Виды микроскопов: описание, основные характеристики, назначение. Чем электронный микроскоп отличается от светового? Электронная микроскопия

ЭЛЕКТРОННЫЙ МИКРОСКОП - высоковольтный, вакуумный прибор, в котором увеличенное изображение объекта получают с помощью потока электронов. Предназначен для исследования и фотографирования объектов при больших увеличениях. Электронные микроскопы имеют высокую разрешающую способность. Электронные микроскопы находят широкое применение в науке, технике, биологии и медицине.

По принципу действия различают просвечивающие (трансмиссионные), сканирующие, (растровые) и комбинированные электронные микроскопы. Последние могут работать в просвечивающем, сканирующем либо в двух режимах одновременно.

Отечественная промышленность приступила к выпуску просвечивающих электронных микроскопов в конце 40-х годов 20 века Необходимость создания электронного микроскопа была вызвана низкой разрешающей способностью световых микроскопов. Для увеличения разрешающей способности требовался более коротковолновый источник излучения. Решение проблемы стало возможным только с применением в качестве осветителя пучка электронов. Длина волны потока электронов, ускоренных в электрическом поле с разностью потенциалов 50 000 в, составляет 0,005 нм. В настоящее время на просвечивающем электронном микроскопе достигнуто разрешение для пленок золота 0,01 нм.

Схема электронного микроскопа просвечивающего типа: 1 - электронная пушка; 2 - конденсорные линзы; 3 - объектив; 4 - проекционные линзы; 5 - тубус со смотровыми окнами, через которые можно наблюдать изображение; 6 - высоковольтный кабель; 7 - вакуумная система; 8 - пульт управления; 9 - стенд; 10 - высоковольтное питающее устройство; 11 - источник питания электромагнитных линз.

Принципиальная схема просвечивающего электронного микроскопа мало чем отличается от схемы светового микроскопа (см.). Ход лучей и основные элементы конструкции обоих микроскопов аналогичны. Несмотря на большое разнообразие выпускаемых электронных микроскопов, все они построены по одной схеме. Основным элементом конструкции просвечивающего электронного микроскопа является колонна микроскопа, состоящая из источника электронов (электронной пушки), набора электромагнитных линз, предметного столика с объектодержателем, люминесцентного экрана и фоторегистрирующего устройства (см. схему). Все элементы конструкции колонны микроскопа собраны герметично. Системой вакуумных насосов в колонне создается глубокий вакуум для беспрепятственного прохождения электронов и защиты образца от разрушения.

Поток электронов образуется в пушке микроскопа, построенной по принципу трехэлектродной лампы (катод, анод, управляющий электрод). В результате термоэмиссии с разогретого V-образного вольфрамового катода высвобождаются электроны, которые разгоняются до высоких энергий в электрическом поле с разностью потенциалов от нескольких десятков до нескольких сотен киловольт. Через отверстие в аноде поток электронов устремляется в просвет электромагнитных линз.

Наряду с вольфрамовыми термоэмиссионными катодами в электронном микроскопе применяют стержневые и автоэмиссионные катоды, обеспечивающие значительно большую плотность пучка электронов. Однако для их работы необходим вакуум не ниже 10^-7 мм рт. ст., что создает дополнительные конструктивные и эксплуатационные трудности.

Другой основной элемент конструкции колонны микроскопа - электромагнитная линза, представляющая собой катушку с большим числом витков тонкого медного провода, помещенную в панцирь из мягкого железа. При прохождении через обмотку линзы электрического тока в ней образуется электромагнитное поле, силовые линии которого концентрируются во внутреннем кольцевом разрыве панциря. Для усиления магнитного поля в область разрыва помещен полюсный наконечник, позволяющий получать мощное, симметричное поле при минимальном токе в обмотке линзы. Недостатком электромагнитных линз являются различные аберрации, влияющие на разрешающую способность микроскопа. Наибольшее значение имеет астигматизм, вызванный асимметрией магнитного поля линзы. Для его устранения применяют механические и электрические стигматоры.

Задача сдвоенных конденсорных линз, как и конденсора светового микроскопа, состоит в изменении освещенности объекта за счет изменения плотности потока электронов. Диафрагма конденсорной линзы диаметром 40-80 мкм выбирает центральную, наиболее однородную часть мучка электронов. Объективная линза - самая короткофокусная линза с мощным магнитным полем. Ее задача состоит в фокусировании и первичном увеличении угла движения электронов, прошедших через объект. От качества изготовления и однородности материала полюсного наконечника объективной линзы во многом зависит разрешающая способность микроскопа. В промежуточной и проекционной линзах происходит дальнейшее увеличение угла движения электронов.

Особые требования предъявляются к качеству изготовления предметного столика и объектодержателя, так как они должны не только перемещать и наклонять образец в заданных направлениях при большом увеличении, но и при необходимости подвергать его растяжению, нагреву или охлаждению.

Довольно сложным электронно-механическим устройством является фоторегистрирующая часть микроскопа, которая позволяет осуществлять автоматическую экспозицию, замену отснятого фотоматериала, производить на нем запись необходимых режимов микроскопирования.

В отличие от светового микроскопа объект исследования в просвечивающем электронном микроскопе крепится на тонких сетках, изготовленных из немагнитного материала (медь, палладий, платина, золото). На сетки крепится пленка-подложка из коллодия, формвара или углерода толщиной несколько десятков нанометров, затем наносится материал, подвергаемый микроскопическому исследованию. Взаимодействие падающих электронов с атомами образца приводит к изменению направления их движения, отклонению на незначительные углы, отражению или полному поглощению. В формировании изображения на люминесцентном экране или фотоматериале принимают участие только те электроны, которые были отклонены веществом образца на незначительные углы и смогли пройти через апертурную диафрагму объективной линзы. Контрастность изображения зависит от наличия в образце тяжелых атомов, сильно влияющих на направление движения электронов. Для усиления контрастности биологических объектов, построенных в основном из легких элементов, применяют различные методы контрастирования (см. Электронная микроскопия).

В просвечивающем электронном микроскопе предусмотрена возможность получать темнопольное изображение образца при освещении его наклонным пучком электронов. В этом случае через апертурную диафрагму проходят рассеянные образцом электроны. Темно-польная микроскопия увеличивает контрастность изображения при высоком разрешении деталей образца. В просвечивающем электронном микроскопе предусмотрен также режим микродифракции минимальных кристаллов. Переход от светлопольного к темнопольному режиму и микродифракции не требует значительных изменений в схеме микроскопа.

В сканирующем электронном микроскопе поток электронов формируется высоковольтной пушкой. С помощью сдвоенных конденсорных линз получают тонкий пучок электронов (электронный зонд). Посредством отклоняющих катушек электронный зонд разворачивается на поверхности образца, вызывая излучение. Система сканирования в сканирующем электронном микроскопе напоминает систему, с помощью которой получают телевизионное изображение. Взаимодействие электронного луча с образцом приводит к появлению рассеянных электронов, потерявших часть энергии при взаимодействии с атомами образца. Для построения объемного изображения в сканирующем электронном микроскопе электроны собираются специальным детектором, усиливаются и подаются на генератор развертки. Количество отраженных и вторичных электронов в каждой отдельной точке зависит от рельефа и химического состава образца, соответственно меняется яркость и контрастность изображения объекта на кинескопе. Разрешающая способность сканирующего электронного микроскопа достигает 3 нм, увеличение - 300 000. Глубокий вакуум в колонне сканирующего электронного микроскопа предусматривает обязательное обезвоживание биологических образцов с помощью органических растворителей либо их лиофилизацию из замороженного состояния.

Комбинированный электронный микроскоп может быть создан на базе просвечивающего или сканирующего электронного микроскопа. Пользуясь комбинированным электронным микроскопом, можно одновременно изучать образец в просвечивающем и сканирующем режимах. В комбинированном электронном микроскопе, как и в сканирующем, предусмотрена возможность для рентгеноструктурного, энергодисперсионного анализа химического состава вещества объекта, а также для оптико-структурного машинного анализа изображений.

Для увеличения эффективности использования всех видов электронных микроскопов созданы системы, позволяющие переводить электронно-микроскопическое изображение в цифровую форму с последующей обработкой этой информации на ЭВМ Оптико-структурный машинный анализ позволяет производить статистический анализ изображения непосредственно с микроскопа, минуя традиционный метод «негатив-отпечаток».

Библиогр.: Стоянова И. Г. и Анаскнн И. Ф. Физические основы методов просвечивающей электронной микроскопии, М., 1972; Суворов А. Л. Микроскопия в науке и технике, М., 1981; Финеан Дж. Биологические ультраструктуры, пер. с англ., М., 1970; Шиммель Г. Методика электронной микроскопии, пер. с нем.. М., 1972. См. также библиогр. к ст. Электронная микроскопия.

Мы начинаем публиковать блог предпринимателя, специалиста в области информационных технологий и по совместительству конструктора-любителя Алексея Брагина, в котором рассказывается о необычном опыте - вот уже год как автор блога занят восстановлением сложного научного оборудования - сканирующего электронного микроскопа - практически в домашних условиях. Читайте о том, с какими инженерно-техническими и научными задачами пришлось столкнуться Алексею и как он с ними справился.

Позвонил мне как-то друг и говорит: нашел интересную штуку, надо привезти к тебе, правда, весит полтонны. Так у меня в гараже появилась колонна от сканирующего электронного микроскопа JEOL JSM-50A. Ее давно списали из какого-то НИИ и вывезли в металлолом. Электронику потеряли, а вот электронно-оптическую колонну вместе с вакуумной частью удалось спасти.

Раз основная часть оборудования сохранилась, возник вопрос: нельзя ли спасти микроскоп целиком, то есть восстановить и привести его в рабочее состояние? Причем прямо в гараже, собственными руками, с помощью лишь базовых инженерно-технических знаний и подручных средств? Правда, прежде я никогда не имел дела с подобным научным оборудованием, не говоря уже о том, чтобы уметь им пользоваться, и не представлял, как оно работает. Но интересно ведь не просто запустить старую железяку в рабочее состояние - интересно во всем самостоятельно разобраться и проверить, возможно ли, используя научный метод, освоить совершенно новые области. Так я стал восстанавливать электронный микроскоп в гараже.

В этом блоге я буду рассказывать вам о том, что мне уже удалось сделать и что еще предстоит. Попутно я познакомлю вас с принципами функционирования электронных микроскопов и их основных узлов, а также расскажу о множестве технических препятствий, которые пришлось преодолеть по ходу работы. Итак, приступим.

Чтобы восстановить оказавшийся у меня микроскоп хотя бы до состояния «рисуем электронным лучом на люминесцентном экране», необходимо было следующее:

  • понять основы работы электронных микроскопов;
  • разобраться в том, что такое вакуум и какой он бывает;
  • как измеряют вакуум и как его получают;
  • как работают высоковакуумные насосы;
  • минимально разобраться в прикладной химии (какие растворители использовать для очистки вакуумной камеры, какое масло    использовать для смазки вакуумных деталей);
  • освоить металлообработку (токарные и фрезерные работы) для изготовления всевозможных переходников и инструментов;
  • разобраться с микроконтроллерами и схемотехникой их подключения.

  • Начнем по порядку. Сегодня я расскажу о принципах работы электронных микроскопов. Они бывают двух типов:

  • просвечивающий - TEM, или ПЭМ;
  • сканирующий - SEM, или РЭМ (от «растровый»).
  • Просвечивающий электронный микроскоп

    ПЭМ очень похож на обычный оптический микроскоп, только исследуемый образец облучается не светом (фотонами), а электронами. Длина волны электронного луча намного меньше, чем фотонного, поэтому можно получить существенно большее разрешение.

    Фокусировка электронного луча и управление им осуществляются с помощью электромагнитных или электростатических линз. Им даже присущи те же искажения (хроматические аберрации), что и оптическим линзам, хотя природа физического взаимодействия тут совершенно иная. Она, кстати, добавляет еще и новых искажений (вызванных закручиванием электронов в линзе вдоль оси электронного пучка, чего не происходит с фотонами в оптическом микроскопе).

    У ПЭМ есть недостатки: исследуемые образцы должны быть очень тонкие, тоньше 1 микрона, что не всегда удобно, особенно при работе в домашних условиях. Например, чтобы посмотреть свой волос на просвет, его необходимо разрезать вдоль хотя бы на 50 слоев. Это связано с тем, что проникающая способность электронного луча гораздо хуже фотонного. К тому же ПЭМ, за редким исключением, достаточно громоздки. Вот этот аппарат, изображенный ниже, вроде бы и не такой большой (хотя он выше человеческого роста и имеет цельную чугунную станину), но к нему еще прилагается блок питания размером с большой шкаф - итого необходима почти целая комната.


    Зато разрешение у ПЭМ - наивысшее. С его помощью (если сильно постараться) можно увидеть отдельные атомы вещества.


    University of Calgary


    Такое разрешение бывает особенно полезно для идентификации возбудителя вирусного заболевания. Вся вирусная аналитика ХХ века была построена на базе ПЭМ, и только с появлением более дешевых методов диагностики популярных вирусов (например, полимеразной цепной реакции, или ПЦР) рутинное использование ПЭМов для этой цели прекратилось.

    Например, вот как выглядит грипп H1N1 «на просвет»:


    University of Calgary


    Сканирующий электронный микроскоп


    SEM применяется в основном для исследования поверхности образцов с очень высоким разрешением (увеличение в миллион крат, против 2 тысяч у оптических микроскопов). А это уже гораздо полезнее в домашнем хозяйстве:)

    К примеру, так выглядит отдельная щетинка новой зубной щетки:

    То же самое должно происходить и в электронно-оптической колонне микроскопа, только тут облучается образец, а не люминофор экрана, и изображение формируется на основе информации с датчиков, фиксирующих вторичные электроны, упруго-отраженные электроны и прочее. Об электронном микроскопе именно этого типа и пойдет речь в этом блоге.

    И кинескоп телевизора, и электронно-оптическая колонна микроскопа работают только под вакуумом. Но об этом я расскажу подробно в следующем выпуске.

    (Продолжение следует)

    Трансмиссионный электронный микроскоп – прибор для получения увеличенного изображения микроскопических предметов, в котором используются пучки электронов. Электронные микроскопы имеют большее разрешение по сравнению с оптическими микроскопами, кроме того они могут применяться также для получения дополнительной информации относительно материала и структуры объекта.
    Первый электронный микроскоп был построен в 1931 году немецкими инженерами Эрнст Руска и Максом ствола. Эрнст Руска получил за это открытие Нобелевскую премию по физике в 1986 году. Он разделил ее с изобретателями туннельного микроскопа, поскольку Нобелевский комитет чувствовал, что изобретателей электронного микроскопа несправедливо забыли.
    В электронном микроскопе для получения изображения используются фокусированные пучки электронов, которыми бомбардируется поверхность исследуемого объекта. Изображение можно наблюдать разными способами – в лучах, которые прошли через объект, в отраженных лучах, регистрируя вторичные электроны или рентгеновское излучение. Фокусировки пучка электронов с помощью специальных электронных линз.
    Электронные микроскопы могут увеличивать изображение в 2 млн. раз. Высокое разрешение электронных микроскопов достигается за счет малой длины волны электрона. В то время как длина волны видимого света лежит в диапазоне от 400 до 800 нм, длина волны электрона, ускоренного в потенциале 150 В, составляет 0,1 нм. Таким образом, в электронные микроскопы можно практически рассматривать объекты размером с атом, хотя практически осуществить это трудно.
    Схематическая строение электронного микроскопа Строение электронного микроскопа можно рассмотреть на примере прибора, работающего на пропускание. Монохроматический пучок электронов формируется в электронной пушке. Его характеристики улучшаются конденсорною системой, состоящей из конденсорнои диафрагмы и электронных линз. В зависимости от типа линз, магнитных или электростатических, различат магнитные и электростатические микроскопы. В дальнейшем пучок попадает на предмет, рассеиваясь на нем. Рассеянный пучок проходит через апертуру и попадает в объективную линзу, которая предназначена для растягивания изображения. Растянутый пучок электронов вызывает свечение люминофора на экране. В современных микроскопах используются несколько степеней увеличения.
    Апертурная диафрагма объектива электронного микроскопа очень мала, составляет сотые доли миллиметра.
    Если пучок электронов от объекта потраплае непосредственно на экран, то объект будет выглядеть на нем темным, а вокруг образовываться светлый фон. Такое изображение называется свитлопольним. Если же в апертуру объективной линзы попадает не основы пучок, а рассеянный, то образуется темнопольный изображения. Темнопольный изображение контрастнее, чем свитлопольне, но разрешение у него меньше.
    Существует много различных типов и конструкций электронных микроскопов. Основными среди них являются:

    Просвичуюючий электронный микроскоп – прибор, в котором электронный пучок просвечивает предмет насквозь.

    Сканирующий просвичуюючий электронный микроскоп позволяет изучать отдельные участки объекта.

    Сканирующий электронный микроскоп использует для исследования поверхности объекта, выбитые электронным пучком вторичные электроны.

    Рефлекторный электронный микроскоп использует упруго-рассеянные электроны.

    Электронный микроскоп можно, также, снарядить системой детектирования рентгеновских лучей, которые излучают сильно возбуждены, при столкновении с высокоэнергетическими електоронамы, атомы вещества. При выбивании электрона из внутренней электронных оболочек, образуется характеристическое рентгеновское излучение, исследуя которое можно установить химический состав материала.
    Изучение спектра неупругие-рассеянных электронов позволяет получать информацию о характерных электронные возбуждения в материале исследуемого предмета.
    Электронные микроскопы широко используются в физике, материаловедении, биологии.

    Вчера сфотографировал белую Ауди. Получилось отличное фото audi сбоку. Жалко, что тюнинг на фотографии не видно.

    В современном мире микроскоп считается незаменимым оптическим устройством. Без него сложно представить такие сферы человеческой деятельности как биология, медицина, химия, космические исследования, генная инженерия.


    Микроскопы используются для изучения самых разных объектов и позволяют в мельчайших деталях рассмотреть структуры, которые невидимы невооруженным глазом. Кому же человечество обязано появлением этого полезного прибора? Кто изобрел микроскоп и когда?

    Когда появился первый микроскоп?

    История возникновения устройства уходит корнями в далекую старину. Способность изогнутых поверхностей отражать и преломлять солнечный свет была замечена еще в III столетии до нашей эры исследователем Евклидом. В своих работах ученый нашел объяснение зрительного увеличения предметов, но тогда его открытие не нашло практического применения.

    Самая ранняя информация о микроскопах восходит к XVIII веку. В 1590 году нидерландский мастер Захарий Янсен поместил в одну трубку две линзы от очков и смог увидеть предметы, увеличенные от 5 до 10 раз.


    Позже известный исследователь Галилео Галилей изобрел подзорную трубу и обратил внимание на интересную особенность: если ее сильно раздвинуть, то можно существенно увеличить небольшие объекты.

    Кто соорудил первую модель оптического устройства?

    Настоящий научно-технический прорыв в развитии микроскопа произошел в XVII веке. В 1619 году голландский изобретатель Корнелиус Дреббель придумал микроскоп с выпуклыми линзами, а в конце столетия другой нидерландец – Христиан Гюйгенс – презентовал свою модель, в которой можно было регулировать окуляры.

    Более совершенное устройство было придумано изобретателем Антони Ван Левенгуком, который создал прибор с одной большой линзой. На протяжении последующих полутора столетий это изделие давало наивысшее качество изображения, поэтому Левенгука нередко называют изобретателем микроскопа.

    Кто придумал первый сложный микроскоп?

    Существует мнение, что оптическое устройство изобрел не Левенгук, а Роберт Гук, который в 1661 году усовершенствовал модель Гюйгенса, добавив к ней дополнительную линзу. Полученный тип прибора стал одним из наиболее популярных в научной среде и широко использовался до середины XVIII столетия.


    В дальнейшем свою руку к развитию микроскопа прикладывали многие изобретатели. В 1863 году Генри Сорби придумал поляризационное устройство, позволявшее исследовать , а в 1870-х годах Эрнст Аббе разработал теорию микроскопов и открыл безразмерную величину «число Аббе», что способствовало изготовлению более совершенного оптического оборудования.

    Кто является изобретателем электронного микроскопа?

    В 1931 году ученый Роберт Руденберг запатентовал новый прибор, который мог увеличивать предметы с помощью пучков электронов. Устройство получило название электронный микроскоп и нашло широкое применение во многих науках благодаря высокой разрешающей способности, в тысячи раз превосходящей обычную оптику.

    Спустя год Эрнст Руска создал прототип современного электронного прибора, за что был удостоен Нобелевской премии. Уже в конце 1930-х годов его изобретение стало массово применяться в научных исследованиях. Тогда же фирма Siemens приступила к выпуску электронных микроскопов, предназначенных для коммерческого использования.

    Кто автор наноскопа?

    Самой инновационной разновидностью оптического микроскопа на сегодняшний день является наноскоп, разработанный в 2006 году группой ученых под руководством немецкого изобретателя Штефана Хелля.


    Новое устройство позволяет не только преодолевать барьер числа Аббе, но и предоставляет возможность наблюдать за объектами, имеющими размеры 10 нанометров и меньше. Кроме того, устройство дает высококачественные трехмерные изображения объектов, что ранее было недоступно обычным микроскопам.