Антитела определение структура свойства специфичность. Основные типы антител. Классификация антител (АТ). Основные функции антител (АТ)

Образование антител. Большинство вирусов является хорошими антителами, способными стимулировать иммунный ответ, поскольку они содержат большое количество инородных для организма хозяина белков, каждый из которых имеет множество антигенных участков. Кроме того, несмотря на то что количество вирусного антигенного материала первоначально может быть довольно незначительно, по мере репликации вируса оно постоянно увеличивается. Лишь незначительная часть антител играет существенную роль в защите организма хозяина от инфекции, а в некоторых случаях сами антитела могут участвовать в патогенезе заболевания.

Иммуногенность вирусов зависит от их природы и от различных факторов организма. Медленные вирусы, вызывающие куру и болезнь Крейтцфельда- Якоба, видимо, не провоцируют в организме хозяина какого-либо заметного иммунного ответа. Путь введения вируса также может играть роль в развитии иммунного ответа. При экспериментальном развитии гриппозной инфекции было показано, что внутривенная инокуляция вируса обладает большей иммуногенностью, чем внутрибрюшинная, которая в свою очередь превышает выраженность иммунного ответа при подкожном введении вируса.

Антитела, защищающие организм хозяина, подавляя инфекционную активность вируса, относятся к нейтрализующим антителам (HAT). Связывание HAT с вирусом представляет собой обычно обратную реакцию. Инфекционная активность вируса может снижаться за счет того, что HAT подавляет связывание, проникающую способность или процесс раздевания вируса; способствует агрегации вирионов; ускоряет деградацию вирусов в пузырьках или облегчает опсонизацию вирусов и их последующий фагоцитоз. Связывание полиовирусов с HAT, возможно, приводит к конформационным перестройкам наружного капсида, что препятствует раздеванию вирусов, но не процессу их соединения с субстратом.

Комплемент. Если антитела не образуются, вирусы могут стимулировать активацию как альтернативного, так и классического путей активации комплемента. Активированные компоненты комплемента (например, С3b) могут выступать в качестве опсонинов, облегчающих фагоцитоз вирусов. Активация альтернативных механизмов комплемента в сочетании с образованием антител может приводить к лизису вирусов, имеющих оболочку, или клеток, инфицированных вирусами. Несмотря на то что система комплемента играет определенную роль в защите организма животных от вирусной инфекции, состояния, сопровождающиеся недостаточностью комплемента, в типичных случаях не осложняются более частыми приступами или более тяжелым течением вирусной инфекции.

Клеточный иммунитет. Клетки, инфицированные вирусами, могут быть разрушены лимфоцитами или другими клетками, использующими как антителозависимые, так и антителонезависимые механизмы. Клетки-киллеры представляют собой большие содержащие гранулы лимфоциты, которые связываются с клетками-мишенями, а затем секретируют цитотоксические молекулы, находящиеся в азурофильных гранулярных пузырьках. Активность клеток-киллеров повышается под воздействием интерферонов и некоторых вирусных гликопротеидов и не зависит от активности антител. Цитотоксичность клеток-киллеров представляет собой один из наиболее ранних защитных механизмов макроорганизма против вирусной инфекции (максимальная ее активность отмечается через 2-3 дня), включение которого предшествует образованию антител (появляющихся на 7-й день заболевания), активации Т-лимфоцитов и формированию реакции гиперчувствительности замедленного типа. Активные клетки-киллеры были обнаружены у людей, инфицированных вирусами цитомегалии, Эпстайна - Барра, кори и эпидемического паротита.

Разрушение клеток, инфицированных вирусами, зависящее от образования антител, может осуществляться вследствие антителозависимой клеточной цитотоксичности (АЗКЦ) либо вследствие воздействия антителонезависимых Т-лимфоцитов, обладающих цитотоксической активностью. При реакциях, опосредованных через АЗКЦ, вирусспецифические антитела, связанные с антигенами инфицированной клетки, взаимодействуют с рецепторами для антител IgG, находящимися на поверхности специализированных лимфоцитоподобных клеток (клеток-киллеров). Связывание антител IgG с клеточными рецепторами активирует клетку-киллер и приводит к тому, что она уничтожает клетку-мишень. Макрофаги, лимфоциты и ПМН также имеют Fc-рецепторы и могут принимать участие в реакциях АЗКЦ.

Лизис инфицированных клеток, опосредованный Т-лимфоцитами, обладающими цитотоксической активностью, относится к 1-му классу тканевой совместимости, ограниченной антигенами. Цитотоксическая активность Т-лимфоцитов должна быть индуцирована антигеном, доставляемым макрофагами или другими антигендоставляющими -клетками (АДК). Активация цитотоксичности Т-лимфоцитов вирусспецифична и может быть специфична даже для отдельных штаммов некоторых вирусов. Цитотоксичные Т-лимфоциты, выделенные у мышей, инфицированных лимфоцитарным хориоменингитом (ЛХМ), убивают только клетки-мишени, инфицированные ЛХМ, у мышей, относящихся ко 2-му классу тканевой совместимости. Выраженность реакции цитотоксичных Т-лимфоцитов контролируется генами, ответственными за иммунный ответ (ИО) у мышей. Аналогичная регуляция может иметь место и у человека.

Интерфероны. Лейкоциты продуцируют более дюжины интерферонов (альфа-интерфероны, лейкоцитарные), последовательность аминокислот у которых на 70% гомологична.

b-Интерферон (фибробластный) продуцируется фибробластами и эпителиальными клетками. Его структура на 30% гомологична альфа-интерферонам. Как a-, так и b-интерфероны сохраняют стабильность в кислой среде (рН2,0) и относительно устойчивы к высокой температуре. g-Интерферон (иммунный) продуцируется как сенсибилизированными, так и несенсибилизированными Т-лимфоцитами. Он обладает отличными от других интерферонов физико-химическими свойствами и имеет специфические индукторы. Кроме того, его действие опосредуется через клеточные рецепторы, отличные от тех, которые используют интерфероны альфа и бета. Гены, кодирующие интерфероны, располагаются на следующих хромосомах у человека: на 9-й (aи b), на 2-й (b), на 5-й (b) и на 12;й (g).

Продукция интерферонов может быть индуцирована как активными, так и инактивированными вирусами, двуспиральной РНК и целым рядом других соединений. Количество индуцируемого интерферона может варьировать в зависимости от воздействующего вируса. Все интерфероны обладают чрезвычайно высокой специфической активностью и, как правило, наиболее активны в клетках тех видов животных, где они были продуцированы (видоспецифичны). Это объясняется различием природы интерфероновых рецепторов. Продукция интерферона, видимо, зависит от угнетения клеточных генов, вызванного присутствием вирусной нуклеиновой кислоты в цитоплазме клеток макроорганизма. В результате быстро формируются иРНК для интерферона и начинается его синтез.

Вновь продуцированный интерферон высвобождается во внеклеточную жидкость и затем связывается со специфическими рецепторами близлежащих клеток. Ген, кодирующий синтез гликопротеидного рецептора для альфа- и бета-интерферонов, локализуется у человека, по всей видимости, на 21-й хромосоме. Связывание интерферона с этим рецептором вызывает цепь сложных реакций. Синтезируется протеинкиназа, фосфорилирующая фактор, инициирующий синтез белка. Это приводит к подавлению образования первичного комплекса, а следовательно, и синтеза вирусных белков. Индуцированная 2,5-олигоизоаденилатсинтетаза приводит к образованию 2,5-олигоаденилатов, которые в свою очередь активируют клеточную эндонуклеазу, вызывающую распад вирусной иРНК. Подавляются метилтрансферазные реакции, что приводит к снижению метилирования иРНК, нарушая, таким образом, синтез вирусных белков. Кроме того, изменяются антигены поверхности клеток-мишеней, в результате чего облегчается проявление действия антигенов тканевой совместимости 1-го и 2-го классов. Интерфероны повышают также активность клеток-киллеров, Т-лимфоцитов, обладающих цитотоксичностью, и клеток, участвующих в реакциях АЗКЦ. Доля участия каждой из этих реакций в создании интерферонвызванного антивирусного состояния до настоящего времени не установлена.

Иммунопатология, индуцированная вирусом. Вирусы могут соединяться с вирусспецифическими антителами, образуя циркулирующие иммунные комплексы, способные самостоятельно участвовать в иммунопатогенезе. Вирусная стимуляция В-лимфоцитов может привести к появлению поликлональных антител к антигенам, не связанным с первичным вирусным агентом. Вирусы могут также индуцировать образование перекрестных антител, взаимодействующих с нормальными структурами макроорганизма, в составе которых имеются участки, сходные по строению с вирусными антигенами (молекулярная мимикрия). Аутоантитела этих типов также могут привести к образованию. иммунных комплексов. Иммунные комплексы оседают на базальных мембранах клеток различных тканей, включая кожу, почки, сосудистые сплетения и стенки кровеносных сосудов. Попадая в ткани, эти иммунные комплексы привлекают и активируют разнообразные медиаторы воспаления, что приводит к повреждению тканей.

Аутоантитела, образованные под влиянием вирусной инфекции, могут непосредственно повреждать ткани. Аутоантитела к лимфоцитам, тромбоцитам, гладкомышечным клеткам, промежуточным филаментам, иммуноглобулинам и миелиновым основным белкам обычно нестойки, и титр их невысок. Они образуются в результате целого ряда механизмов, включая: 1) внедрение антигенов макроорганизма в вирусные структуры или изменение антигенов макроорганизма под влиянием вируса; 2) изменение иммунорегуляторных систем под влиянием вируса; 3) перекрестную реактивность между вирусными антигенами и нормальными структурами клеток макроорганизма (молекулярная мимикрия); 4) возникновение антиидиотипических антител, стимулирующих клеточные рецепторы макроорганизма.

Антитела (иммуноглобулины) - белки плазмы крови, которые об­разуются в организме под влиянием антигенов. Основным свойством антител является специфичность, то есть способность соединяться с тем

антигеном, который вызвал их образование. Специфичность антител обусловлена активными центрами, то есть участками молекулы иммуноглобулина, которые соединяются с детерминантными группами (эпитопами) антигена. Число активных центров называют валентностью антител.

Химическая природа антител. Это гликопротеиды. Состоят из двух тяжелых полипептидных цепей - Н-цепей (англ, heavy - тяжелый) и двух легких цепей - L-цепей (англ, light - легкий). Цепи связаны дисульфидными мостиками. Как в легких, так и в тяжелых цепях имеется вариабельная V-обдасть с непостоянной последовательностью амино­кислот, и константная С-область. Аминокислоты в полипептидных це­пях направлены таким образом, что их NН2-концевые группы распо­ложены в вариабельной части, а СООН-концевые группы - в констант­ной.

При обработке протеолитическим ферментом папаином молекула иммуноглобулина распадается на Fab-фрагменты (англ, fragment an­tigen binding - фрагмент, связывающий антиген) и Fc-фрагмент (англ. fragment cristalline - кристаллизующийся фрагмент). В состав Fab-фрагмента входит целиком легкая цепь и часть тяжелой цепи, концевые их части составляют активный центр. В состав Fc-фрагмента входят остатки двух тяжелых цепей.

Активный центр молекулы иммуноглобулина по конфигурации со­ответствует конфигурации детерминантной группе антигена. Он очень мал, занимает лишь 2% поверхности антитела. Описанная мономерная молекула иммуноглобулина имеет два активных центра, то есть может связать две молекулы антигена.

Будучи белками, антитела (иммуноглобулины) обладают анти­генной, видовой специфичностью. Детерминантная группа, определя­ющая специфичность, расположена в области Fc-фрагмента. Наличие антигенной специфичности иммуноглобулинов имеет практическое зна­чение, так как позволяет обнаружить их с помощью антиглобулиновых сывороток.



Различают пять классов иммуноглобулинов, которые обозначаются IgG, IgM, IgA, IgD, IgE и отличаются между собой по физико-химичес­ким свойствам и биологическим функциям (рис. 17).

Иммуноглобулины класса G (Ig G) являются мономерами, то есть состоят из двух легких и двух тяжелых цепей, молекулярная масса 160 кД, константа седиментации (скорость осаждения в центрифу­ге) 7S. Составляют основную массу сывороточных иммуноглобули­нов (70-80%). Единственные из всех классов проникают через пла­центу и играют важную роль в защите новорожденного от инфек­ции.

Иммуноглобу­лины класса М (Ig М) первыми появ­ляются после введе­ния антигена. Мо­лекула IgM состоит из 5 субъединиц, то есть является пентамером. Молеку­лярная масса 300 кД, константа се­диментации 19S. Содержание в сыворотке крови 5-10%.

Иммуноглобулины класса A (Ig А) синтезируются в селезенке, лимфоузлах и подслизистом слое дыхательных путей и кишечного тракта. По физико-химическим свойствам неодинаковы и могут иметь константы седиментации 7,9,11 и 18S. Часть IgA попадает в кровь - это сывороточные IgA. Большая же часть IgA - это секреторные SIgA, у которых два или три мономера соединены между собой сек­реторным фрагментом, защищающим иммуноглобулин от разруше­ния ферментами. Секреторные SIgA проникают на поверхность сли­зистых оболочек, содержатся в секретах и играют важную роль в защите организма от проникновения возбудителей, например, ви­русов гриппа, полиомиелита.

Иммуноглобулины класса D (Ig D) - молекулярная масса 180 кД, константа седиментации 7S. Содержание в сыворотке крови около 0,2%. Роль IgD пока неизвестна

Иммуноглобулины класса Е (Ig E) - молекулярная масса 200 кД, кон­станта седиментации 8S, содержатся в нормальной сыворотке крови в небольших количествах (0,002%). Их называют также реагинами, по­скольку они способны присоединяться к клеткам (цитофильны) и при­нимают участие в реакции анафилаксии

Форма и размеры иммуноглобулинов G и М были изучены в элект­ронном микроскопе. IgG имеют форму вытянутых эллипсов с тупыми концами, a IgM - форму паучка с пятью ножками.

Динамика образования антител (рис 18). Синтез антител протекает в две фазы. Первая - индуктивная, которая длится 3-5 суток от момен­та введения антигена до появления антител в крови. Вторая - продук­тивная, когда антитела появляются в крови, количество их нарастает к 15-30 суткам и затем снижается. Иммунный ответ после первого вве­дения антигена называют первичным. Особенностью его является то, что первоначально синтезируются IgM, затем IgG.

Вторичный иммунный ответ развивается при повторном введе­нии того же антигена и отличается от первичного следующими особенностями, индуктивная фаза короче (1-2 суток), уровень анти­тел нарастает быстрее, достигает более высоких значений и сохраняется дольше, медленно снижаясь в течение нескольких лет При вторичном иммунном ответе с самого начала образуются IgG. Более быстрая и сильная выработка антител при вторичном иммун­ном ответе объясняется тем, что после первичного введения в орга­низме остаются "клетки памяти", которые при вторичном введении того же антигена быстро размножаются и интенсивно включают про­цесс образования антител.

В практической медицине учитываются особенности динамики ан-тителообразования:

1) при составлении рациональных графиков вакцинации с опреде­ленными интервалами;

2) при экстренной профилактике столбняка людям, получившим травму, если они были ранее привиты столбнячным анатоксином, вво­дят не антитоксическую сыворотку, которая может дать нежелатель­ные аллергические реакции, а анатоксин, - в расчете на быстрый и сильный иммунный ответ;

3) при серологической диагностике дифференцируют первичное заболевание сыпным тифом от рецидива (болезни Брилля) по наличию в крови больного IgM.

Виды антител. Принято различать полные и неполные антитела. Полные антитела имеют не менее двух активных центров, поэтому при постановке реакции агглютинации, преципитации и других реакций иммунитета они обусловливают видимый эффект. Неполные антитела способны соединяться с антигеном, но видимой реакции агглютина­ции или преципитации не наблюдается. Причина в том, что неполные антитела имеют только один активный центр, способный соединяться с антигеном (второй блокирован). Неполными являются антитела к резус-антигену эритроцитов. При многих инфекциях они появляются

наряду с полными антителами. Для выявления неполных антител ис­пользуют реакцию Кумбса.

По характеру действия антитела разделяют на антимикробные, антитоксические, вируснейтрализующие, гемолизины, аутоантитела и др. Антимикробные антитела вызывают агглютинацию бактерий или преципитацию антигенов, извлеченных из них, лизис бактерий при уча­стии комплемента, усиление фагоцитоза - опсонизацию; антитоксины нейтрализуют токсины; вируснейтрализующие антитела оказывают противовирусное действие. Аутоантитела вырабатываются орга­низмом против собственных белков и клеток при изменении их хими­ческой структуры или при освобождении антигенов из разрушивших­ся органов и тканей, или при утрате естественной нммунологической толерантности к каким-то собственным антигенам.

Моноклональные антитела. При введении антигена в иммунный от­вет вовлекается множество лимфоцитов. Они могут различаться между собой по специфичности, различия эти могут быть совсем незначитель­ными. Однако при иммунизации даже таким антигеном, который со­держит одну детерминантную группу, образуются антитела, различа­ющиеся по своей специфичности.

Для получения антител одной специфичности необходимо полу­чить потомство-клон (греч. klon - отпрыск, ветвь) из одного лимфоцита. Но культуру лимфоцитов в искусственной питательной среде получить трудно (вследствие ограниченного числа делений и времени жизни клетки). Только опухолевые клетки могут культивироваться in vitro без ограничения при условии поступления питательных веществ.

Задачу получения культуры клеток, полученных из одного лимфоцита и способных длительно размножаться в питательной сре­де, решили Г.Келер и К. Мильштейн (1975 г., Нобелевская премия, 1984 г.). Авторы разработали методику получения гибридом (гиб­ридных клеток) от слияния лимфоцитов иммунизированных живот­ных с миеломными (опухолевыми) клетками. Слияние осуществляет­ся с помощью полиэтиленгликоля или электрического разряда. По­лученные гибридомы наследуют от лимфоцита способность синте­зировать специфическое антитело, а от миеломной клетки спо­собность бесконечно размножаться в питательной среде in vitro. Син­тезируемые гибридомами антитела могут быть получены в неогра­ниченном количестве. Антитела идентичны и по специфичности, и по классу иммуноглобулинов. Таким образом, полученный in vitro препарат может служить идеальным по специфичности средством для диагностики и лечения (рис. 19).

Аллергия

Термином "аллергия" (греч. allos - другой, ergon - действие) в на­стоящее время обозначают повышенную чувствительность организма к антигену (аллергену). Различают два типа аллергии: гиперчувстви­тельность немедленного типа (ГЧНТ) и гиперчувствительность замедленного типа (ГЧЗТ).

Гиперчувствитель­ность немедленного типа (ГЧНТ) связана с анти­телами, следовательно, зависит от В-лимфоцитов (В-зависимая ал­лергия). Аллергические реакции этого типа проявляются уже через 20-30 минут после по­вторной встречи с ан­тигеном. К ГЧНТ относятся: анафилаксия, сывороточная болезнь, сенная лихорадка, бронхиальная астма, феномен Артюса и дру­гие.

Анафилаксия (греч. ana - обратный, filaxis -защита). В основе ана­филаксии лежит сенси­билизация, то есть обра­зование антител в ответ на введение аллергена парентеральным путем. Явление анафилак­сии наиболее четко демонстрируется на морских свинках. Подкожно морской свинке вводится сенсибилизирующая доза чужеродного белка -0,01-0,0001 мл лошадиной сыворотки. Через 10-14 дней в кровяное рус­ло вводится разрешающая доза этого же белка в количестве 0,01-0,1 мл. Через 1-5 минут у морской свинки развивается анафилактический шок. Животное начинает беспокоиться, чешет лапками нос, чихает, шерсть взъерошена, появляется одышка, непроизвольное выделение мочи и кала, судороги. Через 5-10 минут в большинстве случаев свинка погибает.

Если выжившему после шока животному снова ввести тот же ан­тиген, то реакции не развивается, так как наступило состояние десен­сибилизации, сохраняющееся в течение 2-3 недель. Шок не возникает также и в том случае, если разрешающую дозу антигена ввести вскоре после сенсибилизации или вводить под наркозом.

Анафилактический шок может возникнуть у человека как осложне­ние при введении, чаще повторном, гетерологичной (чужеродной) ле­чебной сыворотки или антибиотиков. Сразу же после введения сыво­ротки или даже во время ее введения появляется беспокойство пациен-

та, одышка, падение кровяного давления и температуры, потеря со­знания. Бели не оказана немедленная медицинская помощь, наступает смерть.

Для предупреждения анафилактического шока иммунные гетеро-логичные (например, лошадиные) сыворотки вводят по способу, пред­ложенному A.M. Безредка в 1907 г. Способ в настоящее время видо­изменен и усовершенствован.

1) Внутрикожно вводят 0,1 мл нормальной лошадиной сыворотки, разведенной 1:100. Ампула с такой сывороткой имеется в коробке с лечебной сывороткой. Наблюдают реакцию пациента в течение 20 минут.

2) При отрицательной реакции (диаметр папулы в месте инъекции не более 0,9 см, краснота незначительная) вводят лечебную сыворотку в дозе 0,1 мл подкожно. Наблюдают в течение 30-60 минут за общей реакцией пациента.

3) При отсутствии реакции вводят всю необходимую дозу лечеб­ной сыворотки

При положительной реакции, указывающей на повышенную чувс­твительность, лечебную сыворотку вводят только по жизненным по­казаниям. Предварительно проводится десенсибилизация с помощью разведенной сыворотки при соблюдении необходимых мер предосто­рожности, предусмотренных инструкцией

Во всех случаях применения гетерологичной сыворотки следу­ет помнить о возможности возникновения, хотя и в редчайших случаях, анафилактического шока Поэтому необходимо обеспе­чить медицинское наблюдение за привитыми в течение часа после инъекции.

Сывороточная болезнь возникает через 7-15 дней после первично­го введения обычно больших доз чужеродной сыворотки. Болезнь про­является в виде отека кожи и слизистых оболочек, повышения темпе­ратуры тела, 6 эли в суставах, сыпи, кожного зуда.

Гиперчувствительность замедленного типа. ГЧЗТ связана не с анти­телами, а с иммунными лимфоцитами - Т-эфекторами (Те). Это Т-зависимая аллергия. К данному типу аллергии относитися инфекционная аллергия. Наблюдается она при туберкулезе, бруцеллезе, туляремии, ток-соплазмозе, грибковых заболеваниях. Аллергические пробы использу­ют в диагностических целях. Аллергены, полученные из микробов, вво­дят внутрикожно или накожно. При наличии повышенной чувствитель­ности к возбудителю через 24-48-72 часа развивается воспалительная реакция. Диагностические аллергические пробы применяются при ту­беркулезе (реакция Манту с туберкулином), при бруцеллезе, сибирс­кой язве и др.

Контактная аллергия. Повышенная чувствительность аллергичес­кого характера к лекарственным препаратам связана с выработкой антител или иммунных лимфоцитов. Это явление существенно отлича­ется от обычного усиления фармакологического действия лекарственного препарата.

Некоторые лекарственные средства имеют достаточно высокую молекулярную массу, чтобы действовать как полноценные антигены и вызвать иммунный ответ. Но в большинстве случаев аллергические реакции развиваются к лекарственным средствам, имеющим молеку­лярную массу менее 1 кД. Эти вещества действуют как гаптены и ста­новятся полноценными антигенами после соединения с белком хозяина. Некоторые лекарства могут прямо соединяться с протеинами, но боль­шинство, такие как аспирин, барбитураты, сульфаниламиды, вначале подвергаются частичному метаболизму.

При повышенной чувствительности к лекарствам может наблю­даться любой тип аллергической реакции. Ответственными за это яв­ляются антитела и иммунные лимфоциты. Клинические проявления: лихорадка, высыпания на коже и слизистых оболочках, отек, анафи­лактический шок, астма, васкулиты, аутоиммунные реакции.

Аллергии могут быть острыми и хроническими. Наиболее тяжелое проявление - это анафилактический шок, который встречается редко, но наступить может неожиданно.

Для выявления лекарственной непереносимости выясняется анам­нез. Кожные пробы небезопасны, так как у пациента с повышенной чувствительностью даже ничтожная доза препарата может вызвать па­тологическую реакцию. Разработаны лабораторные тесты in vitro, в частности, химическая эритрограмма (ускорение гемолиза эритроци­тов пациента под влиянием лекарственного средства), а также РПГА - реакция пассивной гемагглютинации, в которой антитела сыворот­ки крови пациента реагируют с лекарственным средством, адсорбиро­ванном на эритроцитах.

Наиболее полно изучены аллергические реакции к пенициллину. Реакции эти разнообразны. Продукты распада бензилпенициллина в организме могут вызвать как ГЧНТ, так и ГЧЗТ. Большинство нор­мальных взрослых людей имеют сывороточные антитела к бензилпенициллину. Наиболее часто встречаются IgG, но они не принимают уча­стия в аллергических реакциях. Напротив, IgG действуют как блоки­рующие антитела, предотвращая аллергические реакции. Иммуноглобулины класса IgE участвуют в аллергической реакции немед­ленного типа - анафилактическом шоке и в крапивнице. Дерматиты являются ГЧЗТ с участием иммунных лимфоцитов и наблюдаются пре­имущественно среди лиц, занятых производством антибиотиков.

При аллергическом шоке, вызванном пенициллином, для немед­ленной помощи в качестве антидота применяется пенициллиназа (си­ноним - Neutropen).

Оглавление темы "Гуморальные имунные реакции. Основные типы антител. Динамика антителообразования.":









Антитела (АТ) обычно разделяют в соответствии с типом их реакций с Аг.

Антитоксические антитела (АТ) к токсинам и анатоксинам нейтрализуют или флоккулируют Аг.
Агглютинирующие антитела (АТ) агрегируют Аг. Их выявляют в реакциях с корпускулярными Аг и растворимыми Аг, сорбированными на поверхности видимых частиц (эритроциты, частицы латекса).
Преципитирующие антитела (АТ) образуют комплекс Аг-АТ с растворимыми Аг только в растворах или гелях.
Лизирующие антитела (АТ) вызывают разрушение клеток-мишеней (обычно взаимодействуя с комплементом).
Опсонизирующие антитела (АТ) взаимодействуют с поверхностными структурами клеток микробов или заражённых клеток организма, способствуя поглощению их фагоцитами.
Нейтрализующие антитела (АТ) инактивируют Аг (токсины, микроорганизмы), лишая их возможности проявлять патогенное действие.

Основные функции антител (АТ)

Антитела (АТ) через Ar-связываюшие центры взаимодействуют с различными Аг. Тем самым AT предотвращают инфицирование или элиминируют возбудитель либо блокируют развитие патологических реакций, активируя при этом все системы специфической защиты.

Опсонизация (иммунный фагоцитоз) . Антитела (АТ) (через Fab-фрагменты) связываются с меточной стенкой микроорганизма: Fc-фрагментом AT взаимодействует с соответствующим рецептором фагоцита. Это опосредует последующее эффективное поглощение фагоцитом образовавшегося комплекса.

Антитоксический эффект . Антитела (АТ) могут связывать и, тем самым, инактивировать бактериальные токсины.

Активация комплемента . Антитела (АТ) (IgM и IgG) после связывания с Аг (микроорганизм, опухолевая клетка и др.) активируют систему комплемента, что приводит к уничтожению этой клетки путём перфорации её клеточной стенки, усиления хемотаксиса, хемокинеза и иммунного фагоцитоза.

Нейтрализация . Взаимодействуя с рецепторами клетки, связывающими бактерии или вирусы, AT могут препятствовать адгезии и проникновению микроорганизмов в клетки организма-хозяина.

Циркулирующие иммунные комплексы . Антитела (АТ) связывают растворимые Аг и образуют циркулирующие комплексы, с помощью которых Аг выводится из организма, преимущественно с мочой и жёлчью.

Антителозависимая цитотоксичность . Опсонизируя Аг, антитела (АТ) стимулируют их разрушение цитотоксическими клетками. Аппарат, обеспечивающий распознавание мишеней, - рецепторы к Fc-фрагментам AT. Разрушать опсонизированные мишени способны макрофаги и гранулоциты (например, нейтрофилы).