Реакции преципитации. Её модификации

Реакция преципитации (РП)– это осаждение растворимого антигена при действии антител в присутствии электролита. Видимый эффект реакции (феномен преципитации) – помутнение (образование мутного кольца или осадка – преципитата).

РП применяют для обнаружения неизвестного антигена при ряде инфекционных заболеваний: при сибирской язве, туляремии, менингите, оспе . В судебной медицине ее используют для определения видовой принадлежности крови, спермы; в санитарно-гигиенических исследованиях – для установления фальсификации пищевых продуктов. РП отличается очень высокой чувствительностью и позволяет обнаружить антиген в разведении 1:1 000 000 и 1: 10 000 000.

Компоненты реакции преципитации.

1. Антиген (преципитиноген) - это антиген молекулярной природы, находящийся в мелкодисперсном (растворимом) состоянии. Преципитиногены – это различные лизаты или экстракты тканей и др. Преципитиноген отличается от агглютиногена размером частиц антигена. Агглютиноген имеет размеры клеток (это не разрушенные целые клетки), а размеры преципитиногена соизмеримы с размерами молекул (это белки и их комплексы с углеводами или липидами). Раствор преципитиногена прозрачный.

2. Антитела (преципитины) находятся в сыворотке крови человека или в иммунных диагностических преципитирующих сыворотках, которые содержат известные антитела.

3. Электролит – изотонический раствор хлорида натрия.

Получение преципитиногена .

Получаютпутемизмельчения материала и извлечения из него белковых антигенов кипячением или другими способами.

Примеры преципитиногенов : лизаты или экстракты различных органов и тканей, чужеродная сыворотка крови (сыворотка - это раствор , в первую очередь, различных белков), фильтраты бульонных культур микробов, солевые экстракты микробов, аутолизаты и др.

Получение преципитирующих сывороток.

Получают путем гипериммунизации кроликов соответствующими преципитиногенами. Такие сыворотки содержат антитела к тем преципитиногенам, которыми иммунизировали кроликов.

Примеры преципитирующих сывороток : преципитирующая сибиреязвенная сыворотка (содержит антитела к антигенам возбудителя сибирской язвы), преципитирующая противоменингококковая сыворотка (содержит антитела против антигенов возбудителя менингита) и др.

Титр преципитирующей сыворотки – это наибольшее разведение преципитиногена, при котором сыворотка еще дает реакцию преципитации.

Способы постановки РП.

1. Реакция кольцепреципитации – проводится в специальных преципитационных пробирках (диаметр – 0,4-0,5 см, высота – 7-8 см). В пробирку вносят 0,2 – 0,3 мл преципитирующей сыворотки и по стенке длинным носиком пастеровской пипетки осторожно наслаивают такое же количество преципитиногена. Затем осторожно из горизонтального положения пробирки ставят вертикально.


Учет результатов реакции проводят по появлению белого кольца на границе антиген-антитело. При положительной реакции наблюдается образование такого кольца. В этом случае антиген соответствует антителу и происходит их связывание.

Если в качестве преципитиногена используют прокипяченные и профильтрованные водные экстракты органов и тканей, то реакция называется реакцией термокольцепреципитации (например, при диагностике сибирской язвы).

2. Реакция преципитации в геле – проводится в чашках Петри или на предметных стеклах, куда помещают слой агарового геля. При застывании геля в нем вырезают лунки, в которые помещают антигены или антитела, или и то и другое. Различают 2 метода РП в геле:

а) метод простой (радиальной) иммунодиффузии : один из компонентов реакции иммунитета (антиген или антитело) помещают в лунку, а другой компонент – смешивают с агаром; при положительном результате (антиген соответствует антителу) вокруг лунки образуется кольцо преципитата ;

б) метод двойной иммунодиффузии : и антитело и антиген помещают в отдельные лунки, они диффундируют в агаровом геле навстречу друг другу; при положительном результате на месте встрече антитела и антигена образуются линии преципитации .

Примером РП в геле являетсяреакция двойной иммунодиффузии по Оухтерлони при диагностике дифтерии

Иммуноэлектрофорез – это метод, который сочетает метод электрофореза и реакцию преципитации. Смесь антигенов (например, белков сыворотки крови) разделяется в геле при помощи электрофореза. Затем, чтобы найти и определить нужный белок (неизвестный антиген), используют диагностическую преципитирующую сыворотку, которая содержит антитела к этому белку (известное антитело). Для этого в канавку параллельно белкам вносится диагностическая сыворотка. Если среди белков имеется тот, который соответствует антителу, находящемуся в сыворотке, то вокруг него образуются линии преципитации .

В основе реакций преципитации лежит образование и выпадение в осадок комплексов антиген-антитело. В реакции участвуют растворимые антигены: преципитиногены (продукты микроорганизмов, тканей, химические вещества и лекарства). Антитела (преципитины), соединяясь с растворимыми антигенами, вызывают их агрегацию, что проявляется в помутнении прозрачных жидкостей или выпадении осадка (преципитата). Диагностические преципитирующие сыворотки выпускают с высоким титром антител. Их получают путем иммунизации лабораторных животных соответствующим антигеном. Титром преципитирующей сыворотки является минимальное количество антигена, которое данная сыворотка может преципитировать.

Реакцию преципитации можно проводить в жидкой и плотной среде (в агаре или геле).

Реакция преципитации в жидкой среде (кольцепреципитация). Реакцию ставят в узких пробирках, куда вносят преципитирующую антисыворотку, а сверху осторожно наслаивают прозрачный раствор антигена. При положительной реакции через несколько минут на границе соприкосновения двух жидкостей появится кольцо преципитации. При малых количествах реагентов реакцию можно проводить в капиллярах (микропреципитация).

Реакция преципитации в агаре. Сущность реакции в том, что антигены и антитела, помещенные в разные лунки в агаре, диффундируют навстречу друг другу и при взаимодействии образуют комплекс, который осаждается в виде линии преципитации.

Двойная радиальная иммунодиффузия по Оухтерлони. Реакцию проводят на пластинках с агаровым гелем. Растворы антигена и антисыворотки помещают в лунки, вырезанные на некотором расстоянии друг от друга. Иммунореагенты диффундируют в геле, при встрече образуют комплексы, которые осаждаются в виде линий преципитации. Этот метод позволяет исследовать сразу несколько образцов иммунореагентов. Например, вокруг лунки с антисывороткой можно разместить несколько лунок с растворами разных антигенов или наоборот.

Метод определения токсигенности микробов в реакции преципитации. Принцип иммунодиффузии в геле положен в основу метода, который применяется для изучения токсигенности (способности вырабатывать токсин) бактерий. Например, для обнаружения дифтерийного токсина на чашку Петри с агаром посередине накладывают полоску фильтровальной бумаги, пропитанную антитоксической сывороткой. Рядом засевают исследуемые культуры бактерий. Если они выделяют токсин, то при взаимодействии с антитоксинами между колониями и полоской бумаги образуются линии преципитации.

Иммунодиффузия в геле лежит в основе реакции преципитации по Манчини, которая используется для определения классов иммуноглобулинов в сыворотке крови


Реакции преципитации используются для; определения антигенов бактерий, тканей человека и животных; диагностики некоторых инфекционных заболеваний; определения видовой принадлежности белка в судебной медицине; выявления примесей в мясных, рыбных, мучных изделиях в санитарной практике.


49 реакция антиген-антитело.

Сущность реакции заключается в том, что комплемент, добавленный к специфическому комплексу антиген - антитело, связывается последним. Если отсутствует специфическое сродство между антигеном и сывороткой, то образования комплекса не произойдет и комплемент будет свободный, несвязанный. Связывание комплемента устанавливают по результатам, полученным от добавления гемолитической системы (гемолитическая сыворотка - J- эритроциты барана) к системе антиген - антитело. Если комплемент был связанный с антигеном и сывороткой, то литическая функция его не выявляется и эритроциты осядут на дно пробирки (положительная реакция). Если комплемент не был связанный, то он обусловит гемолиз сенсибилизированных эритроцитов (отрицательная реакция). Таким образом, без комплемента каждая из этих двух иммунологических реакций не может произойти, но в гемолитической системе оба компонента известны, и достаточно добавить комплемент, чтобы произошла реакция. В системе антиген + антитело один неизвестный компонент определяется другим известным, если этот комплекс свяжет комплемент. Отсюда вытекает практическое значение реакции, которая дает возможность по взаимодействию известного антигена с антителом определить свойства неизвестной сыворотки, установить наличие в ней комплементсвязывающих антител и определить природу неизвестного антигена с помощью известной специфической сыворотки, приготовленной на животных, или сыворотки реконвалесцентов.

1.1. МЕХАНИЗМЫ ВЗАИМОДЕЙСТВИЯ АНТИГЕНА С АНТИТЕЛОМ

Взаимодействие антигена со специфическим антителом проявляется в организме образованием иммунных комплексов. Прочному взаимодействию АГ с АТ способствуют: количество детерминант в АГ, количественное соотношение, последовательность расположения концевых групп аминокислот в детерминанте, наличие в детерминанте ароматических аминокислот, аффинность и авидность. Аффинитет – это связь одного активного центра (Fab 1или Fab 2) и детерминанты.

Авидность – это cвязь всех активных цетров с детерминантами.

Свойства комплекса АГ – АТ. Аффинитетом и авидностью измеряется прочная взаимосвязь с поверхностными структурами АГ и АТ.

Реакции АТ с АГ протекают также в системе «in vitro»то есть «в пробирке» и имеют ряд типичных характеристик: потребность в электролитах, обратимость, двухфазность (фаза взаимодействия активного центра АТ и детерминант АГ –несколько секунд или минут; фаза проявления – визуально наблюдаемый эффект несколько минут или часов). При соприкосновении гидрофобных групп белков в воде наступает их взаимное притяжение.

Часто такие реакции называют серологическими (от латинского «serum» – сыворотка), так как источником АТ служит сыворотка крови.

В связи с высокой чувствительностью и специфичностью серологические реакции нашли широкое диагностическое применение.

Серологические реакции применяют для двух целей:

  1. По известному АГ определяют в исследуемой сыворотке титр специфических к данному АГ антител. Титром сыворотки называют то ее максимальное разведение, которое еще дает положительную реакцию с соответствующим АГ.
  2. С помощью известного АТ, т.е. диагностической иммунной сыворотки, определяют наличие в исследуемом материале специфического антигена или осуществляют серологическую идентификацию выделенной чистой культуры возбудителя.

Все серологические реакции можно разделить на несколько групп:

  1. Реакции, протекающие с укрупнением частиц АГ в растворе электролита: реакция агглютинации в ее различных вариантах, реакция преципитации и ее различные модификации.
  2. Реакции, протекающие с участием комплемента: реакция связывания комплемента, иммунного гемолиза и их модификации.
  3. Реакции, протекающие с нейтрализацией антигена: реакции нейтрализации токсинов, вирусов, реакции торможения гемагглютинации.
  4. Реакции, протекающие с участием фагоцитоза: опсонофагоцитарная реакция и другие.
  5. Реакции иммунофлюоресценции в различных вариантах.
  6. Реакции иммуносорбентного анализа твердой фазы: ИФА, РИА.

Для серологических реакций могут быть использованы целые клетки (корпускулярные антигены), например, лимфоциты, плазмоциты, клетки, пораженные вирусами, и т.д. (РИФ, РИА, ИФА); бактериальные клетки (РА, РИФ, РИА, ИФА); а также растворимые компоненты (растворимые, молекулярные АГ) для реакции преципитации, нейтрализации, ИФА и других.

Корпускулярный АГ – это живые или убитые (инактивированные) клетки в изотонических или буферных растворах. При инактивации клеток пользуются методами, не вызывающими изменения специфичности и снижения иммуногенных свойств. Стандартные антигены из инактивированных патогенных микроорганизмов широко применяются в серологическом анализе при обнаружении антител в сыворотках людей и животных.

С помощью серологических реакций выявляют у исследуемых бактериальных клеток антигенный состав. Взвеси эритроцитов, лимфоцитов, опухолевых клеток в серологических реакциях используют для определения локализованных на их поверхностных мембранах АГ групп крови, СД–маркеров, трансплантационных, опухолеспецифических и других АГ, а также для обнаружения в сыворотках АТ к этим антигенам.v

Антигены выделяют и очищают фракционированием различными методами с использованием моноклональных антител.

Иммунная сыворотка (антисыворотка) представляет собой сыворотку крови, содержащую антитела к данному антигену. В большинстве случаев иммунные (диагностические) сыворотки к микробным, тканевым и другим антигенам получаютэкспериментальным путем, иммунизируя животных соответствующими антигенами. По специфичности различают поливалентные (полиспецифические) и моновалентные (моноспецифические) антисыворотки. Поливалентные сыворотки содержат антитела ко многим антигенам, моноспецифические – к одному конкретному антигену.

1.2. РЕАКЦИЯ ПРЕЦИПИТАЦИИ (РП). ПОСТАНОВКА, УЧЕТ РЕЗУЛЬТАТОВ

РЕАКЦИЯ ПРЕЦИПИТАЦИИ – это агрегация антителами (преципитинами) растворимых (молекул) АГ (преципитиногенов), проявляющаяся в помутнении прозрачной жидкости, в появлении преципитата в виде осадка, кольца и т.д.

Антиген для реакции преципитации обязательно должен быть в молекулярном виде. Механизм реакции преципитации аналогичен реакции агглютинации, т.е. по «теории решетки».

Осаждение из раствора комплексов АГ – АТ происходит в диапазоне эквивалентных соотношений концентраций взаимодействующих молекул. В случае большого избытка одного из реагентов образуется растворимый комплекс АГ–АТ и феномен реакции не проявляется. Поскольку преципитиноген имеет ультрамикроскопическое строение и его концентрация в единице объема выше, чем АТ в таком же объеме сыворотки, то для осаждения более легких частичек АГ с образованием видимого преципитата необходимо значительно большее количество АТ. Поэтому диагностические преципитирующие сыворотки выпускают с высоким титром АТ.

Реакцию преципитации можно проводить в жидкой и твердой среде.

Классическая реакция преципитации в жидкой среде по Асколи

Обязательным условием постановки реакции преципитации (РП) в жидкой среде является максимальная прозрачность иммунореагентов. Реакция происходит при смешивании растворов АГ и АТ(метод подслаивания) или наслоения одного иммунореагента на другой. В этом случае по характеру образовавшего преципитата (в виде кольца) реакция получила название кольцепреципитации.

Положительной считается реакция когда в зоне взаимодействия жидкостей, содержащих Аг и Ат образуется дымчатое кольцо. Данная реакция в ветеринарной практике используется для обнаружения возбуделя сибирской язвы в кожевенном и прочем сырье, а также для изучения АГ структуры бактерий, сложных белков, жидкостей человека и животных; для изучения токсигенности бактерий; при диагностике ряда инфекционных заболеваний бактериальной, вирусной, грибковой природы (сибирской язвы, чумы, туляремии и т.д.); В качестве АГ используют раневые экссудаты, фильтраты экстрактов пораженных органов, спинно–мозговую жидкость и т.д. Для установления степени родства видов микроорганизмов, определяют общий АГ; в судебно–медицинской практике – для определения видовой принадлежности белков (крови, слюны, спермы и т.д.);идля выявления примесей в мясных, рыбных, мучных изделиях.

Реакция преципитации в агаре (геле)реакция Оухтерлони.

Для реакции используют гель, приготовленный из агара Дифко или же специально приготовленный предельно осветленный гель из агар–агара.

Сущность реакции заключается в том, что специфические Ат и АГ диффундируют в гель, взаимодействуя между собой, и образуют комплекс, который осаждается в виде линии преципитата. Радиальная иммунодиффузия в геле может быть простой и двойной.

Иммунодиффузия по Оухтерлони

В агаре, разлитом тонким слоем в чашки или же на предметное стекло, вырезают лунки на равном расстоянии друг от друга (4 – 10 мм) при помощи специальных штампов или стеклянных трубок с ровными краями. В лунки вносят раствор сыворотки или раствор антигена в различных разведениях. Из лунок АГ и АТ диффундируют навстречу друг другу и образуют преципитат в виде тонких белесоватых линий.

Поскольку диффузия реагентов из лунок в гель происходит радиально, это позволяет анализировать сразу несколько образцов иммунореагентов, разместив вокруг лунки с антисывороткой несколько лунок с растворами разных антигенов; или наоборот, заполняя периферические лунки антисывороткой, а центральную искомым антигеном; или в центральную лунку внести известный АГ, а в периферические – исследуемую сыворотку в разных разведениях.

Метод двойной иммунодиффузии применяют преимущественно для качественного анализа, для определения природы АГ и АТ, но можно использовать и для полуколичественного определения АГ и АТ путем их титрования.

Для количественного определения антигена часто используют простую радиальную иммунодиффузию по Манчини, которая основана на измерении диаметра кольца преципитации, образующегося при внесении раствора исследуемого АГ в лунки, вырезанные в слое геля, в котором предварительно диспергирована моноспецифическая антисыворотка.

В стандартных условиях опыта диаметр кольца преципитации прямо пропорционален концентрации исследуемого АГ. Содержание АГ определяют относительно стандартного раствора АГ с известной его концентрацией. Чаще всего при помощи этого метода определяют белковые АГ: количество Yg разных классов в сыворотке крови и других жидкостях, секретов желез, белков крови, спинномозговой жидкости и т.д.

Реакцию иммунодиффузии обычно поводят при комнатной температуре, во влажных камерах. Продолжительность иммунодиффузии зависит от природы АГ.

Методы иммунодиффузии обладают высокой специфичностью и чувствительностью.

Реакция флокуляции – вид иммунопреципитации, при котором преципитат представляет собой хлопьевидную массу. Реакцию проводят смешиванием разных разведений сыворотки со стандартным количеством раствора АГ в объеме 2 мл.

Первая пробирка, где появились хлопья (инициальная флоккуляция) указывает на эквивалентное соотношение АГи АТ. По инициальной флоккуляции рассчитывают количество сыворотки или АГ, исходя из активности взятых в опыт стандартных препаратов. Применяется для определения токсинов микроорганизмов в исследуемом материале.

1.3. ИММУНОМИКРОБИОЛОГИЧЕСКИЕ ИССЛЕДОВАНИЯ

Иммунологические методы применяют для решения многих задач:

  1. Оценка состояния иммунной системы человека (иммунного статуса) по определению количественных и функциональных характеристик клеток иммунной системы и их продуктов.
  2. Определение состава и характеристик тканей человека: групп крови, резус фактора, трансплантационных антигенов.
  3. Диагностика инфекционных болезней и резистентности к ним по обнаружению и установлению титров антител (серодиагностика), выявлению антигенов возбудителей в организме, определению клеточных реакций на эти антигены.
  4. Сероидентификация культур бактерий и вирусов, выделенных из организма человека и животных.
  5. Выявление в организме человека и во внешней среде любых веществ, обладающих антигенными или гаптенными свойствами (гормоны, ферменты, яды, лекарства, наркотики и т.п.).
  6. Выявление иммунопатологических состояний, аллергий, трансплантационных и противоопухолевых реакций.

В основе иммунологических методов лежат серологические реакции, для постановки которых используют сыворотку (serum), содержащую антитела (основаны на взаимодействии антигенов и антител) и клеточные реакции, базирующиеся на взаимодействии антигенов (аллергенов) с Т–клетками.

Иммуномикробиологические исследования – вид микробиологического экспресс–анализа по выявлению специфических антител и антигенов.

Процесс взаимодействия антигена и антитела в серологических реакциях протекает в две фазы:

  1. специфическая – фаза взаимодействия, в которой происходит комплементарное соединение активных центров антител (паратопов) и эпитопов антигена. Обычно эта фаза длится несколько секунд или минут;
  2. неспецифическая – фаза проявления, характеризуется внешними признаками образования иммунных комплексов. Эта фаза может развиваться от нескольких минут до нескольких часов.

Оптимальное специфическое взаимодействие антител с антигеном происходит в изотоническом растворе с рН, близким к нейтральному. Реакция антиген–антитело в системе in vitro может сопровождаться возникновением нескольких феноменов – агглютинации, преципитации, лизиса. Внешние проявления реакции зависят от физико–химических свойств антигена (размер частиц, физическое состояние), класса и вида антител (полные и неполные), а также условий опыта (консистенция среды, концентрация солей, рН, температура).

Поливалентность антигенов и антител обеспечивает возникновение видимых невооруженным глазом агрегатов. Это происходит в соответствии с теорией образования сетей, согласно которой к образовавшемуся комплексу антиген–антитело последовательно присоединяются другие молекулы антител и антигена. В результате формируются сетевые структуры, которые превращаются в агрегаты, выпадающие в осадок. Характер и выраженность реакции зависят от количественного соотношения антигенов и антител. Наиболее интенсивно реакции проявляются в том случае, если реагенты находятся в эквивалентном соотношении.

Необходимое условие образование решетки (сетей) – наличие более трех антигенных детерминант на каждую молекулу антигена и по два активных центра на каждую молекулу антитела. Молекулы антигена являются узлами решетки, а молекулы антител – связующими звеньями. Область оптимальных соотношений (зона эквивалентности) концентраций антигена и антител, когда в надосадочной жидкости после образования осадка не обнаруживаются ни свободные антигены, ни свободные антитела.

Агрегаты, способные выпадать в осадок, образуются при соединении антигенов с полными антителами. Неполные антитела (моновалентные) не вызывают образования сетевых структур и крупных агрегатов. Для выявления таких антител используют специальные методы, основанные на использовании антиглобулинов (реакция Кумбса).

Серологические реакции, благодаря высокой специфичности и чувствительности, применяют для выявления и количественного определения антигенов и антител. Количество иммунореагентов в реакциях выражают титром – максимальным разведением сыворотки или антигена, при котором еще наблюдается реакция.

Серологические реакции в микробиологических и иммунологических лабораториях используют в двух целях:

  1. для сероидентификации микроорганизмов, токсинов, антигена вообще с помощью известного антитела (иммунной диагностической сыворотки),
  2. для серодиагностики – определения природы антитела в сыворотке крови больного при бактериальных, вирусных, реже других инфекционных заболеваниях с помощью известного антигена (диагностикума).

Для определения родовой, видовой и типовой принадлежности антигена необходимы заведомо известные иммунные диагностические сыворотки. Их получают путем многократного введения животным (чаще кроликам) в нарастающих дозах убитых или живых микроорганизмов, продуктов их распада, обезвреженных или нативных токсинов. После определенного цикла иммунизации животных делают массивное кровопускание или тотальное обескровливание животного. Кровь, собранную в стерильную посуду, сначала помещают в термостат при температуре 37°С на 4 – 6 ч для ускорения свертывания, затем – в ледник на сутки. Полученную прозрачную сыворотку отсасывают в стерильную посуду, добавляют консерванты, определяют титр антител, проверяют на стерильность и разливают в ампулы.

Используются неадсорбированные и адсорбированные диагностические сыворотки. Неадсорбированные сыворотки обладают высокими титрами антител, но способны давать групповые (перекрестные) реакции. Адсорбированные сыворотки отличаются строгой специфичностью действия (реагируют только с гомологичным антигеном). Сыворотки, содержащие антитела только к одному определенному антигену называются монорецепторными.

Выпускают также сыворотки, меченные флюорохромами, ферментами, радиоизотопами, которые позволяют с высокой степенью точности обнаружить даже следы антигена.

В качестве антигенов (диагностикумы) в серологических реакциях применяют взвеси живых или убитых бактерий, продуктов их расщепления, токсины, вирусы. В ряде случаев используют экстракты или выделенные химическим путем антигены из микроорганизмов и тканей животных.

Все иммуномикробиологические методы можно разделить на 3 группы:

  1. основанные на прямом взаимодействии антигена с антителом (феномены агглютинации, преципитации, гемагглютинации, иммобилизации и др.);
  2. основанные на опосредованном взаимодействии антигена с антителом (реакции непрямой гемагглютинации, коагглютинации, латекс–агглютинации, угольной аггломерации, бентонит–агглютинации, связывания комплемента и др.);
  3. с использованием меченых антител или антигенов (метод флюоресцирующих антител, иммуноферментный и радиоиммунный анализы и другие методы).

К числу современных сложных методов иммунологической диагностики относят: иммуноферментный анализ, имммуносенсоры, методы генного зондирования, иммуноэлектрофорез и иммуноблоттинг.

Иммуноблотинг – один из современных высокоточных вариантов электрофореза с анализом разделенных белков иммунологическим методом. Тест осуществляется в три этапа: сначала проводится–электрофорез в полиакриламидном геле в присутствии ионного детергента додецилсульфата натрия. Разделенные антигены переносятся за счет капиллярных сил или дополнительного электрофореза на иммобилизующую нитроцеллюлозную мембрану. Находящиеся на мембране антигены анализируются с помощью меченых ферментной или радиоактивной меткой антител (иммуноферментным или радиоиммунным методом).

Впервые принцип иммуносенсоров был использован М. Аizawа и соавт. (1977), когда они сконструировали мембрану, способную на иммунологический ответ. В настоящее время опубликовано несколько сообщений об использовании аналогичного подхода для определения различных микробных антигенов или антител к ним .

Принцип методов, основанных на иммуносенсорной технологии, заключается в изменении физико–химических свойств мембраны или другого носителя, связанного с антителами или антигенами. Уменьшение мембранного потенциала, изменение оптических или химических свойств среды, прилегающей к носителю, выявляются с помощью специального электрода или оптического устройства и выражаются в виде электрического сигнала.v

Существует два основных типа иммуносенсоров, различающихся по особенностям определения реакции антиген – антитело. 1 тип – так называемый немеченый иммуносенсор. Такое устройство состоит из металлического электрода для потенциометрии, покрытого полупроницаемой полимерной мембраной с иммобилизованными на ней молекулами антител (или антигена). В результате реакции с искомым комплементарным веществом образуются иммунные комплексы на поверхности мембраны.

Это приводит к изменению заряда мембраны и ее поверхностного потенциала. Изменение разности потенциалов и определяется электродом. 2 тип – меченый иммуносенсор. В этом случае на мембране также иммобилизуются антитела или антиген, но реакция определяется по изменению проводимости (амперметрия). Для этого используют кислородный электрод, реагирующий на изменение концентрации О2 после реакции антител с антигеном, меченым ферментом (например, каталазой). Конкуренция искомого антигена с известным количеством меченого конъюгата дает изменение проводимости раствора в области мембраны, что реализуется в виде электрического сигнала на выходе электрода.

В другой модификации результат цветной ферментативной реакции может быть определен и с помощью оптического устройства.

Для оценки результатов реакции в двух описанных типах иммуносенсоров значительно реже используют пьезоэлектрический эффект, измерение температурных колебаний и некоторые другие способы, менее разработанные в равнении с электрохимическими и оптическими.

Особенностью иммуносенсоров, отличающей их от других систем иммунохимической диагностики, является то, что информация о возникновении иммунного комплекса непосредственно реализуется в виде физического сигнала – изменения разницы потенциалов, оптической плотности, силы тока и т. п.

Одним из первых применений иммуносенсоров было измерение количества антител при сифилисе. Для этого на полупроницаемой мембране электрода связывали антигены трепонемы и инкубировали его в растворе сыворотки крови. Изменения разницы потенциалов наблюдали вплоть до разведения положительной контрольной сыворотки 1:800, причем, увеличение сигнала соответствовало повышению концентрации антител. Важно то, что после отмывания иммуносенсор можно использовать вновь. Аналогичный подход был применен для определения антител другой специфичности (к групповым антигенам крови) и альбумина.

Более сложное строение иммуносенсора увеличивает чувствительность анализа. Так при использовании меченого иммуносенсора достигается чувствительность до 0,1 нг белка/мл. Имеются данные об определении таким методом HBs– антигена с помощью I–электрода и антител к HBs–антигену, меченых пероксидазой. Устройство, включающее стеклянную матрицу, активированную различными вирусными антигенами (биочип) было использовано для серологической диагностики вирусных заболеваний. Предприняты попытки определять с помощью иммуносенсоров продукты синтеза некоторых грибов (охратоксин А), клетки С. Albicans. в настоящее время отсутствуют коммерческие образцы иммуносенсоров для диагностики инфекционных заболеваний, следует обратить внимание на основные этапы использования подобных устройств.

Опыт использования аналогичных систем для определения глюкозы в крови, гормонов, низкомолекулярных веществ позволяет разделить процесс анализа на три этапа:

  1. подготовка образца для анализа. Некоторые типы иммуносенсоров способны взаимодействовать непосредственно с биологическим материалом. Однако чаще всего используется предварительно отделенная центрифугированием плазма или сыворотка крови, разведенная специальным раствором.
  2. проведение аналитической процедуры. Помещая каплю раствора на микроэлектрод, или опуская электрод в исследуемый образец, создается контакт реагентов. Время достижения равновесия от нескольких секунд (для низкомолекулярных веществ) до нескольких минут (для высокомолекулярных агентов, антигенов, клеток). Результат определяется по разнице в показаниях с референс–электродом или по изменению сигнала после реакции. Результат может быть выражен в систематических единицах (милливольт, миллиампер), либо с помощью микропроцессора трансформирован в единицы концентрации искомого агента, в соответствии с предварительным калиброванием.
  3. регенерация иммуносенсора. Для повторного или многократного использования иммуносенсора необходимо освободить его рабочую поверхность от веществ, активно или пассивно сорбированных в ходе анализа. Наиболее простой способ регенерации состоит в интенсивном последовательном промывании иммуносенсора раствором с кислым значением рН и буферным раствором с высокой ионной силой. Для некоторых типов иммуносенсоров до сих пор не найдено оптимальных условий регенерации, не снижающих их чувствительность. В этих случаях используют сменные одноразовые мембранные элементы. В ближайшее время будут созданы надежные портативные иммуносенсоры для диагностики наиболее распространенных инфекционных заболеваний, как это сделано уже для анализаторов глюкозы.

Постановка реакции преципитации в геле.

Особенность этой реакции в том, что взаимодействие антигена с антителом происходит в полутвёрдой среде - геле, чаще агаровом, иногда используют крахмальный гель, полиакриламидный и т. п.

Реакцию преципитации в геле ставят в чашках Петри или на предметных стёклах. Ингредиенты реакции - антиген и антитела - помещают в лунки (колодцы), которые вырезают в агаре.

Различают два метода постановки диффузионной преципитации в агаре: метод простой (или радиальной) иммунодиффузии, когда одно из реагирующих веществ из лунки диффундирует в агар, содержащий постоянную концентрацию другого реагирующего компонента, и метод двойной иммунодиффузии, когда и антиген, и антитело, помещённые в лунки, диффундируют навстречу друг другу в слое агарового геля. На месте встречи антигена и антитела образуются зоны преципитации (кольцо из преципитата при простой иммунодиффузии и линии из преципитата - при двойной иммунодиффузии). В зависимости от сложности системы антиген - антитело может появляться одна или несколько линий преципитации. Чтобы установить титр преципитирующей сыворотки ставят реакции преципитации с различными разведениями антигена. То максимальное разведение антигена, дающее преципитацию с сывороткой, и является титром данной преципитирующей сыворотки.

Примером реакции преципитации в геле может служить реакция между дифтерийным токсином и противодифтерийной сывороткой, которая носит название реакции двойной иммунодиффузии по Оухтерлони.

Токсигенные культуры дифтерийных палочек, посеянные бляшками.

Нетоксигенные культуры, посеянные бляшками.

Фильтровальная бумага, пропитанная противодифтерийной сывороткой.

Линии из преципитата.

Агаровый гель.

Иммуноэлектрофорез сочетает метод электрофореза и реакции преципитации. Смесь антигенов разделяется в геле с помощью электрофореза, затем в канавку параллельно зонам электрофореза вносится иммунная сыворотка, антитела которой диффундируют в гель и образуют в месте встречи с антигеном линии из преципитата.

С его помощью успешно анализируются белки сыворотки крови, цереброспинальной жидкости, мочи, молока, экстрактов из органов, а также белки растительного и бактериального происхождения.

Реакции лизиса.

Для этого надо знать:

Иммунный лизис - это растворение клеток под при обязательном участии воздействием антител комплемента.

Для реакции необходимы:

1. Антиген - микробы, эритроциты или другие клетки.

2. Антитело - иммунная сыворотка, реже сыворотка больного.

Иммунную сыворотку получают гипериммунизацией кролика соответствующим корпускулярным антигеном (микробные клетки, эритроциты и др.). Например, в реакции гемолиза и реакции связывания комплемента (см. ниже) используется гемолитическая сыворотка, которую получают гипериммунизацией кролика эритроцитами барана; полученная таким образом сыворотка крови кролика содержит антитела (гемолизины) к эритроцитам барана. Таким образом получают и бактериолитические сыворотки, содержащие антитела, участвующие в лизисе бактерий.

3. Комплемент - термолабильный сложный комплекс белков сыворотки крови, при активации реагирующих между собой в определённой последовательности и образующих мембраноатакующий литический комплекс. В сыворотке комплемент находится в неактивном состоянии и активируется в момент образования комплекса антиген - антитело (адсорбируется на комплексе антиген - антитело). Комплемента много в свежей сыворотке морских свинок.

Из реакции лизиса чаще других применяется реакция гемолиза и реже бактериолиза (главным образом, для дифференциации холерных и холероподобных вибрионов).

Постановка реакции гемолиза .

Для постановки реакции гемолиза необходимы:

3 % взвесь эритроцитов барана на изотоническом растворе;

Стандартная гемолитическая сыворотка, приготовленная в производственных условиях и разведённая изотоническим раствором в 2 - 3 раза меньше, чем её титр (титр гемолитической сыворотки - то наибольшее разведение её, при котором происходит полный гемолиз 3 % взвеси эритроцитов барана в присутствии комплемента);

Комплемент, разведённый изотоническим раствором 1:10.

Если в пробирку поместить в определенных количественных соотношениях эритроциты барана (антиген), гемолитическую сыворотку (антитело) и комплемент, то в течение нескольких минут произойдет изменение смеси: из темно-красной она становится розовой (лаковой) вследствие разрушения эритроцитов и выхода гемоглобина.

Реакция гемолиза обладает строго выраженной специфичностью. Ее используют в качестве индикатора для постановки реакции связывания комплемента.

Такие реакции используются для так называемых высокодисперсных антигенов, представляющих собой отдельные молекулы. Основные отличия их от реакций агглютинации заключаются в более медленном (как правило) образовании осадка (преципитата), меньшей его плотности и способности со временем диссоциировать.

Наиболее быстрый вариант (экспресс-метод) преципитации - это реакция кольцепреципитации. Для ее постановки используют специальные узкие пробирки, обычно называемые преципитационными. Небольшой диаметр таких пробирок должен препятствовать смешиванию двух растворов, содержащих соответственно антиген и антитела. Необходимо, чтобы оба раствора были прозрачны и не содержали видимых взвешенных частиц. Сначала в пробирку до половины объема наливают один из растворов, а затем медленно по стенке, не допуская перемешивания с уже налитым раствором, приливают второй в таком же объеме. В результате диффузии молекул антигена и антител будут создаваться меняющиеся соотношения концентраций, и, когда они окажутся эквивалентными, образуется располагающийся на границе двух растворов осадок, обычно имеющий форму кольца, что и дало название реакции. Обычно кольцо образуется в течение 5-15 мин, но затем из-за продолжающейся диффузии концентрации выйдут из зоны эквивалентности, комплексы антиген- антитело начнут диссоциировать и кольцо осадка может исчезнуть. Поэтому учитывать результат такой реакции следует не позже, чем через час после ее постановки, что в целом считается одним из ее недостатков.

С целью избежать диссоциации образующихся осадков были разработаны варианты реакций преципитации в гелях, получившие название реакций иммунодиффузии. Используемые для таких реакций гели чаще всего готовят из агара или агарозы в концентрациях от 1 % до 2 % на веронал-ацетатном буфере с рН 6,8 и ионной силой 0,1. Нагретый гелеобразующий раствор наносят слоем равной толщины на прозрачную стеклянную или пластиковую пластинку или дно чашки Петри и после застывания в геле изготавливают лунки равной глубины и диаметра. В зависимости от варианта реакции в лунки будут вноситься растворы антигенов или антител, при диффузии которых в геле будут создаваться эквивалентные концентрации. Хотя такая диффузия будет происходить медленнее, чем в жидкостях, что удлиняет время протекания реакций, образующиеся в геле осадки сохраняются гораздо большее время. Кроме того, можно улучшить визуализацию результатов проведенной реакции путем обработки гелей раствором связывающихся с белками красителей (например, Кумасси синего).

Одним из наиболее распространенных вариантов таких реакций является двойная радиальная иммунодиффузия по Оухтерлони (ил. 47). Для постановки реакции в разные лунки, расположенные на расстояниях 4-10 мм друг от друга, вносят суспензии антигенов и антител. Молекулы реагентов диффундируют в гель, и в случае соответствия антигена и антитела в геле между лунками образуется полоска преципитата. Иммунодиффузия получила название двойной в силу того, что оба компонента движутся в геле навстречу друг другу. Результаты учитывают каждые 24 часа в течение 6-7 суток. Время образования преципитатов варьирует в зависимости от температуры инкубирования гелей (реакцию можно проводить при +4°С, +18-20°С или +37°С) и от молекулярной массы антигенов.

Метод позволяет анализировать сыворотки на содержание антител различной специфичности. В этом случае вокруг одной заполняемой сывороткой лунки располагаются лунки, в которые вносятся различные антигены. По сходной схеме возможно определить наличие в анализируемом растворе нескольких различных антигенов, но в этом случае анализируемый раствор вносят в центральную лунку, а лунки вокруг заполняют различными моноспецифическими сыворотками. При наличии двух или более полос между конкретными лунками делается вывод о наличии в анализируемых смесях нескольких антигенов, способных связываться с антителами сыворотки, но обладающих различной скоростью диффузии. По ширине образующихся полос преципитата можно предположительно оценивать разницу в концентрациях того или иного реагента в анализируемых смесях, однако этот метод не является истинно количественным.

Для определения количества реагирующих компонентов используется простая радиальная иммунодиффузия по Манчини (ил. 48). Для постановки этой реакции один из компонентов (например, антитела) вносят в гелеобразующий раствор до застывания и перемешиванием добиваются равномерного его распространения. После застывания геля в слое образуется одинаковая концентрация этого компонента в любой точке геля. После изготовления лунок их заполняют растворами, содержащими второй компонент (в нашем примере молекулы антигена). В данном случае диффундирующим считается только один, вносимый в лунки, компонент, поэтому такая иммунодиффузия и получила название простой, а не двойной. При соответствии антигенов и антител по специфичности в силу равномерной диффузии по всем направлениям (отсюда название «радиальная диффузия») преципитат образуется в зоне, представляющей окружность вокруг лунки. При этом площадь занятой преципитатом ок


ружности, определяемая по формуле Б = пё , пропорциональна количеству диффундирующего компонента. Измеряя диаметр образованных преципитатом окружностей вокруг каждой из лунок и соотнося полученные величины с построенным заранее по результатам специально проведенного эксперимента графиком соотношения квадрата диаметра и известных концентраций одного из компонентов реакции (калибровочным графиком), можно точно определить концентрацию его в анализируемом растворе. Следует помнить, что условия проведения опытных реакций и реакций, дающих данные для построения калибровочного графика, должны быть полностью идентичными. Только в этом случае полученные в опыте данные можно считать достоверными. Наиболее часто используемыми температурами для проведения такой иммунодиффузии являются +4°С или +18-20°С, время учета результатов - 40-48 часов.

Определенными недостатками преципитации в гелях являются длительность проведения реакций и нечеткость результатов при невысоких концентрациях антигенов. С целью преодолеть эти недостатки во второй половине ХХ века были разработаны методы, сочетающие белковый электрофорез и иммунопреципитацию, которые получили общее название иммуноэлектрофорез (ил. 49). Помимо выигрыша во времени и повышения разрешающей способности такие методы дают возможность более четко отличить белковые антигены, имеющие одинаковые антигенные детерминанты, но отличающиеся по молекулярной массе. Для этого достаточно так называемого обычного иммуноэлектрофореза. Для его постановки изготавливают гель, в котором помимо обычных стартовых лунок готовят также желобок для сыворотки. Желобок располагают между дорожками в направлении от электрода к электроду, т. е. вдоль фронта движения белков. Гель из желобка не удаляют, чтобы не нарушать прохождение электрического тока во время фореза. Сначала в соответствующем буферном растворе проводят электрофорез образцов, анализируемых на присутствие искомого антигена. После снятия электрического поля пластинку геля переносят во влажную камеру, из желобка удаляют гель и вместо него вносят сыворотку или суспензию моноклональных антител. Результаты учитывают после инкубирования геля во влажной камере в течение 12-24 часов. В случае соответствия антигенов и антител в зоне между желобком и дорожками образуются преципитаты в виде дуг, вогнутой стороной направленных в сторону места расположения антигена. Для лучшей визуализации гель прокрашивают красителем, связывающимся с белком. Фактически такой метод является вариантом двойной иммунодиффузии, но имеет большую разрешающую способность и дает существенный выигрыш во времени.

Для некоторых белковых антигенов возможно применить вариант иммуноэлектрофореза, еще в несколько раз ускоряющий процесс. Это так называемый встречный электофорез (электросинерез). Метод основан на том, что различающиеся по аминокислотному составу белки в щелочной среде могут приобретать противоположные заряды и мигрировать при электорофорезе навстречу друг другу. Для проведения такого фореза используют буфер с рН 8,0, а в геле готовят лунки у противоположных концов (у катода и анода соответственно). В одну из лунок вносят антитела, в другую - содержащий антиген раствор. Под действием электрического поля компоненты двигаются гораздо быстрее, чем при обычной диффузии, поэтому преципитаты в центральной части геля будут образовываться в течение 1-3часов. К тому же чувствительность электросинереза приблизительно в 10 раз выше, чем у метода Оухтерлони, т. е. можно обнаруживать антигены, присутствующие в небольших концентрациях. Недостаток метода в том, что он не может быть применим к любым антигенам.

Описанные выше варианты иммуноэлектрофореза позволяют выявить антиген, но не определить его количество. Количественным методом (фактически модификацией иммунодиффузии по Манчини) является так называемый ракетный иммуноэлектрофорез. Для его постановки в охлажденный до 50°С гелеобразующий раствор вносят подогретую до такой же температуры сыворотку с таким расчетом, чтобы она составляла 1-5 % геля, перемешивают и готовят пластинку геля. После внесения в лунки антигенов проводят электрофорез, условия которого подбирают так, чтобы максимально ограничить смещение молекул антител в электрическом поле (чаще всего используют барбиталовый буфер с рН 8,6 и низкое напряжение). Время электрофореза должно обеспечить выход всех молекул антигена из лунки в гель и вхождение их в состав преципитата, обычно это происходит в течение двух часов. Преципитаты в таких условиях образуются в зонах по ходу движения антигена, которые имеют форму вытянутого конуса (ракеты). Длина зоны образования преципитата пропорциональна концентрации антигена, что дает возможность, измерив длину «ракеты» и используя специально построенный калибровочный график, определить количество антигена в пробе.

Вариантом ракетного иммуноэлектрофореза является так называемый перекрестный электрофорез. Для его постановки готовят обычной гель и проводят обычный электрофорез анализируемой пробы. При этом используют одну пробу и лунку располагают у одного из краев пластинки. После проведения электрофореза часть пластинки (около 4/5 от исходного размера) отрезают и удаляют, оставляя только ту часть, в которой находится дорожка первого электрофореза. Затем в ту же камеру заливают гелеобразующий раствор с сывороткой так, чтобы оставшийся участок пластинки объединился с новым, содержащим сыворотку, гелем. Меняют положение пластинки (или электродов) так, чтобы направление движения антигенов было перпендикулярным тому, которое было при первом форезе, и проводят второй форез в условиях, как для ракетного. Учет результатов проводят, как описано выше. В таком варианте результаты могут оказаться более точными, в силу того, что при втором форезе анализируемыми образцами, фактически, оказываются чистые однородные белки.

Описанные выше реакции агглютинации и преципитации были введены в практику еще в конце XIX века и не утратили своего значения до сих пор, но уже в первые годы их применения стало понятно, что их разрешающая способность не всегда удовлетворяет исследователей. В частности, при малых концентрациях того или иного реагента образующиеся комплексы настолько невелики по размерам, что даже с применением микроскопии не могут быть фиксированы исследователем. Поэтому постоянно проводились попытки подобрать условия для более выраженной визуализации результатов взаимодействия антиген- антитело. Одной из успешных попыток стало применение эритроцитов крови в качестве носителей антигена.