особенно важно, in vivo на животных - биологических моделях. Толь­ко после этого можно приступать к программе кли­нических испытаний.

ГЕНОТЕРАПИЯ МОНОГЕННЫХ НАСЛЕДСТВЕННЫХ ЗАБОЛЕВАНИЙ

Успех первых клинических испытаний явился мощным стимулом для ускорения развития новых генотерапевтических методов применительно к другим наследственным болезням. Ниже приве­ден список болезней, для которых принципиаль­но возможен генотерапевтический подход, генокоррекция которых с большой вероятностью будет осуществлена уже в обозримом будущем, а также те заболевания, для которых уже имеются официально утвержденные протоколы и которые находятся на разных стадиях клинических испытаний.

Таблица 1 – Наследственные заболевания, генокоррекция которых находится на стадии клинических испытаний (КИ), экспериментальных разработок (ЭР) и принципиально возможна (ПВ)

Болезнь

Дефектный ген

Клетки-мишени

Стадия

Иммунодефицит

Аденозиндезаминаза

Лимфоциты

Иммунодефицит

Пуриннуклеозидфосфорилаза

Лимфоциты

Семейная гиперхолестеринемия

Рецептор липопротеинов низкой плотности

Гепатоциты

Гемофилия В

Фактор IX

Фибробласты

Гемофилия А

Фактор VIII

Миобласты, фибробласты

Болезнь Гоше (сфинголипидоз)

р-Глюкоцереброзидаза

Макрофаги, стволовые клетки

Болезнь Хантера

Идуронатсульфатаза

Макрофаги, стволовые клетки

Синдром Гурлера

L-идуронидаза

Макрофаги, стволовые клетки

Эмфизема легких

α -1 -Антитрипсин

Лимфоциты

Муковисцидоз

СГ-трансмембранный регулятор

Эпителий бронхов

Фенилкетонурия

Фенилаланингидроксилаза

Гепатоциты

Гипераммонемия

Орнитинтранскарбамилаза

Гепатоциты

Цитрулинемия

Аргиносукцинатсинтетаза

Гепатоциты

Мышечная дистрофия Дюшенна

Дистрофии

Миобласты, миофибриллы

Талассемия

β -Глобин

Эритробласты

Серповидноклеточная анемия

β -Глобин

Эритробласты

Респираторный дистресс-синдром

Сурфактант белок В

Эпителий бронхов

Хронический грануломатоз

NADPH-оксидаза

Гранулоциты

Болезнь Альцгеймера

Белок – предшественник β-амилоида (ААР)

Нервные клетки

Болезнь Паркинсона

Тирозингидроксилаза

Миобласты, фибробласты, нервные клетки

Метахроматическая лекодистрофия

Арилсульфатаза А

Стволовые клетки крови, нервные клетки

Синдром Леш-Нихана

Гипоксантинфосфорибозилтрансфераза

Нервные клетки

ГЕНОТЕРАПИЯ НЕНАСЛЕДСТВЕННЫХ ЗАБОЛЕВАНИЙ

Одновременно с развитием исследований в об­ласти генокоррекции наследственных дефектов успешными также оказались поиски методов терапевтического использования смысловых последо­вательностей ДНК для лечения ненаследственных заболеваний, и главным образом злокачественных опухолей и вирусных инфекций. Существенно, что именно в этих разделах патологии поиски путей ге­нокоррекции проводятся особенно интенсивно, а число уже одобренных протоколов клинических ис­пытаний во много раз превышает число таковых для лечения моногенных болезней.

Ниже перечислены основные методологичес­кие подходы к генотерапии различных опухолей, разработанные и уже широко используемые. Мно­гие из этих подходов вполне приложимы и для борь­бы с наиболее серьезными инфекционными заболе­ваниями, например с ВИЧ-инфекцией (СПИДом).

Результаты первых клинических испытаний этих подходов оказались в высшей степени обнаде­живающими, в особенности при лечении нейродегенеративных и онкологических заболеваний нерв­ной системы.

Таблица 2 – Основные подходы в генокоррекции онкологических заболеваний

Вводимые гены

Повышение иммунореактивности опухоли

Гены чужеродных антигенов, цитокинов

Генетическая модификация иммунных клеток

Гены цитокинов, костимуляторов

Инсерция генов "чувствительности" либо генов"-самоубийц"

Гены тимидинкиназы HSV, цитозин дезаминазы

Блок экспрессии онкогенов

Антисмысловые Ki-ras мРНК, гены внутриклеточных антител

Инсерция генов-супрессоров опухолей

Защита нормальных клеток от химиотерапии

Гены лекарственной устойчивости тип 1

Индукция синтеза противоопухолевых веществ нормальными клетками

Гены интерлейкина-2, интерферона

Продукция противоопухолевых рекомбинантных вакцин

Вакцины типа БЦЖ, экспрессирующий опухолевый антиген

Локальная радиопротекция нормальных тканей с помощью антиоксидантов

Гены трансферазы, глутатион синтетазы

НЕКОТОРЫЕ ЭТИЧЕСКИЕ И СОЦИАЛЬНЫЕ ПРОБЛЕМЫ

ГЕННОЙ ТЕРАПИИ

Появление принципиально новых технологий, позволяющих активно манипулировать с генами и их фрагментами и обеспечивающих адресную доставку новых блоков генетической информации в заданные участки генома, стало важным событием в биологии и медицине.

Уже сейчас на современном уровне знаний о геноме человека теоретически вполне возможны та­кие его модификации с целью улучшения некото­рых физических (например, рост), психических и интеллектуальных параметров. Таким образом, со­временная наука о человеке на своем новом витке развития вернулась к идее улучшения человеческой породы, когда-то постулированной выдающимся английским генетиком Ф. Гальтоном и развитой его учениками и последователями в Великобритании (К. Пирсон, Л. Пенроуз, Дж. Холдейн), в России (Н.К. Кольцов, Ф.П. Филипченко), в США (Г. Мёллер). Дальнейший ход истории, как известно, пол­ностью дискредитировал саму идею улучшения че­ловеческой породы. Однако грядущее всевластие человека над собственным геномом заставляет вновь и вновь возвращаться к этой теме, делает ее предметом постоянных оживленных дискуссий в широкой и научной печати. Не вызывает сомне­ния, что первоначальные опасения, связанные с генной инженерией человека, были неоправданны. Уже признано целесообразным применение генной терапии для лечения многих заболеваний. Единст­венным и непременным ограничением, сохраняю­щим свою силу и в современных условиях, является то, что все генотерапевтические мероприятия долж­ны быть направлены только на конкретного боль­ного и касаться исключительно его соматических клеток.

Современный уровень знаний не позволяет про­водить коррекцию генных дефектов на уровне по­ловых клеток и клеток ранних доимплантационных зародышей человека в связи с реальной опасностью засорения генофонда нежелательными искусст­венными генными конструкциями или внесением мутаций с непредсказуемыми последствиями для будущего человечества. Вместе с тем в научной ли­тературе все чаще и настойчивее раздаются призы­вы к возобновлению дискуссии о целесообразности генокоррекции зародышевых и половых клеток че­ловека.

Вот некоторые вопросы, которые должны быть решены в рамках предлагаемой генетиками широ­кой дискуссии по генной терапии.

1. Сможет ли в будущем генная терапия обеспе­чить столь полноценную генокоррекцию, которая не представит угрозы для потомства?

2. В какой мере полезность и необходимость генотерапевтической процедуры для одной супружес­кой четы перевесят риск такого вмешательства для всего человечества?

3. Сколь оправданны будут эти процедуры на фоне грядущего перенаселения планеты?

4. Как будут соотноситься генноинженерные мероприятия на человеке с проблемами гомеостаза общества и биосферы?

Таким образом, генетическая революция, апо­феозом которой явилась генотерапия, не только предлагает реальные пути лечения тяжелых наследственных и ненаследственных недугов, но и в своем стремительном развитии ставит перед обществом новые проблемы, решение которых настоятельно необходимо уже в ближайшем будущем.