Генные мутации. Понятие о генных болезнях

Причины мутаций

Мутации делятся на спонтанные и индуцированные . Спонтанные мутации возникают самопроизвольно на протяжении всей жизни организма в нормальных для него условиях окружающей среды с частотой около 10 в −9 степени - 10 в −12 на нуклеотид за клеточную генерацию. Индуцированными мутациями называют наследуемые изменения генома, возникающие в результате тех или иных мутагенных воздействий в искусственных (экспериментальных) условиях или при неблагоприятных воздействиях окружающей среды.

Мутации появляются постоянно в ходе процессов, происходящих в живой клетке. Основные процессы, приводящие к возникновению мутаций - репликация ДНК , нарушения репарации ДНК и генетическая рекомбинация.

Связь мутаций с репликацией ДНК

Многие спонтанные химические изменения нуклеотидов приводят к мутациям, которые возникают при репликации. Например, из-за деаминирования цитозина напротив него в цепь ДНК может включаться урацил (образуется пара У-Г вместо канонической пары Ц-Г). При репликации ДНК напротив урацила в новую цепь включается аденин, образуется пара У-А, а при следующей репликации она заменяется на пару Т-А, то есть происходит транзиция.

Связь мутаций с рекомбинацией ДНК

Из процессов, связанных с рекомбинацией, наиболее часто приводит к мутациям неравный кроссинговер . Он происходит обычно в тех случаях, когда в хромосоме имеется несколько дуплицированных копий исходного гена, сохранивших похожую последовательность нуклеотидов. В результате неравного кроссинговера в одной из рекомбинантных хромосом происходит дупликация, а в другой - делеция.

Связь мутаций с репарацией ДНК

Спонтанные повреждения ДНК встречаются довольно часто, такие события имеют место в каждой клетке. Для устранения последствий подобных повреждений имеется специальные репарационные механизмы (например, ошибочный участок ДНК вырезается и на этом месте восстанавливается исходный). Мутации возникают лишь тогда, когда репарационный механизм по каким-то причинам не работает или не справляется с устранением повреждений. Мутации, возникающие в генах белков, ответственных за репарацию, могут приводить к многократному повышению (мутаторный эффект) или понижению (антимутаторный эффект) частоты мутирования других генов. Так, мутации генов многих ферментов системы эксцизионной репарации приводят к резкому повышению частоты соматических мутаций у человека, а это, в свою очередь, приводит к развитию пигментной ксеродермы и злокачественных опухолей покровов.

Мутагены

Существуют факторы, способные заметно увеличить частоту мутаций - мутагенные факторы . К ним относятся:

  • химические мутагены - вещества, вызывающие мутации,
  • физические мутагены - ионизирующие излучения , в том числе естественного радиационного фона, ультрафиолетовое излучение, высокая температура и др.,
  • биологические мутагены - например, ретровирусы , ретротранспозоны .

Классификации мутаций

Существует несколько классификаций мутаций по различным критериям. Мёллер предложил делить мутации по характеру изменения функционирования гена на гипоморфные (измененные аллели действуют в том же направлени, что и аллели дикого типа; синтезируется лишь меньше белкового продукта), аморфные (мутация выглядит, как полная потеря функции гена, например, мутация white у Drosophila), антиморфные (мутантный признак изменяется, например, окраска зерна кукурузы меняется с пурпурного на бурый) и неоморфные .

В современной учебной литературе используется и более формальная классификация, основанная на характере изменения структуры отдельных генов, хромосом и генома в целом. В рамках этой классификации различают следующие виды мутаций:

  • генные
  • хромосомные
  • геномные .

Последствия мутаций для клетки и организма

Мутации, которые ухудшают деятельность клетки в многоклеточном организме, часто приводят к уничтожению клетки (в частности, к программируемой смерти клетки, - апоптозу). Если внутри- и внеклеточные защитные механизмы не распознали мутацию и клетка прошла деление, то мутантный ген передастся всем потомкам клетки и, чаще всего, приводит к тому, что все эти клетки начинают функционировать иначе.

Роль мутаций в эволюции

При существенном изменении условий существования те мутации, которые раньше были вредными, могут оказаться полезными. Таким образом, мутации являются материалом для естественного отбора . Так, мутанты-меланисты (темноокрашенные особи) в популяциях березовой пяденицы (Biston betularia) в Англии впервые были обнаружены учеными среди типичных светлых особей в середине XIX века. Темная окраска возникает в результате мутации одного гена. Бабочки проводят день на стволах и ветвях деревьев, обычно покрытых лишайниками, на фоне которых светлая окраска является маскирующей. В результате промышленной революции, сопровождающейся загрязнением атмосферы, лишайники погибли, а светлые стволы берез покрылись копотью. В результате к середине XX века (за 50-100 поколений) в промышленных районах темная морфа почти полностью вытеснила светлую. Было показано, что главная причина преимущественного выживания черной формы - хищничество птиц, которые избирательно выедали светлых бабочек в загрязненных районах.

Если мутация затрагивает «молчащие» участки ДНК, либо приводит к замене одного элемента генетического кода на синонимичный, то она обычно никак не проявляется в фенотипе (проявление такой синонимичной замены может быть связано с разной частотой употребления кодонов). Однако методами генного анализа такие мутации можно обнаружить. Поскольку чаще всего мутации происходят в результате естественных причин, то в предположении, что основные свойства внешней среды не менялись, получается, что частота мутаций должна быть примерно постоянной. Этот факт можно использовать для исследования филогении - изучения происхождения и родственных связей различных таксонов , в том числе и человека . Таким образом, мутации в молчащих генах служат для исследователей своеобразными «молекулярными часами». Теория "молекулярных часов" исходит также из того, что большинство мутаций нейтральны, и скорость их накопления в данном гене не зависит или слабо зависит от действия естественного отбора и потому остается постоянной в течение длительного времени. Для разных генов эта скорость, тем не менее, будет различаться.

Исследование мутаций в митохондриальной ДНК (наследуется по материнской линии) и в Y-хромосомах (наследуется по отцовской линии) широко используется в эволюционной биологии для изучения происхождения рас и народностей, реконструкции биологического развития человечества.

Проблема случайности мутаций

В 40-е годы среди микробиологов была популярна точка зрения, согласно которой мутации вызываются воздействием фактора среды (например. антибиотика), к которому они позволяют адаптироваться. Для проверки этой гипотезы был разработан флуктуационный тест и метод реплик .
Флуктуационный тест Лурия-Дельбрюка заключается в том, что небольшие порции исходной культуры бактерий рассеивают в пробирки с жидкой средой, а после нескольких циклов делений добавляют в пробирки антибиотик. Затем (без последующих делений) на чашки Петри с твердой средой высевают выживших устойчивых к антибиотику бактерий. Тест показал. что число устойчивых колоний из разных пробирок очень изменчиво - в большинстве случаев оно небольшое (или нулевое), а в некоторых случаях очень высокое. Это означает, что мутации, вызвавшие устойчивость к антибиотику, возникали в случайные моменты времени как до, так и после его воздействия.
Метод реплик (в микробиологии) заключается в том, что с исходной чашки Петри, где на твердой среде растут колонии бактерий, делается отпечаток на ворсистую ткань, а затем с ткани бактерии переносятся на несколько других чашек, где рисунок их расположения оказывается тем же, что на исходной чашке. После воздействия антибиотиком на всех чашках выживают колонии, расположенные в одних и тех же точках. Высевая такие колонии на новые чашки, можно показать, что все бактерии внутри колонии обладают устойчивостью.
Таким образом, обоими методами было доказано, что «адаптивные» мутации возникают независимо от воздействия того фактора, к которому они позволяют приспособиться, и в этом смысле мутации случайны. Однако несомненно, что возможность тех или иных мутаций зависит от генотипа и канализована предшествующим ходом эволюции (см. Закон гомологических рядов в наследственной изменчивости). Кроме того, закономерно различается частота мутирования разных генов и разных участков внутри одного гена. Также известно, что высшие организмы используют «целенаправленные» (то есть происходящие в определенных участках ДНК) мутации в механизмах иммунитета . С их помощью создаётся разнообразие клонов лимфоцитов , среди которых в результате всегда находятся клетки, способные дать иммунный ответ на новую, неизвестную для организма болезнь. Подходящие лимфоциты подвергаются положительной селекции , в результате возникает иммунологическая память.

См. также

Ссылки

Инге-Вечтомов С.В. Генетика с основами селекции. М., Высшая школа, 1989.

Примечания


Wikimedia Foundation . 2010 .

Ожидание рождения ребенка - самое прекрасное время для родителей, но также и самое страшное. Многие волнуются, что малыш может родиться с какими-либо недостатками, физическими или умственными отклонениями.

Наука не стоит на месте, есть возможность проверить на маленьких сроках беременности малыша на наличие отклонений в развитии. Практически все эти анализы могут показать, все ли нормально с ребенком.

Почему так происходит, что у одних и тех же родителей могут появиться на свет абсолютно разные дети - здоровый ребенок и ребенок с отклонениями? Это определяют гены. В рождении недоразвитого малыша или ребенка с физическими недостатками влияют генные мутации, связанные с изменением структуры ДНК. Поговорим об этом подробнее. Рассмотрим, как это происходит, какие генные мутации бывают, и их причины.

Что такое мутации?

Мутации - это физиологическое и биологическое изменение клеток в структуре ДНК. Причиной может стать облучение (при беременности нельзя делать снимки рентгеновские, на наличие травм и переломов), ультрафиолетовые лучи (долгое нахождение на солнце во время беременности или нахождение в комнате с включенными лампами ультрафиолетового света). Также такие мутации могут передаться и по наследству от предков. Все они распределяются на типы.

Генные мутации с изменением структуры хромосом или их количества

Это мутации, при которых строение и число хромосом изменены. Хромосомные участки могут выпадать или удваиваться, перемещаться в зону негомологическую, поворачиваться от нормы на сто восемьдесят градусов.

Причины появления такой мутации - это нарушение при кроссенговере.

Генные мутации связаны с изменением структуры хромосом или их количества, являются причиной серьезных расстройств и болезней у малыша. Такие заболевания неизлечимы.

Виды хромосомных мутаций

Всего различаются два вида основных хромосомных мутаций: численные и структурные. Анэуплоидии - это виды по количеству хромосом, то есть когда генные мутации связаны с изменением числа хромосом. Это возникновение дополнительной или нескольких последних, потеря какой-либо из них.

Генные мутации связаны с изменением структуры в том случае, когда хромосомы разрываются, а в дальнейшем воссоединяются, нарушив нормальную конфигурацию.

Виды численных хромосом

По числу хромосом мутации разделяют на анэуплоидии, то есть виды. Рассмотрим основные, выясним разницу.

  • трисомии

Трисомия - это возникновение в кариотипе лишней хромосомы. Самое распространенное явление - это появление двадцать первой хромосомы. Она становится причиной синдрома Дауна, или, как еще называют это заболевание - трисомия двадцать первой хромосомы.

Синдром Патау выявляется по тринадцатой, а по восемнадцатой хромосоме диагностируют Это все аутосомные трисомии. Прочие трисомии не являются жизнеспособными, они погибают в утробе и теряются при самопроизвольных абортах. Те индивидуумы, у которых возникают дополнительные половые хромосомы (X, Y), - жизнеспособны. Клиническое проявление таких мутаций весьма незначительно.

Генные мутации, связанные с изменением числа, возникают по определенным причинам. Трисомии чаще всего могут возникнуть при расхождении в анафазе (мейоз 1). Результатом такого расхождения является то, что обе хромосомы попадают только в одну из двух дочерних клеток, вторая остается пустой.

Реже может возникнуть нерасхождение хромосом. Это явление называют нарушением в расхождении сестринских хроматид. Возникает в мейозе 2. Это именно тот случай, когда две совершенно одинаковые хромосомы селятся в одной гамете, вызывая трисомную зиготу. Нерасхождение происходит в ранние стадии процесса дробления яйцеклетки, которая была оплодотворена. Таким образом, возникает клон клеток-мутантов, который может охватить большую или меньшую часть тканей. Иногда проявляется клинически.

Многие связывают двадцать первую хромосому с возрастом беременной женщины, но этот фактор до сегодняшнего дня не имеет однозначного подтверждения. Причины, по которым не расходятся хромосомы, остаются неизвестными.

  • моносомии

Моносомией называют отсутствие любой из аутосом. Если такое происходит, то в большинстве случаев плод невозможно выносить, случаются преждевременные роды на ранних сроках. Исключение - моносомия по причине двадцать первой хромосомы. Причиной, по которой возникает моносомия, может стать и нерасхождение хромосом, и потеря хромосомы во время ее пути в анафазе к клетке.

По половым хромосомам моносомия приводит к образованию плода, у которого кариотип ХО. Клиническое проявление такого кариотипа - синдром Тернера. В восьмидесяти процентах случаев из ста появление моносомии по Х-хромосоме происходит из-за нарушения мейоза папы ребенка. Это связано с нерасхождением Х и Y хромосом. В основном плод с кариотипом ХО погибает в утробе матери.

По половым хромосомам трисомия разделяется на три вида: 47 XXY, 47 XXX, 47 XYY. является трисомией 47 XXY. С таким кариотипом шансы выносить ребенка делятся пятьдесят на пятьдесят. Причиной такого синдрома может стать нерасхождение хромосом Х или нерасхождение Х и Y сперматогенеза. Второй и третий кариотипы могут возникнуть только у одной из тысячи беременных женщин, они практически не проявляются и в большинстве случаев обнаруживаются специалистами совершенно случайно.

  • полиплоидия

Это генные мутации, связанные с изменением гаплоидного набора хромосом. Эти наборы могут быть утроенными и учетверенными. Триплоидия чаще всего диагностируется уже только тогда, когда произошел спонтанный аборт. Было несколько случаев, когда матери удавалось выносить такого малыша, но все они погибали, не достигнув и месячного возраста. Механизмы генных мутаций в случае триплодии обуславливают полным расхождением и нерасхождением всех хромосомных наборов либо женских, либо мужских половых клеток. Также механизмом может послужить двойное оплодотворение одной яйцеклетки. В этом случае происходит перерождение плаценты. Такое перерождение называют пузырным заносом. Как правило, такие изменения ведут к развитию у малыша умственных и физиологических нарушений, прерыванию беременности.

Какие генные мутации связаны с изменением структуры хромосом

Структурные изменения хромосом являются следствием разрыва (разрушения) хромосомы. В результате эти хромосомы соединяются, нарушив прежний свой вид. Эти видоизменения могут быть несбалансированными и сбалансированными. Сбалансированные не имеют излишка или недостатка материала, поэтому не проявляются. Проявиться они могут только в тех случаях, если на месте разрушения хромосомы был ген, который является функционально важным. У сбалансированного набора могут появиться гаметы несбалансированные. В следствии оплодотворение яйцеклетки такой гаметой может стать причиной появления плода с несбалансированным хромосомным набором. При таком наборе у плода возникает целый ряд пороков развития, появляются тяжелые виды патологии.

Типы структурных видоизменений

Генные мутации происходят на уровне образования гаметы. Предотвратить этот процесс нельзя, равно как нельзя заведомо узнать, могут произойти. Структурных видоизменений есть несколько видов.

  • делеции

Это изменение связано с потерей части хромосомы. После такого разрыва хромосома становится более короткой, а ее оторванная часть теряется при дальнейшем делении клетки. Интерстициальные делеции - это тот случай, когда одна хромосома разрывается сразу в нескольких местах. Такие хромосомы обычно создают нежизнеспособный плод. Но есть и случаи, когда малыши выживали, но у них из-за такого набора хромосом был синдром Вольфа-Хиршхорна, "кошачий крик".

  • дупликации

Эти генные мутации происходят на уровне организации сдвоенных участков ДНК. В основном дупликация не может стать причиной таких патологий, которые вызывают делеции.

  • транслокации

Транслокация возникает из-за переноса генетического материала с одной хромосомы на другие. Если же происходит разрыв одновременно в нескольких хромосомах и они обмениваются сегментами, то это становится причиной возникновения реципроктной транслокации. Кариотип такой транслокации имеет всего сорок шесть хромосом. Сама же транслокация выявляется только при детальном анализе и изучении хромосомы.

Изменение последовательности нуклеотидов

Генные мутации связаны с изменением последовательности нуклеотидов, когда выражаются в видоизменении структур некоторых участков ДНК. По последствиям такие мутации делятся на два типа - без сдвига рамки считывания и со сдвигом. Чтобы точно знать причины изменения участков ДНК, нужно рассмотреть каждый тип отдельно.

Мутация без сдвига рамки

Эти генные мутации связаны с изменением и заменой нуклеотидных пар в структуре ДНК. При таких заменах не теряется длина ДНК, но возможна потеря и замена аминокислот. Есть вероятность того, что структура белка сохранится, этим послужит Рассмотрим детально оба варианта развития: с заменой и без замены аминокислот.

Мутация с заменой аминокислот

Замена остатка аминокислоты в составе полипептидов называют миссенс-мутациями. В гемоглобиновой молекуле человека есть четыре цепи - две "а" (она размещена в шестнадцатой хромосоме) и две "b" (кодировка в одиннадцатой хромосоме). Если "b" - цепь нормальная, и в ее составе есть сто сорок шесть остатков аминокислот, а шестым является глутаминовая, то гемоглобин будет нормальным. В этом случае кислота глутаминовая должна быть закодирована триплетом ГАА. Если за счет мутации ГАА заменен на ГТА, то вместо глутаминовой кислоты в молекуле гемоглобина образуется валин. Таким образом, вместо нормального гемоглобина HbA появится другой гемоглобин HbS. Таким образом, замена одной аминокислоты и одного нуклеотида станет причиной серьезного тяжелого заболевания - анемии серповидноклеточной.

Эта болезнь проявляется тем, что эритроциты становятся по форме, как серп. В таком виде они не способны нормально доставлять кислород. Если на клеточном уровне гомозиготы имеют формулу HbS/HbS, то это ведет к смерти ребенка в самом раннем детстве. Если формула HbA/HbS, то эритроциты имеют слабую форму изменения. Такое слабое изменение имеет полезное качество - устойчивость организма к малярии. В тех странах, где есть опасность заразиться малярией такая же, как в Сибири простудой, это изменение несет полезное качество.

Мутация без замены аминокислот

Замены нуклеотидов без обмена аминокислотами называются сеймсенс-мутациями. Если в участке ДНК, кодирующем "b"- цепь произойдет замена ГАА на ГАГ, то из-за того, что окажется в избытке, замены глутаминовой кислоты не может произойти. Структура цепи не будет изменена, в эритроцитах не будет видоизменений.

Мутации со сдвигом рамки

Такие генные мутации связаны с изменением длины ДНК. Длина может стать меньше или больше, в зависимости от потери или прибавления нуклеотидных пар. Таким образом, будет изменена полностью вся структура белка.

Может произойти внутригенная супрессия. Это явление происходит, когда есть место двум мутациям, компенсирующим друг друга. Это момент присоединения нуклеотидной пары после того, как одна была утеряна, и наоборот.

Нонсенс-мутации

Это особая группа мутаций. Она происходит редко, в ее случае происходит появление стоп-кодонов. Это может случиться как при утрате пар нуклеотидов, так и при их присоединении. Когда появляются стоп-кодоны, синтез полипептидов полностью останавливается. Так могут образоваться нуль-аллели. Этому не будет соответствовать ни один из белков.

Есть такое понятие, как межгенная супрессия. Это такое явление, когда мутация одних генов подавляет мутации в других.

Выявляются ли изменения при беременности?

Генные мутации, связанные с изменением числа хромосом, в большинстве случаев можно определить. Чтобы узнать, есть ли у плода пороки в развитии и патологии, на первых неделях беременности (с десяти до тринадцати недель) назначают скрининг. Это ряд простых обследований: забор на анализы крови из пальца и вены, УЗИ. На ультразвуковом исследовании плод рассматривают в соответствии с параметрами всех конечностей, носа и головы. Эти параметры при сильном несоответствии нормам указывают на то, что у малыша есть пороки в развитии. Подтверждается или опровергается этот диагноз на основании результатов анализа крови.

Также под пристальным наблюдением медиков оказываются будущие мамы, у малышей которых могут возникнуть мутации на генном уровне, передающиеся по наследству. То есть это те женщины, в родне которых были случаи рождения ребенка с умственными или физическими отклонениями, выявленными синдромами Дауна, Патау и прочими генетическими заболеваниями.

January 2nd, 2016

Рудиментарные структуры и компромиссные конструкции все еще могут быть обнаружены в организме человека, которые являются вполне определенными свидетельствами того, что у нашего биологического вида длинная эволюционная история, и что он не просто так появился из ничего.

Также еще одной серией свидетельств этого являются продолжающиеся мутации в человеческом генофонде. Большинство случайных генетических изменений нейтральные, некоторые вредные, а некоторые, оказывается, вызывают положительные улучшения. Такие полезные мутации являются сырьем, которое может быть со временем использовано естественным отбором и распределено среди человечества.

В этой статье некоторые примеры полезных мутаций...

Аполипопротеин AI-Milano

Болезнь сердца является одним из бичей промышленно развитых стран. Она досталась нам в наследство из эволюционного прошлого, когда мы были запрограммированы на стремление к получению богатых энергией жиров, в то время бывших редким и ценным источником калорий, а теперь являющихся причиной закупорки артерий. Однако существуют доказательства того, что у эволюции имеется потенциал, который стоит изучать.

У всех людей есть ген белка под названием аполипопротеин AI, являющийся частью системы, транспортирующей холестерин по кровотоку. Apo-AI является одним из липопротеинов высокой плотности (ЛВП), о которых уже известно, что они являются полезными, поскольку удаляют холестерин со стенок артерий. Известно, что среди небольшого сообщества людей в Италии присутствует мутировавшая версия этого белка, которая называется аполипопротеин AI-Milano, или, сокращенно, Apo-AIM. Apo-AIM действует еще более эффективно, чем Apo-AI во время удаления холестерина из клеток и рассасывания артериальных бляшек, а также дополнительно действуя как антиокислитель, предотвращающий некоторый вред от воспаления, которое обычно возникает при артеросклерозе. По сравнению с другими людьми у людей с геном Apo-AIM значительно ниже степень риска развития инфаркта миокарда и инсульта, и в настоящее время фармацевтические компании планируют выводить на рынок искусственную версию белка в виде кардиозащитного препарата.

Также производятся другие лекарственные препараты, основанные на еще одной мутации в гене PCSK9, производящей подобный эффект. У людей с этой мутацией на 88% снижен риск развития болезни сердца.

Увеличенная плотность костей

Один из генов, который отвечает за плотность кости у людей, называется ЛПНП-подобный рецептор малой плотности 5, или, сокращенно, LRP5. Мутации, ослабляющие функцию LRP5, как известно, вызывают остеопороз. Но другой вид мутации может усилить его функцию, вызывая одну из самых необычных известных мутаций у человека.

Эта мутация была обнаружена случайно, когда молодой человек со своей семьей со Среднего Запада попали в серьезную автокатастрофу, и с места ее происшествия они ушли сами без единой сломанной кости. Рентген выявил, что у них, так же как и у других членов этой семьи, кости были значительно крепче и плотнее, чем это обычно бывает. Занимающийся этим случаем врач, сообщил, что "ни один из этих людей, у которых возраст колебался от 3 до 93 лет, никогда не ломал кости". Фактически оказалось, что они являются не только невосприимчивыми к травмам, но и к обычной возрастной дегенерации скелета. У некоторых из них имелся доброкачественный костистый нарост на небе, но кроме этого у болезни не было других побочных эффектов – кроме того, как сухо было отмечено в статье, что это затрудняло плавание. Как и в случае с Apo-AIM некоторые фармацевтические фирмы исследуют возможность использования этого в качестве исходной точки для терапии, которая могла бы помочь людям с остеопорозом и другими болезнями скелета.

Устойчивость к малярии

Классическим примером эволюционного изменения у людей является мутация гемоглобина под названием HbS, заставляющая эритроциты принимать изогнутую, серповидную форму. Наличие одной копии дарит устойчивость к малярии, наличие же двух копий вызывает развитие серповидноклеточной анемии. Но мы сейчас говорим не об этой мутации.

Как стало известно в 2001 году, итальянские исследователи, изучающие население африканской страны Буркина-Фасо, открыли защитный эффект, связанный с другим вариантом гемоглобина, названного HbC. Люди со всего одной копией этого гена на 29% меньше рискуют заразиться малярией, в то время как люди с двумя его копиями могут наслаждаться 93%-ым сокращением риска. К тому же этот вариант гена вызывает, в худшем случае, легкую анемию, а отнюдь не изнурительную серповидноклеточную болезнь.

Тетрохроматическое зрение

У большинства млекопитающих хроматическое зрение несовершенно, поскольку у них имеется только два вида колбочки сетчатки, ретинальных клеток, различающих различные оттенки цвета. У людей, как и у других приматов, имеются три таких вида, наследство прошлого, когда хорошее хроматическое зрение использовалось для поиска спелых, ярко окрашенных фруктов и давало преимущество для выживания вида.

Ген для одного вида колбочки сетчатки, в основном отвечающий за синий оттенок, был найден в хромосоме Y. Оба других вида, чувствительные к красному и зеленому цвету, находятся в X-хромосоме. В силу того, что у мужчин имеется только одна X-хромосома, мутация, повреждающая ген, отвечающий за красный или зеленый оттенок, приведет к красно-зеленой цветовой слепоте, в то время как у женщин сохранится резервная копия. Это объясняет факт, почему это заболевание почти исключительно присуще мужчинам.

Но возникает вопрос: что происходит, если мутация гена, отвечающего за красный или зеленый цвет, не повредит его, а переместит цветовую гамму, за которую он отвечает? Гены, отвечающие за красный и зеленый цвета, именно так и появились, как следствие дупликации и дивергенции одиночного наследственного гена колбочки сетчатки.

Для мужчины это не было бы существенной разницей. У него все так же имелись бы три цветных рецептора, только набор отличался бы от нашего. Но если бы это произошло с одним из генов колбочки сетчатки женщины, тогда гены, отвечающие за синий, красный и зеленый цвета, находились бы в одной X-хромосоме, а видоизмененный четвертый – в другой..., что означает, что у нее было бы четыре различных цветных рецептора. Она являлась бы, как птицы и черепахи, настоящим "тетрахроматом", теоретически способным различать оттенки цвета, которые все остальные люди не могут видеть отдельно. Означает ли это, что она могла бы видеть совершенно новые цвета, невидимые для всех остальных? Это открытый вопрос.

Также у нас имеются доказательства того, что в редких случаях это уже происходило. Во время исследования по различению цветов, по крайней мере, одна женщина точно показала результаты, которые можно было ожидать от настоящего тетрахромата.

Мы уже о – художницу из Сан-Диего, она тетрахромат.

Меньшая потребность во сне

Восьмичасовой сон нужен не всем: ученые из Пенсильванского университета обнаружили мутацию малоизученного гена BHLHE41, которая, по их мнению, позволяет человеку полноценно отдыхать за более короткое время сна. В ходе исследования ученые попросили пару неидентичных близнецов, один из которых имел вышеупомянутую мутацию, воздерживаться от сна на протяжении 38 часов. «Близнец-мутант» и в повседневной жизни спал всего пять часов - на час меньше, чем его брат. А после депривации он совершил на 40% меньше ошибок в тестах и ему потребовалось меньше времени на то, чтобы полностью восстановить когнитивные функции.

По мнению ученых, благодаря такой мутации человек проводит больше времени в состоянии «глубокого» сна, необходимого для полноценного восстановления физических и умственных сил. Конечно, эта теория требует более основательного изучения и дальнейших экспериментов. Но пока что она выглядит очень заманчиво - кто не мечтает, чтобы в сутках было больше часов?

Гиперэлластичная кожа

Синдром Элерса - Данлоса - генетическое заболевание соединительных тканей, поражающее суставы и кожу. Несмотря на ряд серьёзных осложнений, люди с этим недугом способны безболезненно сгибать конечности под любыми углами. Образ Джокера в фильме Кристофера Нолана «Тёмный рыцарь» частично основан на этом синдроме.

Эхолокация

Одна из способностей, которой любой человек владеет ей в той или иной степени. Слепые люди учатся пользоваться ей в совершенстве, и на этом во многом основан супергерой Сорвиголова. Свой навык можно проверить, встав с закрытыми глазами в центре комнаты и громко щёлкая языком в разных направлениях. Если вы мастер эхолокации, то сможете определить расстояние до любого объекта.

Вечная молодость



Звучит гораздо лучше, чем является на самом деле. Таинственная болезнь, которую окрестили «Синдром X» предотвращает у человека любые признаки взросления. Известный пример - Брук Меган Гринберг, дожившая до 20 лет и при этом телесно и умственно оставшаяся на уровне двухлетнего ребёнка. Известны лишь три случая этого заболевания.

Нечувствительность к боли

Данную способность демонстрировал супергерой Пипец, - это реальное заболевание, не позволяющее организму ощущать боль, жар или холод. Способность вполне героическая, но благодаря ей человек может легко навредить себе, не осознавая этого и вынужден жить очень осторожно.

Суперсила


Одна из самых популярных способностей у супергероев, но одна из самых редких в реальном мире. Мутации, связанные с недостатком белка миостатина, приводят к значительному увеличению мышечной массы человека с отсутствием роста жировой ткани. Известно всего два случая подобных дефектов среди всех людей, и в одном из них двухлетний ребёнок обладает телом и силой бодибилдера.

Золотая кровь

Кровь с нулевым резус-фактором, наиредчайшая в мире. За последние полвека было найдено лишь сорок человек с этим типом крови, на данный момент в живых существует лишь девять. Резус-ноль подходит абсолютно всем, так как в нём отсутствуют любые антигены в системе Rh, но самих его носителей может спасти только такой же «брат по золотой крови».

Так как ученые уже достаточно долго занимаются подобными вопросами, стало известно, что можно получить нулевую группу. Это делается за счет специальных кофейных бобов, которые способны удалять агглютиноген В эритроцитов. Такая система работала сравнительно не долго, так как были случаи несовместимости таковой схемы. После этого стала известна еще одна система, которая была основана на работе двух бактерий – фермент одной из них убивал агглютиноген А, а другой В. Поэтому ученые сделали вывод, что второй метод образования нулевой группы наиболее эффективен и безопасен. Поэтому, американская компания до сих пор усердно работает над разработкой специального аппарата, который будет эффективно и качественно преобразовывать кровь с одной группы крови в нулевую. А такая нулевая кровь будет подходить идеально для всех остальных переливаний. Таким образом, вопрос донорства будет не так глобален, как сейчас и всем реципиентам не придется столько долго ждать, чтоб получить свою кровь.

Ученые не одно столетие уже давно ломают голову о том, как сделать одну единственную универсальную группу, у людей с которой будет минимум риска для различных заболеваний и недостатков. Поэтому на сегодняшний день стало возможным «обнулить» любую группу крови. Это позволит в ближайшем будущем значительно уменьшить риск различных осложнений и заболеваний. Таким образом, исследования показали, что и у мужчин и у женщин наименьший риск развития ИБС. Подобные наблюдения проводили больше 20-и лет. Эти люди на протяжении определенного периода времени отвечали на определенные вопросы о своем здоровье и образе жизни.

Все существующие данные опубликовали на различных источниках. Все исследования привели к тому, что люди с нулевой группой действительно меньше болеют и имеют самую малую вероятность заболевания ИБС. Так же стоит отметить, что резус-фактор не имеет никакого определенного воздействия. Поэтому нулевая группа крови не имеет никакого резус-фактора, что может разделять ту ли иную группу. Одной из наиболее важных причин оказалось то, что у каждой крови ко всему этому еще и разная свертываемость. Это еще больше усложняет ситуацию и вводит в заблуждение ученых. Если смешивать нулевую группу с какой-либо другой и не учитывать уровень свертываемости, это может привести развитию у человека атеросклероза и смерти. На данный момент технология превращения одной группы крови в нулевую не настолько распространена, что каждая больница может этим пользоваться. Поэтому во внимание берутся исключительно те распространенные медицинские центры, которые работают на высоком уровне. Нулевая группа является новым достижением и открытием медицинских ученых, что на сегодняшний день не всем даже знакома.

А вот вы знали, что существует еще

Мутации, возникающие под влиянием специальных воздействий - ионизирующей радиации, химических веществ, температурных факторов и т. п. - называются индуцированными, В свою очередь спонтанными называют мутации» возникшие без преднамеренного воздействия, под влиянием факторов внешней среды или вследствие биохимических и физиологических изменений в организме.

Термин «мутация» был введен в 1901 г. Г. де Фризом, описавшим спонтанные мутации у одного из видов растений» Различные гены у одного вида мутируют с разной частотой, неодинакова частота мутирования и сходных генов в разных генотипах. Частота споитаавото. мутирования генов невелика и исчисляется обычно единицами, реже десятками и совсем редка сотнями случаев на 1 млн. гамет (у кукурузы частота спонтанного мутирования разных генов составляет от 0 до 492 на 10 6 гамет).

Классификация мутаций. В зависимости от характера изменений, возникающих в генетическом аппарате организма, мутации делятся на генные (точечные), хромосомные и геномные.

Генные мутации. Генные мутации составляют наиболее важную и большую по объему долю мутаций. Они представляют собой стойкие изменения отдельных генов и возникают в результате замены одного или нескольких азотистых оснований в структуре ДНК на другие, выпадения иле добавления новых оснований, что ведет к нарушению порядка считывания информации, В итоге происходит изменение в синтезе белков, что в свою очередь обусловливает появление новых или измененных признаков. Генные мутации вызывают изменение признака в разных направлениях, приводя к сильным или слабым изменениям морфологических, биохимических и физиологических свойств.

У бактерий, например, генные мутации чаще всего затрагивают такие признаки, как форму и. цвет колоний, темп их деления, способность сбраживать различные сахара, устойчивость к антибиотикам, сульфаниламидам и другим лекарственным препаратам, реакцию на температурные воздействия, восприимчивость к заражению бактериофагами, ряд биохимических признаков.

Одной из разновидностей, генных мутаций является множественный аллелизм, при котором возникают не две формы одного гена (доминантная и рецессивная), а целая серия мутаций этого гена, вызывающая разные изменения контролируемого данным геном признака. Например, у дрозофилы известна серии из 12 аллелей, возникающих при мутации одного и того же гена, обусловливающего окраску глаз. Серией множественных аллелей представлены гены, определяющие окраску шерсти у кроликов, различие групп крови у человека и др.

Хромосомные мутации. Мутации этого типа, называемые также хромосомными перестройками, или аберрациями, возникают в результате значительных изменений в структуре хромосом. Механизмом возникновения хромосомных перестроек являются образовавшиеся при мутагенном воздействии разрывы хромосом, последующая утрата некоторых фрагментов и воссоединение оставшихся частей хромосомы в ином порядке по сравнению с нормальной хромосомой. Хромосомные перестройки могут быть обнаружены с помощью светового микроскопа. Главные из них: нехватки, делении, дупликации, инверсии, транслокации и транспозиции.

Нехватками называют перестройки хромосом за счет утери концевого фрагмента. Хромосома при этом становится укороченной» лишается части генов, заключенных в утраченном фрагменте. Потерянный участок хромосомы удаляется за пределы ядра в ходе мейоза,

Делеция - тоже потеря участка хромосомы, но не концевого фрагмента, а средней ее части. Если утерянный участок очень мал и не несёт генов, сильно влияющих на жизнеспособность организма, делеция вызовет лишь изменение фенотипа, в ряде случаев она может обусловить летальный исход или серьезную наследственную патологию. Делеции легко обнаруживаются при микроскопическом исследовании, поскольку в мейозе при конъюгации участок нормальной хромосомы, лишенный гомологичного участка в хромосоме с делецией, образует характерную петлю (рис. 89).

При дупликации происходит удвоение какого-нибудь участка хромосомы. Обозначив условно последовательность каких-либо участков хромосомы как ABC , при дупликации мы можем наблюдать такое расположение этих участков: AA ВС, АВВС или АВСС. При дупликации всего выбранного нами участка он будет выглядеть как АВСАВС, т. е. дуплицируется целый блок генов. Возможно многократное повторение одного участка (АВВВС или АВСАВСАВС), дупликацияне только в соседних, но и более удаленных частях одной итой же хромосомы. У дрозофилы, например, описано, восьмикратное повторение одного из участков хромосом. Добавление лишних генов влияет на организм меньше, чем их утрата, поэтому дупликации влияют на фенотип в меньшей степени, чем нехватки и делеции.

При инверсии изменяется порядок расположения генов в хромосоме. Инверсии возникают в результате двух разрывов хромосомы, при этом образовавшийся

фрагмент, встраивается на свое прежнее место, предварительно перевернувшись на 180°. Схематически инверсию можно представить так. В участке хромосомы, несущем геном ABCDEFG , происходят разрывы между генами А и В, Е и F ; образовавшийся фрагмент BCDE переворачивается и встраивается на свое прежнее место. В итоге рассматриваемый участок будет иметь структуру AEDCBFG . Число генов при инверсиях не меняется, поэтому они мало влияют на фенотип организма. Цитологически инверсии легко обнаруживаются по характерному расположению их в мейозе в момент конъюгации гомологичных хромосом.

Транслокации связаны с обменом участками между негомологичными хромосомами или прикреплением участка одной хромосомы к хромосоме негомологичной пары. Обнаруживаются транслокации по генетическим последствиям, которые они вызывают.

Транспозицией называют открытое в последнее время явление вставки небольшого фрагмента хромосомы, несущего несколько генов в какой-нибудь другой участок хромосомы, т. е. перенесение части генов в другое место генома. Механизм возникновения транспозиций еще мало изучен, но есть данные, что он отличается от механизма остальных хромосомных перестроек.

Геномные мутации. Полиплоидия. Каждому из существующих видов живых организмов присущ характерный набор хромосом. Он постоянен по числу, все хромосомы набора различны и представлены один раз. Такой основной гаплоидный набор хромосом организма, содержащийся в его половых клетках, обозначают символом х ; соматические клетки в норме содержат два гаплоидных набора (2х) и являются диплоидными. Если хромосомы диплоидного организма, удвоившиеся в числе в ходе митоза, не, расходятся в две дочерние клетки и остаются в том же ядре, происходит явление кратного увеличения числа хромосом, называемое полиплоидией.

Аутополиплоидия. Полиплоидные формы могут иметь 3 основных набора хромосом (триплоид), 4 (тетраплоид), 5 (пентаплоид), 6 (гексаплоид) и более хромосомных наборов. Полиплоиды с многократным повторением одного и того же основного набора хромосом называются аутополиплоидными. Возникают аутополиплоиды либо как результат деления хромосом без последующего деления клетки, либо за счет участия в оплодотворении половых клеток с нередуцированным числом хромосом, либо при слиянии соматических клеток или их ядер. В эксперименте эффект полиплоидизации достигается действием температурных шоков (высокая или низкая температура) или воздействием ряда химических веществ, среди которых наиболее эффективны алкалоид колхицин, аценафтен, наркотики. В обоих случаях происходит блокада митотического веретена и, как результат,- нерасхождение удвоившихся в ходе митоза хромосом в две новые клетки и объединение их в одном ядре.

Полиплоидные ряды. Основное число хромосом х у разных родов растений разное, но в пределах одного рода виды часто имеют число хромосом, кратное х, образуют так называемые полиплоидные ряды. У пшеницы, например, где х = 7, известны виды, имеющие 2х, 4х и 6х число хромосом. У розы, где основное число также равно 7, существует полиплоидный ряд, разные виды которого содержат 2х, 3 x , 4 x , 5х, 6х, 8х. Полиплоидный ряд картофеля представлен видами с 12, 24, 36, 48, 60, 72, 96, 108 и 144 хромосомами (х = 12).

Аутополиплоидия распространена в основном у растений, поскольку у животных она вызывает нарушение механизма хромосомного определения пола.

Распространение в природе. Вследствие присущей им более широкой нормы реакции полиплоидные растения легче приспосабливаются к неблагоприятным условиям среды, легче переносят колебания температуры и засуху, что дает преимущества в заселении высокогорных и северных районов. Так, в северных широтах они составляют до 80 % всех распространенных там видов. Резко изменяется число полиплоидных видов при переходе от высокогорных районов Памира с его исключительно суровым климатом к более благоприятным условиям Алтая и альпийских Лугов Кавказа. Среди исследованных злаков доля полиплоидных видов на Памире составляет 90%, на Алтае - 72%, на Кавказе - только 50 %.

Особенности биологии и генетики. Для полиплоидных растений характерно увеличение размеров клеток, в результате чего все их органы - листья, стебли, цветки, плоды, корнеплоды имеют более крупные размеры. В силу специфики механизма расхождения хромосом у полиплоидов при скрещивании расщепление по фенотипу в F 2 составляет 35: 1.

В результате отдаленной гибридизации и последующего удвоения числа хромосом у гибридов возникают полиплоидные формы, содержащие два или более повторения разных наборов хромосом и называемые аллополиплоидами.

В ряде случаев полиплоидные растения имеют сниженную плодовитость, что связано с их происхождением и особенностями мейоза. У полиплоидов с четным числом геномов гомологичные хромосомы в ходе мейоза конъюгируют чаще парами, либо по нескольку пар вместе, не нарушая хода мейоза. Если одна или несколько хромосом не находят себе пары в мейозе и не принимают участия в конъюгации, образуются гаметы с несбалансированным числом хромосом, что ведет к их гибели и резкому снижению плодовитости полиплоидов. Еще большие нарушения возникают в мейозе у полиплоидов с нечетным числом наборов. У аллополиплоидов, возникших при гибридизации двух видов и имеющих по два родительских генома, при конъюгации каждая хромосома находит себе партнера среди хромосом своего вида, Полиплоидия играет большую роль в эволюции растений и находит применение в селекционной практике.

Мутации на генном уровне являются молекулярными, не видимыми в световом микроскопе структурными изменениями ДНК. К ним относят любые трансформации дезоксирибонуклеиновой кислоты, вне зависимости от их влияния на жизнеспособность и локализации. Некоторые виды генных мутаций не оказывают никакого воздействия на функции и структуру соответствующего полипептида (белка). Однако большая часть таких трансформаций провоцирует синтез дефектного соединения, утратившего способность выполнять свои задачи. Далее рассмотрим генные и хромосомные мутации более подробно.

Характеристика трансформаций

Наиболее распространенными патологиями, которые провоцируют генные мутации человека, являются нейрофиброматоз, адрено-генитальный синдром, муковисцидоз, фенилкетонурия. В этот список можно также включить гемохроматоз, миопатии Дюшенна-Беккера и прочие. Это далеко не все примеры генных мутаций. Их клиническими признаками выступают обычно нарушения метаболизма (обменного процесса). Генные мутации могут состоять в:

  • Замене в кодоне основания. Такое явление именуют миссенс-мутацией. При этом в кодирующей части происходит замена нуклеотида, что, в свою очередь, приводит к смене аминокислоты в белке.
  • Изменении кодона таким образом, что приостанавливается считывание информации. Этот процесс называют нонсенсмутацией. При замене нуклеотида в данном случае происходит формирование стоп-кодона и прекращение трансляции.
  • Нарушении считывания, сдвиге рамки. Этот процесс именуют "фреймшифтом". При молекулярном изменении ДНК трансформируются триплеты в ходе трансляции полипептидной цепочки.

Классификация

В соответствии с типом молекулярной трансформации существуют следующие генные мутации:

  • Дупликация. В этом случае происходит повторное дублирование либо удвоение фрагмента ДНК от 1 нуклеотида до генов.
  • Делеция. В этом случае имеет место утрата фрагмента ДНК от нуклеотида до гена.
  • Инверсия. В этом случае отмечается поворот на 180 град. участка ДНК. Его размер может быть как в два нуклеотида, так и в целый фрагмент, состоящий из нескольких генов.
  • Инсерция. В этом случае происходит вставка участков ДНК от нуклеотида до гена.

Молекулярные трансформации, захватывающие от 1 до нескольких звеньев, рассматриваются как точечные изменения.

Отличительные черты

Генные мутации имеют ряд особенностей. В первую очередь следует отметить их способность переходить по наследству. Кроме того, мутации могут спровоцировать трансформацию генетических сведений. Некоторые из изменений могут быть отнесены к так называемым нейтральным. Такие генные мутации не провоцируют каких-либо нарушений в фенотипе. Так, благодаря врожденности кода одна и та же аминокислота может кодироваться двумя триплетами, имеющими отличия только по 1 основанию. Вместе с тем определенный ген может мутировать (трансформироваться) в несколько разных состояний. Именно такого рода изменения провоцируют большую часть наследственных патологий. Если приводить примеры генных мутаций, то можно обратиться к группам крови. Так, у элемента, контролирующего их системы АВ0, присутствует три аллеля: В, А и 0. Их сочетание определяют группы крови. Относящаяся к системе АВ0 считается классическим проявлением трансформации нормальных признаков у людей.

Геномные трансформации

Эти трансформации имеют свою классификацию. В категорию геномных мутаций относят изменения в плоидности не измененных структурно хромосом и анеуплоидии. Такие трансформации определяются специальными методами. Анеуплоидия представляет собой изменение (увеличение - трисомию, уменьшение - моносомию) количества хромосом диплоидного набора, некратное гаплоидному. При кратном увеличении числа говорят о полиплоидии. Они и большая часть анеуплоидий у людей считаются летальными изменениями. Среди наиболее распространенных геномных мутаций выделяют:

  • Моносомию. В этом случае присутствует только одна из 2 гомологичных хромосом. На фоне такой трансформации здоровое эмбриональное развитие невозможно по любой из аутосом. В качестве единственной совместимой с жизнью выступает моносомия по хромосоме Х. Она провоцирует синдром Шерешевского-Тернера.
  • Трисомия. В данном случае в кариотипе выявляется три гомологичных элемента. Примеры таких генных мутаций: синдромы Дауна, Эдвардса, Патау.

Провоцирующий фактор

Причиной, по которой развивается анеуплоидия, считается нерасхождение хромосом в процессе клеточного деления на фоне формирования половых клеток либо утрата элементов вследствие анафазного отставания, в то время как при движении к полюсу гомологичное звено может отстать от негомологичного. Понятие "нерасхождение" указывает на отсутствие разделения хроматид либо хромосом в митозе либо мейозе. Это нарушение может привести к мозаицизму. В этом случае одна клеточная линия будет нормальной, а другая - моносомной.

Нерасхождение при мейозе

Такое явление считается наиболее частым. Те хромосомы, которые должны в норме делиться при мейозе, остаются соединенными. В анафазе они отходят к одному клеточному полюсу. В результате формируется 2 гаметы. В одной из них присутствует добавочная хромосома, а в другой не достает элемента. В процессе оплодотворения нормальной клетки с лишним звеном развивается трисомия, гаметы с недостающим компонентом - моносомия. При формировании моносомной зиготы по какому-нибудь аутосомному элементу развитие прекращается на начальных этапах.

Хромосомные мутации

Эти трансформации представляют собой структурные изменения элементов. Как правило, они визуализируются в световой микроскоп. В хромосомные мутации обычно вовлекается от десятков до сотен генов. Это провоцирует изменения в нормальном диплоидном наборе. Как правило, такие аберрации не вызывают трансформации последовательности в ДНК. Однако при изменении количества генных копий развивается генетический дисбаланс из-за недостатка либо переизбытка материала. Существует две большие категории данных трансформаций. В частности, выделяют внутри- и межхромосомные мутации.

Влияние среды

Люди эволюционировали в качестве групп изолированных популяций. Они достаточно долго проживали в одинаковых условиях среды. Речь, в частности, идет о характере питания, климатогеографических характеристиках, культурных традициях, возбудителях патологий и прочем. Все это привело к закреплению специфических для каждой популяции сочетаний аллелей, являвшихся наиболее соответствующими для условий проживания. Однако вследствие интенсивного расширения ареала, миграций, переселения стали возникать ситуации, когда бывшие в одной среде полезные сочетания определенных генов в другой перестали обеспечивать нормальное функционирование ряда систем организма. В связи с этим часть наследственной изменчивости обуславливается неблагоприятным комплексом непатологических элементов. Таким образом, в качестве причины генных мутаций в данном случае выступают изменения внешней среды, условий проживания. Это, в свою очередь, стало основой для развития ряда наследственных заболеваний.

Естественный отбор

С течением времени эволюция протекала в более специфичных видах. Это также способствовало расширению наследственного разнообразия. Так, сохранялись те признаки, которые могли исчезать у животных, и наоборот, отметалось то, что оставалось у зверей. В ходе естественного отбора люди приобретали также и нежелательные признаки, которые имели прямое отношение к болезням. К примеру, у человека в процессе развития появились гены, способные определять чувствительность к полиомиелиту либо дифтерийному токсину. Став Homo sapiens, биологический вид людей в некотором роде "заплатил за свою разумность" накоплением и патологических трансформаций. Данное положение считается основой одной из базовых концепций учения о генных мутациях.