Аберрации высших порядков.

Данная информация предназначена для специалистов в области здравоохранения и фармацевтики. Пациенты не должны использовать эту информацию в качестве медицинских советов или рекомендаций.

Аберрации человеческого глаза, способы их измерения и коррекции (обзор литературы)

Г.Б. Егорова, Н.В. Бородина, И.А. Бубнова
ГУ НИИ глазных болезней РАМН

This article is devoted to the new technology, «new diagnostic tool» –non–invasive wavefront sensing of the human eye, which can provide ophthalmologists with precise measurement of both higher– and lower–order aberrations. It describes most wide–spread types of wavefront systems, which use different principles in there functioning. Many factors, such as age of patient, accommodation, tear film break–up may cause the changes in wavefront map. Also higher order aberrations can be increased, by wearing soft or rigid contact lenses. Refractive and cataract surgery may induce large amount of higher order aberrations, which determine the cause the lower BCVA, than we can expect. This article describes different possible ways of correction higher order aberrations.

Современный мир предъявляет высокие требования к здоровью человека, и в первую очередь к зрению, так как основной объем информации поступает через зрительный анализатор. Для выполнения качественной и быстрой интеллектуальной работы специалист должен не только иметь хорошую остроту зрения, но удовлетворительную зрительную работоспособность, которая зависит от качества поступающего в головной мозг изображения.

Как и любой «неидеальной» оптической системе, человеческому глазу свойственны оптические дефекты – аберрации, которые снижают качество зрения, искажая изображение на сетчатке. Аберрация – это любое угловое отклонение узкого параллельного пучка света от точки идеального пересечения с сетчаткой в центре фовеолы при его прохождении через всю оптическую систему глаза .

В технической оптике качество оптической системы определяется аберрациями плоского или сферического фронта световой волны при прохождении через эту систему . Так, глаз без аберраций имеет плоский волновой фронт и дает наиболее полноценное изображение на сетчатке точечного источника (так называемый «диск Эйри», размер которого зависит только от диаметра зрачка) . Но в норме, даже при остроте зрения 100%, оптические дефекты преломляющих свет поверхностей глаза искажают ход лучей и формируют неправильный волновой фронт, в результате чего изображение на сетчатке получается более крупным и асимметричным. Такое искажение называется «функцией светорассеяния изображения точки» .

Количественной характеристикой оптического качества изображения является среднеквадратичное значение ошибок отклонения реального волнового фронта от идеального . Zernike ввел математический формализм, использующий серии полиномов для описания аберраций волнового фронта . Полиномы первого и второго, т. е. низших порядков, описывают привычные для офтальмологов оптические аберрации – дефокусировку (аметропии), астигматизм. Менее известны полиномы высших порядков: третий соответствует коме – это сферическая аберрация косых пучков света, падающих под углом к оптической оси глаза. В ее основе лежит асимметрия оптических элементов глаза, в результате которой центр роговицы не совпадает с центром хрусталика и фовеолы. К аберрациям четвертого порядка относится сферическая аберрация, которая в основном обусловлена тем, что периферия хрусталика преломляет падающие на нее параллельные лучи сильнее центра. Более высокие порядки известны, как нерегулярные аберрации .

Кроме того, сама полихроматическая природа света обусловливает появление аберраций: лучи разной длины волны фокусируются на разном расстоянии от сетчатки (коротковолновые – ближе к роговице, чем длинноволновые). Такие аберрации называют хроматическими .

Оптическая система считается хорошей, если коэффициенты Цернике близки к нулю и, следовательно, среднеквадратичное значение ошибок волнового фронта меньше 1/14 длины волны (критерий Марешаля) . При известных волновых аберрациях можно рассчитать коэффициент Штреля (соотношение между пиком интенсивности функции светорассеяния изображения точки определенного глаза и глаза без аберраций), который в определенных условиях хорошо коррелирует с остротой зрения . Исходя из данных этого коэффициента можно прогнозировать остроту зрения, моделируя изображение любых оптотипов на сетчатке.

Вопрос разработки методов качественной и количественной оценки аберраций стоял перед офтальмологами давно. Еще в конце 19 века, в 1894 году, Tscherning разработал оригинальный метод, основанный на субъективном определении аберраций . В дальнейшем он был доработан Howland в 1960 году, а в 1989 аберроскопом такого типа пользовался Ю.З. Розенблюм . Но, к сожалению, такая аберрометрия носит только описательный характер, требует активного участия пациента и является весьма трудоемкой процедурой. С приходом в офтальмологию новых технологий появился широкий спектр точных объе ктивных методов как качественного, так (и что особенно важно) количественного способа оценки аберраций глаза.

В настоящее время известно несколько методов определения аберраций глаза, основанных на разных принципах. Первый из них – это анализ ретинального изображения мишени (retinal imaging aberrometry), реализованный в двух вариантах. В усовершенствованном аберрометре Tscherning в качестве источника параллельных лучей используется YAG–лазер с длиной волны 532 нм, луч которого, пройдя через коллиматор, приобретает параллельное направление и проецирует на сетчатку решетку из 168 точек, расположенных в форме квадрата. Ретинальное изображение этой решетки регистрируется цифровой камерой и обрабатывается на компьютере . При аберрометрии по отслеживанию луча (ray tracing aberrometry) используется прибор, разработанный В.В. и В.С. Молебными совместно с И. Паликарисом. На сетчатку проецируются два параллельных лазерных луча с длиной волны 650 нм и диаметром 0,3 мм, один из которых падает строго по зрительной оси и является опорным, а другой расположен на заданном расстоянии от него. Далее регистрируется степень отклонения второго луча от точки фиксации опорного луча, и таким образом последовательно анализируется каждая точка в пределах зрачка .

Второй принцип – анализ вышедшего из глаза отраженного луча (outgoing refraction aberrometry) – впервые был описан Hartmann в 1900 году, позднее модифицирован R.V. Shack и B.C. Platt в 1971 году и применялся в астрономии для компенсации аберраций в телескопах при прохождении через атмосферу и космическое пространство. С помощью диодного лазера с длиной волны 850 нм в глаз направляется коллимированный пучок излучения, который, пройдя через все среды глаза, отражается от сетчатки с учетом аберраций и на выходе попадает на матрицу, состоящую из 1089 микролинз. Каждая микролинза собирает неаберрированные лучи в своей фокальной точке, а подверженные аберрации лучи фокусируются на некотором расстоянии от нее. Полученная информация обрабатывается компьютером и представляется в виде карты аберраций .

Третий принцип основан на компенсаторной юстировке падающего на фовеолу светового пучка. Основоположником его был русский физик М.И. Смирнов, который изобрел простейший метод измерения аберраций и опубликовал свою работу в 1961 году. В дальнейшем он был усовершенствован и в настоящее время применяется в качестве субъективного аберрометра, требующего активного участия пациента. В ходе исследования через вращающийся диск с отверстиями 1 мм, расположенный на одной оптической оси со зрачком, в глаз направляется пучок света. При вращении диска узкие параллельные пучки света проходят через каждую точку зрачка и при отсутствии аберраций проецируются на фовеолу, куда направлен другой луч с контрольной меткой в виде крестика. Если у пациента имеется аметропия или другие аберрации более высоких порядков, то он заметит несовпадение этих точек с крестиком и с помощью специального устройства должен будет их сопоставить. Угол, на который он смещает точку, отражает степень аберраций .

Принцип классической скиаскопии реализован в виде сканирующего щелевого рефрактометра «OPD Scan», в котором через вращающееся колесо с щелью по оптической оси глаза проецируется инфракрасный пучок. Его отражение воспринимает фотодетектор и оценивает направление и скорость движения отраженного от сетчатки луча .

Разнообразие офтальмологических приборов, созданных с учетом новейших технологий и основанных на различных принципах действия, делает реальным не только качественную, но и количественную оценку аберрации низших и высших порядков, а также влияющих на них факторов.

Выявлено, что аберрации оптической системы глаза зависят от формы и прозрачности роговицы и хрусталика; локализации патологических изменений в сетчатке; прозрачности внутриглазной жидкости и стекловидного тела .

Известно, что увеличение диаметра зрачка вносит изменения в соотношение аберраций высших порядков. Если при диаметре зрачка равном 5,0 мм превалируют аберрации 3–го порядка, то при его увеличении до 8,0 мм возрастает доля аберраций 4–го порядка. Рассчитано, что критический размер зрачка, при котором аберрации высших порядков оказывают наименьшее влияние и отвечают критерию Марешаля, составляет 3,22 мм .

Несомненно воздействие на карту аберраций аккомодации. Отмечено, что с возрастом аберрации увеличиваются, и в период от 30 до 60 лет аберрации высшего порядка удваиваются. Возможно, это связано с тем, что со временем эластичность и прозрачность хрусталика уменьшается, и он перестает компенсировать роговичные аберрации .

К факторам, влияющим на аберрации, относится и состояние слезной пленки. Авторами обнаружено, что при разрушении слезной пленки аберрации высших порядков увеличиваются в 1,44 раза .

Значительное место в использовании волнового фронта занимают исследования аберраций при кератоконусе. Отмечено значительное увеличение аберраций, особенно кома–подобных, которые превышали в 2,3 раза уровень сферических аберраций . Метод волнового фронта дает возможность создания «индивидуальной оптики» – контактной линзы (КЛ) для коррекции кератоконуса. «Индивидуальная оптика» предназначена для коррекции аберраций высшего порядка. Алгоритм дизайна КЛ разрабатывается на основе данных волнового фронта и компьютерной топографии роговицы .

Некоторые исследователи отмечают появление аберраций, индуцированных КЛ. Так, выявлено, что мягкие КЛ могут вызывать волновые монохроматические аберрации высокого порядка, тогда как жесткие КЛ значительно уменьшают аберрации 2–го порядка. Однако асферичность поверхности жестких КЛ может быть причиной сферических аберраций. Асферические КЛ могут вызывать большую нестабильность остроты зрения, чем сферические КЛ при одной и той же подвижности за счет индуцирования аберраций . Мультифокальные КЛ могут индуцировать аберрации по типу комы и 5–го порядка .

Использование волнового фронта позволило разработать методы изготовления КЛ с целью максимальной нейтрализации аберраций глаза. Однако ротация и изменение положения линзы на роговице ограничивают возможности компенсации аберраций [ 16, 22, 29].

Исследования аберраций индуцированных КЛ открыли возможность изготовления линз определенного дизайна, который позволяет снизить уровень суммарных остаточных аберраций глаза и повысить контрастную чувствительность .

Несомненным является тот факт, что практически любое хирургические вмешательство индуцирует аберрации высших и низших порядков. Так, фоторефракционные операции увеличивают аберрации роговицы (в основном 3–го и 4–го порядка) и изменяют их соотношение, что может обусловливать низкое зрение после операции и появление жалоб у пациентов на ослепление и двоение изображения . Выявлена строгая корреляция между зрительными симптомами и аберрациями: монокулярная диплопия возникает при горизонтальной коме, а глэр–эффект – при сферических аберрациях . Проведенные исследования показывают, что при диаметре зрачка, превышающем 7,0 мм, Laser in situ keratomileusis (LASIK) индуцирует больше сферических аберраций, чем фоторефрактивная кератэктомия (ФРК). Вероятно, этим можно объяснить, что после проведенного LASIK описывается большее количество жалоб пациентов, связанных с ослеплением, чем после ФРК .

В настоящее время разработана методика проведения индивидуализированной абляции на основе аберрометрии, которая позволяет достичь так называемого «суперзрения», т.е. остроты зрения 1,5 и более. Множество факторов могут ограничивать возможности данной методики. Во–первых, это постоянные динамические изменения параметров глаза, зависящие от тонуса аккомодации, размера зрачка, изменения направления взгляда, которые нельзя полностью учесть при прогнозировании результатов операции. Во–вторых, имеются так называемые рецепторные и нейронные ограничения остроты зрения: плотность фоторецепторов сетчатки определяет минимальные размеры деталей, возможных для их различения. Следовательно, совершенствование оптических свойств глаза, позволяющих получить на сетчатке изображение с более мелкими деталями, не только не улучшит его качества, но может даже исказить реальную картину .

После экстракции катаракты даже таким современным методом, как факоэмульсификация с имплантацией ИОЛ, также отмечается значительное увеличение высших аберраций высших (преимущественно 4–го) порядков . Предпринята попытка разработки ИОЛ с отрицательными сферическими аберрациями, которые частично компенсируют положительные сферические аберрации роговицы. Авторами, в предварительных сообщениях, отмечено некоторое повышение контрастной чувствительности при имплантации таких линз . Это направление коррекции аберраций представляется весьма интересным, но требует дальнейшего изучения.

Таким образом, изучение аберраций человеческого глаза позволяет дать дополнительную оценку оптическому аппарату глаза, что расширяет возможности для более углубленной и полноценной диагностики, адекватной коррекции и эффективного лечения большинства офтальмологических заболеваний, сопровождающихся снижением корригированной остроты зрения, появлением астенопических жалоб.

Литература:

1. Арталь П. «Суперзрение»: факты и вымыслы.// Вестник оптометрии. – 2002. – №4. – С.34–41.

2. Балашевич Л.И. Оптические аберрации глаза: диагностика и коррекция.// Окулист. – 2001. – №6(22). – С.12–15.

3. Балашевич Л.И. Рефракционная хирургия. – Санкт–Петербург, 2002. – С.285.

4. Корнюшина Т.А., Розенблюм Ю.З. Аберрации оптической системы глаза человека и их клиническое значение.// Вестник оптометрии. – 2002. – №3. – С.13–20.

5. Семчишен В., Мрохен М., Сайлер Т. Оптические аберрации человеческого глаза и их коррекция.// Рефракционная хирургия и офтальмология. – 2003. – Т.3.– №1. – С. 5–13.

6. Artal P. Understanding Aberrations by using Double–pass techniques.// J. Refract. Surg. – 2000.– Vol. 16. – No 5. – P. 560–562.

7. Atchison D.A. Aberrations associated with rigid contact lenses.// J. Opt. Soc.Am. A. – 1995.– vol.– 12.– №10.– Р. 2267–2273.

8. Barbero S., Marcos S., Merayo–Lloves J., Moreno–Barriuso E. Validation of the estimation of corneal aberration from videokeratography in keratokonus.// J. Refract. Surg. – 2002. – Vol. 18. – No 3. – P. 263–270.

9. Brabander J., Chaten N., Bouchard F. et al. Contrast sensivitivity soft contact lenses compensated for spherical aberration in high ametropia.// Optom. Vis. Sci.– 1998.– Vol.75.– №1.– Р.–43.

10. Burns S.A. The Spatially Resolved Refractometer.// J. Refract. Surg. – 2000.– Vol. 16. – No 5 – P. 566–569.

11. Chalita M.R., Waheed S., Xu M., Krueger R.R. Wavefront Analysis in Post–LASIK Eyes and its Correlation with Visual Symptoms, Refraction and Topography.// Invest Ophthalmol Vis Sci. – 2003. – №44(5). – P. 2651.

12. Dietze H.H., Cox VJ. On– and of– eye spherical aberration of soft contact lenses and consequent changes of effective lens power . // Optom. Vis. Sci.– 2003.– Vol. 80.– №2.– Р.126–134.

13. Holladay J.T., Piers P.A., Koranyi G., Mooren M., Norrby S. A new intraocular lens design to reduce spherical aberration of pseudopfakic eyes.// J. Refract. Surg. – 2002.– Vol. 18. – No 6. – P. 683–691.

14. Hong X., Himebaugh N., Thibos LN. On – eye evaluation of optical performance of rigid and soft contact lenses. // Optom. Vis. Sci. –2001.– Vol. 78.–№12.– Р.872–880.

15. Koh S., Maeda N., Kuroda T., Hori Y., Watanabe H., Fujikado T., Tano Y., Hirohara Y., Mihashi T. Effect of tear film break–up on higher–order aberrations measured with wavefront sensor.// Am J Ophthalmol. – 2002. – №134. – P. 115–117.

16. Lopez – Gil N., Castejon – Mochon JF.,Benito A. at al. Aberration generation by contact lenses with aspheric and asymmetric surfaces. // J.Refract. Surg.–2002.– Vol.–18.– №5.– Р. 603–609.

17. Lu F,.Mao X.,Qu J., еt al. Monochromatic wavefront aberration in the human eye with contact lenses.// Optom.Vis. Sci. –2003.– Vol.–80.–№2.– Р.135–141

18. MacRae S., Fujieda M. Slit Skiascopic–guided Ablation Using the Nidek Laser.// J. Refract. Surg. – 2000.– Vol. 16. – No 5. – P. 576–580.

19. Maeda N., Fujikado T., Kuroda T., et al. Wavefront aberrations measured with Hartmann–Shack sensor in patients with keratoconus.// Ophthalmology.– 2002.– Vol.109.– №11.– Р. 1996–2003.

20. Marechal A. Etude des effect combines de la diffraction et des aberrations geometriques sur L’image d’un point lumineux.// Revue d’optique. – 1947. – P. 257–277.

21. Marsack J., Milner T., Rylander G.,et al. Applying wavefront sensors and corneal topography to keratoconus. // Biomed. Sci. Instrum.– 2002.– Vol.38.– Р. 471–476.

22. Molebny V.V., Panagopoulou S.I., Molebny S.V., Wakil Y.S., Pallikaris I.G. Principles of Ray Tracing Aberrometry.// J. Refract. Surg. – 2000.– Vol. 16. – No 5. – P. 572–575.

23. Mrochen M., Kaemmerer M., Mierdel P., Krinke H.E., Seiler T. Principles of Tscherning Aberrometry.// J. Refract. Surg. – 2000.– Vol. 16. – No 5. – P. 570–571.

24. Oshika T., Klyce S.D., Applegate R.A., Howland H.C., Danasoury M.A. Comparision of corneal wavefront aberrations after photorefractive keratectomy and laser in situ keratomileusis.// Am J Ophthalmol. – Vol. 127. – №1. – P. 1–7.

25. Oshika T., Miyata K., Tokunaga T., Samejima T., Amano S., Tanaka S., Hirohara Y., Mihashi T., Maeda N., Fujikado T. Higher order wavefront aberrations of cornea and magnitude of refractive correction in laser in situ keratomileusis.// Ophthalmology. – 2002. – Vol. 109. – №6. – P. 1154–1158.

26. Patel S., Fakhry M., Alio JL. Objective assessment of aberrations induced by multifocal contact lenses in vivo.// CLAO J.– 2002 – Vol. 28.– №4.– Р. 196–201.

27. Piers P.A., Mester U., Anterist N., Dillinger P., Norrby S. How wavefront–based IOL designs affect pseudophakic visual quality.// Invest Ophthalmol Vis Sci. – 2002. – Vol. 43. – №12.– P. 2022.

28. Thibos L.N. Principles of Hartmann–Shack Aberrometry.// J. Refract. Surg. – 2000.– Vol. 16. – No 5. – P. 563–565.

29. Williams D., Yoon GY., Porter J.,et al. Visual benefit of correcting higher order aberrations of the eye.// J. Refract. Surg.– 2000.– Vol.– 16.– № 5.– Р. 554–559.

30. Xiong Y., Lu Y., Qu X., Xue F., Chu R., He J.C. Investigation of wavefront aberrations for patients with cataract surgery.// Invest Ophthalmol Vis Sci. – 2002. – Vol. 43. – №12.– P. 387.

31. Zernike F. Beugungstheorie des Schneidenverfahrens und seiner verbesserten Form der Phasenkontrastmethode.// Physica I. – 1934. – №2. – Р. 689–704.

  • Аберрации различных порядков
  • Исправление сферических аберраций
  • Линзы сферические и асферические – в чем разница
  • Преимущества линз асферического дизайна
  • Особенности подбора
  • Цены и производители асферических линз

На сегодняшний день практически каждый человек уже слышал о высоком качестве расширения. Если вы желаете улучшить качество своего зрения, тогда в этом случае необходимо использовать асферические линзы для глаз.

Асферические линзы - это уникальный продукт

Многие люди сталкиваются с размытой картинкой или плохой видимости при низком освещении. Причина всего этого будет заключаться в аберрации высших порядков.

Аберрации различных порядков

Под аберрациями может подразумеваться искажение изображений, которые будут получены при помощи оптических систем. Если у вас действительно присутствуют искажения, тогда предметы будут выглядеть не такими, как являются.

Позитивные и негативные аберрации глаза

Аберрации могут быть низшего или высшего порядка. К аберрациям низшего порядка можно отнести распространенные расстройства зрения, которые можно вылечить с помощью обычных корректирующих приборов. Для их определения вам необходимо использовать специальные диагностические устройства, а также специальные таблицы, которые предназначаются для проверки зрения. Перед использованием этих линз изучите срок годности линз.

К аберрациям высшего порядка все сложнее. Традиционными методами их выявить будет просто невозможно. Для их выявления могут потребоваться компьютеризованными устройствами, которые имеют название аберрометрами. Эти устройства будут показывать графическое изображение волнового фронта пучка лучей света. Все полиномы 3 степени и будут относится к высшим порядкам.

Ореолы вокруг источников света - это симптом аберрации

Если перейти к детальному изучению, тогда можно сделать вывод о том, что искажения могут возникать по разным причинам:

  1. Сферические. Они могут появиться, когда параллельные лучи, которые попадают на периферии хрусталика и преломляются больше тех, что попадают на его центр.
  2. Кома – это сферические искажения косых лучей света, которые попадают под определенным углом к глазной оси. Если говорить простыми словами, тогда центр хрусталика просто не будет совпадать с центром роговицы.
  3. Хроматические – это результат более сильного преломления коротковолновых лучей белого спектра в зрительной системе. Из-за этого многоцветовые объекты просто не будут восприниматься глазом с абсолютной четкостью.

Теперь пришло время изучить, как исправить подобные искажения.

Исправление сферических аберраций

Ранее корректировка зрения осуществлялась с помощью обычных очковых линз. Именно поэтому в скором времени были созданы асферические типы линз, которые способны исправлять подобные искажения. Практика на сегодняшний день доводит, что этот способ коррекции еще далеко от идеального.

Вот так будет выглядеть вид в асферических линзах

Если человек будет смотреть в сторону, тогда прибор будет видеть с другими параметрами. Из-за этого картинка может искажаться, так как линза соответствует индивидуальным параметрам человека. Чем ближе к ее краю будет смотреть пациент, тем больше будет разница в параметрах. Также очковые линзы асферического дизайна могут иметь еще один весомый недостаток. Основным недостатком считается они будут изменять не только размеры предметов, но и расстояния до них. Многие люди, которые избавились от очков и перешли использовать асферические контактные линзы сообщаю о том, что, когда смотрят в зеркало, тогда картинка будет выглядеть совершенно иначе. Степень искажения может зависеть от разнообразных факторов:

  1. Расстояние между глазном и прибором.
  2. Преломляющая сила прибора.

Приборы высоких рефракций также могут искажать и размер глаза человека. Отличительной способностью можно считать то, что параллельный пучок будет находиться строго в одной точке. Простыми словами: картинка, которая будет попадать на края может искажаться.

Асферический и сферичиский дизайн

Линзы сферические и асферические – в чем разница

Сферические контактные линзы способны просто корректировать искажения только низких порядков. Исправить высшие порядки с помощью подобной линзы будет просто невозможно. Сферические очки и линзы практически ничем не отличаются. Единственным отличием считается то, что линзы позволяют корректировать и периферическое зрение.

Асферические контактные линзы отличаются своей удобной конструкцией. Они могут отличаться благодаря своей конструкции. Линза будет иметь форму эллипса. Благодаря этому радиус кривизны от центра к краю может увеличиваться. После использования подобных линз можно значительно повысить контрастность линзы. Если вам будет интересно, тогда можете прочесть про астигматические линзы.

Преимущества линз асферического дизайна

  1. Асферические приборы позволяют исправить периферическое зрение. Благодаря этому качество изображения может повыситься.
  2. Искажение окружающих предметов можно минимизировать.
  3. Приборы достаточно тонкие и поэтому период привыкания не потребуется.
  4. Поле зрения будет достаточно широким.

Важно знать! Асферические модели будут просто незаменимы в ночной период времени. Они могут бороться с искажениями, как высшего, так и низшего порядка.

Если детально изучить отзывы, тогда можно понять, что усталость глаз не будет ощущаться, даже после сильной и длительной нагрузки.

Особенности подбора

Сначала, вам необходимо пройти обследование у офтальмолога. Именно он сможет определить полезно использовать такие линзы или нет. Специалист благодаря специальному оборудованию сможет определить все технические характеристики.

Степень аберрации у человека может значительно отклоняться от среднего показателя. Именно поэтому конечный результат может быть не лучше, а еще хуже.

Цены и производители асферических линз

Цена на асферические линзы может быть достаточно разнообразной. Все будет зависеть от качества. Ниже мы представили вашему вниманию таблицу, в которой указан не только перечень производителей, но и цен.

Теперь вы точно знаете, что асферические контактные линзы могут обладать рядом определенных достоинств. Основным их преимуществам можно отнести минимальные искажения картинки. Надеемся, что эта информация была полезной и интересной.

Читайте также: как снять контактные линзы с глаз.

В каких случаях требуется имплантация искусственного хрусталика?

ИОЛы используются в современной офтальмологии в том случае, если естественный хрусталик по каким-либо причинам оказался более неспособен к выполнению своих стандартных функций.

Чаще всего интраокулярная линза используется у больных с катарактой. Дело в том, что при оперативном вмешательстве по поводу этой болезни натуральное анатомическое образование часто мутнеет, перестает выполнять свои стандартные функции. В таком случае именно интраокулярные линзы помогут скорректировать такие патологии, как:

  • астигматизм;
  • близорукость;
  • дальнозоркость.

Катаракта, из-за которой природный хрусталик утратил свою функциональность – это не единственное показание. Офтальмологические приспособления подобного типа также используются, если по каким-либо причинам пациенту нельзя выполнять лазерную коррекцию. В основном это происходит в возрасте 50-60 лет, когда утрачивается природная аккомодация глаза. Пациенту даже после постановки импланта придется носить очки.

Если аккомодация находится в рабочем состоянии, имплантацию также можно провести, и тогда пациент возвращает себе способность видеть предметы, независимо от расстояния до них.

Устройство ИОЛ

Стандартные интраокулярные линзы, применяемые в современной практике для восстановления зрения, имеют два основных элемента.

Оптическая составляющая – это непосредственно сама линза, для производства которой обычно используется специальный прозрачный материал. Эта часть обычно контактирует с живыми тканями глаза, потому делается из качественных элементов, которые с минимальной вероятность вызовут негативные реакции. Дополнительно на оптической составляющей всегда имеется дефракционная зона, благодаря которой и достигается четкость зрения.

Вторая составляющая – опорная. Благодаря ей происходит надежная фиксация линзы в глазу.

Срок годности современных ИОЛов, независимо от материала, совершенно неограничен. Они в течение длительного времени могут служить человеку без замен. Главное – соблюдать рекомендации врача относительно ухода за глазами.

Виды

Сегодня выделяют разные виды ИОЛ. В первую очередь деление происходит по критерию жесткости. Выделяют:

  • Жесткие импланты. Интраокулярные линзы жесткого типа имеют постоянную форму. Их невозможно сдавить или иначе изменить их конфигурацию для наиболее оптимального вживления в глаз. В связи с этим в ходе операции офтальмолог вынужден выполнять довольно крупный разрез, который затем заживляется с помощью наложения швов. Минусом подобных линз является более долгий восстановительный период.
  • Мягкие импланты. В офтальмологии на сегодняшний день наибольшую популярность получил искусственный хрусталик глаза, который изготавливается из специального полимера. Подобный хрусталик в ходе операции можно подвергнуть различным конфигурационным изменениям, не нанеся конструкции вреда. Благодаря этой особенности не требуется совершать больших, травматичных разрезов. Такая интраокулярная линза погружается в глаз в сложенном виде. Ее разворачивание и фиксация происходят самостоятельно, без помощи врача.

Довольно большой классификацией представлено деление интраокулярных линз на несколько типов в зависимости от того, как они действуют на работу зрительного нерва.

Трифокальные

Трифокальный тип – это искусственный хрусталик, который подойдет людям, не желающим после вмешательства носить очки. Благодаря уникальной конструкции такой имплант способен обеспечивать довольно плавный перевод фокуса, позволяя пациенту видеть объекты на близких, средних и дальних дистанциях. Интересно, что действие трифокальных линз часто дополняется асферическими свойствами. Это помогает в коррекции возникающих сферических искажений, добавляя пациенту контрастной чувствительности.

Аккомодирующие

Оптическая конструкция аккомодирующего типа считается на сегодняшний день одним из наиболее функциональных вариантов. Этот тип искусственных хрусталиков отлично имитирует работу настоящего органа, восстанавливая зрение пациента, независимо от дистанции, на которой от него расположен предмет.

Аккомодирующий тип конструкции, как считают офтальмологи, имеет наиболее приближенный к естественному вид. Благодаря этому даже после операции у мышечных и нервных структур глаза появляется возможность работать, как и прежде.

С помощью аккомодирующего типа линз пациента можно избавить не только от катаракты, но и от возрастной дальнозоркости, которую также называют пресбиопией. Подобные конструкции обеспечивают хорошее зрение независимо от возраста и расстояния.

Мультифокальные

Искусственный хрусталик для глаза мультифокального типа – это вариант, который часто выбирается пациентами с возрастными изменениями зрения. Его в основном устанавливают людям, чей возраст перешел за отметку в 50 лет.

С помощью мультифокальных линз удается добиться нормальной фокусировки зрения на нескольких расстояниях. Это позволяет после операции или ограничить ношение очков, или полностью избавиться от них. Как гласит статистика, около 80% пациентов с подобными имплантами отказались в итоге от применения очков.

Торические

Ранее одним из самых сложных заболеваний офтальмологического типа считалась катаракта в сочетании с астигматизмом. Пациентам, переносившим ранее оперативные вмешательства по поводу катаракты, приходилось носить специальные цилиндрические очки, позволяющие корректировать астигматизм. Сегодня, когда есть торические линзы, необходимость использовать очки отпадает даже при сочетанной патологии.

Конструкция и материал торических линз разработаны с тем расчетом, чтобы значительно повысить преломляющую силу и обеспечить за счет этого увеличение остроты зрения. Получается, оптическое приспособление не только заменяет собой нерабочий хрусталик, но и корректирует астигматизм.

Асферические

В практике глазного врача раньше часто встречалась такая проблема, как сферические аберрации. Под этой патологией понимали возникновение засветов, ореолов, отблесков, которые сильно снижали качество зрения даже после операции. Особенно выражены патологии были в темное время суток, а также в сумерках.

Сегодня появилась возможность корректировать сферические аберрации, используя асферические линзы. Эти приспособления обладают уникальной конструкцией, которая помогает собирать свет не в нескольких точках, а только в одной.

С желтым фильтром

Большинство линз нового поколения, независимо от их основной разновидности, снабжены специальным желтым фильтром. Его добавление обусловлено требованиями физиологии. Дело в том, что в норме сам хрусталик человека выполняет защитные функции, не позволяя роговице травмироваться при контакте с лучами различного происхождения. Помогает ему в этом желтый фильтр. А, удаляя хрусталик, хирург удаляет и фильтр, на смену которому вместе с имплантом приходит и искусственный фильтр.

Моноблок

Моноблок – еще одна современная конструкция, выполняемая с помощью специальных биологических материалов. Биоактивность материалов предотвращает негативные реакции со стороны среды глаза на имплант, снижая риск развития катаракты и других возможных осложнений. Также благодаря моноблоку появилась возможность сделать операционные разрезы еще меньше.

Интраокулярные линзы – непростые приспособления, выбор которых нельзя назвать простым делом. Пациентам рекомендуется соблюдение следующих правил:

  • желательно отдавать предпочтение оптике с фильтром, так как она защитит роговицу и сетчатку от негативного излучения;
  • нужно обращать внимание на материал изготовления ИОЛов, он должен быть максимально близок к натуральному;
  • стоит отдать предпочтение конструкциям с асферическими свойствами, чтобы заранее избежать нежелательных искажений;
  • на упаковке должна присутствовать надпись о том, что изделие обрабатывалось с расчетом получить идеальную гладкость – это говорит о том, что оно будет легко размещаться в глазу.

Производители

Интраокулярная линза – популярный на современном медицинском рынке продукт. Их производством занимается несколько фирм. Наиболее популярны:

  • Alcon. Компания производит изделия с минимальной толщиной. При этом используются гидрофобные материалы.
  • AcrySof ReSTOR. Их изделия также обладают очень маленькой толщиной, что позволяет выполнять наименее травматичные имплантационные операции.
  • AcrySof IQ. Эта фирма использует для изготовления своих моделей синие светофильтры, что служит отличной защитой для глаз.
  • Rumex International. Изделия этой фирмы легче всего растягивают капсульный мешок, благодаря чему их легко располагать в глазу.

Естественно, при выборе ИОЛ стоит опираться на рекомендации лечащего офтальмолога. Самостоятельное приобретение изделий подобного рода не рекомендуется.

Полезное видео про интраокулярные линзы

Аберрации

Представление о глазе как о совершенном оптическом приборе мы приобретаем еще со школы при изучении раздела физики «Оптика». При изучении соответствующих наук в высшем или среднем специальном учебных заведениях такое представление о глазе закрепляется, обрастая дополнительной информацией. Поэтому высказывание С.Н. Федорова о том, что глаз является несовершенным прибором и задача офтальмолога в усовершенствовании его, долгое время воспринималось многими врачами со скепсисом.

А что есть лазерная коррекция, если не усовершенствование ошибок природы? Ошибками природы здесь можно назвать близорукость, дальнозоркость и астигматизм. И не только. Ученые-оптики знали об этом давно. Они знали, что при конструировании даже самой простой подзорной трубы необходимо не только сфокусировать оптическую систему в одной точке (исключить близорукость, дальнозоркость и астигматизм подзорной трубы), но и обеспечить качество получаемого изображения. Линзы, из которых делают подзорную трубу, должны быть из хорошего стекла, почти идеальной формы и с хорошо обработанной поверхностью. Иначе изображение будет нечетким, искаженным и размытым. Вот тогда и началось изучение аберраций - мельчайших шероховатостей и неравномерностей преломления. А с появлением аппаратов для выявления и измерения аберраций глаза в офтальмологию вошло новое измерение - аберрометрия.

Аберрации могут быть разного порядка
. Самыми простыми и наиболее известными аберрациями являются собственно те самые близорукость, дальнозоркость и астигматизм. Их называют дефокусом или аберрациями второго, низшего порядка. Аберрации высшего порядка и являются теми самыми шероховатостями и неравномерностями преломления, о которых уже упоминалось выше.

Аберрации высшего порядка также делят на несколько порядков. Принято считать, что на качество зрения влияют аберрации в основном до седьмого порядка. Для удобства восприятия существует набор полиномов Зернике, отображающий виды монохроматических аберраций как трехмерную модель неравномерности преломления. Набором этих полиномов более-менее точно можно отобразить любую неровность рефракции глаза.

Откуда появляются аберрации?

Они есть у всех. Из них и состоит индивидуальная карта преломления глаза. Современные аппараты обнаруживают аберрации высшего порядка, как-то влияющие на качество зрения, у 15 % людей. Но индивидуальные особенности преломления есть у каждого.

Поставщиками аберраций являются роговица и хрусталик.

Причинами аберраций могут быть:

Врожденная аномалия (совсем небольшие и слабо влияющие на зрение неравномерности, лентиконус);

Травма роговицы (рубец роговицы стягивает окружающую ткань, лишая роговицу сферичности);

Операция (радиальная кератотомия, удаление хрусталика через роговичный разрез, лазерная коррекция, термокератопластика и другие операции на роговице);

Заболевания роговицы (последствия кератита, бельмо, кератоконус, кератоглобус).

Причиной внимания офтальмологов к аберрациям является офтальмохирургия . Не обращая внимания на аберрации и не принимая в расчет их влияние на качество зрения, офтальмология просуществовала довольно долго. До этого аберрации изучали и боролись с их негативным влиянием только производители подзорных труб, телескопов и микроскопов.

Операции на роговице или хрусталике (имеется в виду роговичный разрез) на несколько порядков увеличивают аберрации высшего порядка, что иногда может приводить к снижению послеоперационной остроты зрения. Поэтому широкое внедрение в офтальмологическую практику имплантации искусственного хрусталика, кератотомии и лазерной коррекции способствовало развитию диагностической аппаратуры: появились кератотопографы, анализирующие карту преломления роговицы, а теперь и аберрометры, анализирующие весь волновой фронт от передней поверхности роговицы до сетчатки.

Аберрации, появившиеся из-за ЛАСИК

Исправляя дефокус (близорукость, дальнозоркость), рефракционный хирург прибавляет пациенту аберраций высокого порядка.

Формирование микрокератомом роговичного лоскута приводит к росту аберраций высшего порядка.

Осложнения во время ЛАСИК приводят к росту аберраций высшего порядка.

Процесс заживления приводит к росту аберраций высшего порядка.

Борьба с аберрациями, индуцированными ЛАСИК

Убирать микрошероховатости и неравномерности с помощью эксимерного лазера с щелевой подачей луча не представлялось возможным. Изобретена и внедрена в производство установка с возможностью точечной абляции, то есть диаметр лазерного луча в некоторых моделях менее миллиметра. С использованием полиномов Зернике были введены в практику компьютерные программы, позволяющие автоматически преобразовывать полученную из аберрометра индивидуальную карту рефракции в лазерной установке в алгоритм, управляющий лучом, устраняющим не только остаточный дефокус, но и аберрации высшего порядка. Полиномы Зернике становятся набором инструментов, каждый из которых предназначен для удаления определенного компонента в аберрационном комплексе. Как у столяра рубанок предназначен для выравнивания, долото - для углубления, пила -для разделения, топор - для раскалывания. Все не так просто, конечно. Как у топора можно найти не одно, а десять способов применения, так и полином предназначен для удаления пространственно довольно сложных форм. Но основной принцип понятен.

Роговица при проведении такой персонализированной лазерной абляции должна приближаться по своей форме к уровню оптически идеальной сферы.

Суперзрение

После проведения персонализированной лазерной коррекции у некоторых пациентов была получена острота зрения более 1,0. Пациенты видели не только десять строчек, но и одиннадцать, и двенадцать, и даже больше. Этот феномен был назван «суперзрение».

В научных кругах разгорелась дискуссия чуть ли не о нарушении прав человека. Насколько корректно давать человеку слишком хорошее зрение, ведь он увидит изъяны на лицах близких людей, станет различать каждый пиксель на экране компьютера и телевизора, страдать от избытка визуальной информации. Вполне научный подход. Может быть, этот спор и будет актуальным через несколько лет.

Однако параллельно с этим спором появились и коммерческие предложения . В рекламах эксимерных клиник обещали суперзрение каждому. Но суперзрение не прогнозируемо! У кого-то из пациентов получится, а у десятков других - нет. Ведь способность к суперзрению определяется размерами фотодетекторов глаза, тех самых колбочек на сетчатке. Чем меньше колбочка и чем больше ее плотность в макуле, тем более мелкий предмет сможет разглядеть человек. К тому же влияние каждого вида аберраций высшего порядка на зрение еще недостаточно изучено. Поэтому коммерческое предложение суперзрения в виде суперЛАСИКа (см. выше) некорректно. Можно лишь говорить о персонализированной лазерной коррекции.

Влияние аберраций на зрение

Во времена «холодной войны» между СССР и США одним из самых важных направлений работы спецслужб двух стран стал научный и военнопромышленный шпионаж. Когда новый советский истребитель МиГ продемонстрировал в локальных войнах явное преимущество своих технических характеристик над самолетами противника, разведка США сделала все, чтобы завладеть секретными разработками конструкторского бюро Артема Микояна. В конце концов им удалось заполучить почти целый МиГ.

Одними из преимуществ МиГа над американскими аналогами являлись его маневренность и скорость, обусловленные крайне низкой по тем временам сопротивляемостью воздуха при полете. Воздух будто совсем не сопротивлялся корпусу самолета, плавно обтекая его контур.

Американские авиаконструкторы для достижения такого эффекта пытались сделать поверхность своих самолетов идеально гладкой, ровной и обтекаемой. Каково же был их удивление, когда они увидели неровную, шероховатую поверхность МиГа с выпирающими шляпками «заклепок и болтов». Секрет обтекаемости российского самолета оказался прост и гениален. Все эти шероховатости во время полета создавали вокруг корпуса самолета своеобразную воздушную подушку, позволяющую максимально снизить сопротивляемость воздуха.

Возможно, это миф или легенда авиаконструкторов, но такая аналогия прекрасно иллюстрирует отношение офтальмологов к аберрациям высшего порядка. Дело в том, что взгляды офтальмологов на вопрос влияния аберраций на зрение за последние десять лет прошли определенную эволюцию, сходную с эволюцией американских конструкторов к характеристикам поверхности самолета.

Как было сказано выше, на проблему аберраций офтальмологи обратили пристальное внимание в основном из-за ухудшения качества зрения после корнеорефракционных операций . Пациенты видели нужное количество строчек, но жаловались на снижение темновой адаптации, искажение и расплывчатость границ видимых предметов. Были и такие, у кого при практически нулевой рефракции (то есть отсутствии близорукости и дальнозоркости) острота зрения недотягивала 1-2 строчки до того уровня, который они давали в очках до коррекции. Немудрено, что отношение к аберрациям было сугубо отрицательным, как к приобретенной либо врожденной патологии. Именно это отношение и послужило причиной гонки за идеальной сферичностью роговицы и суперзрением.

Теперь мнение офтальмологов меняется. Первой ласточкой был легендарный офтальмохирург Палликарис (рефракционный хирург с мировым именем и один из основоположников лазерной коррекции).

В 2001 г. в Каннах он предположил, что у каждого человека, кроме параметров глаза, фиксируемых с помощью современных приборов, существует еще и «динамический зрительный фактор». К чему приведут дальнейшие исследования в этой области, покажет время. Безусловно одно: аберрации могут как снижать, так и повышать остроту зрения.

Возможно, дальнейшее изучение «динамического зрительного фактора» будет базироваться на следующей гипотезе.

Проведение ЛАСИК приводит к увеличению аберраций высшего порядка. Возможно, сужать эти аберрации до семи порядков в научноисследовательской перспективе не совсем правильно. Имеет значение тут и перепад оптической плотности в области интерфейса (подлоскутного пространства), и шероховатость полученной поверхности роговичного ложа, и процессы заживления (ремодуляция формы роговицы, тракция поврежденных фибрилл, неравномерность эпителиалного пласта и т. п.). Все это вкупе с другими аберрациями приводит к размытости фокуса на сетчатке, появлению нескольких изображений. Головной мозг с помощью механизма аккомодации из всех представленных изображений выбирает наиболее четкое и удовлетворяющее его в данный период времени (принцип мультифокальности). Именно индивидуальные особенности адаптации головного мозга к вариабельности получаемого изображения и будут тем самым «динамическим зрительным фактором», от которого зависит - будет данный набор аберраций улучшать зрение у данного человека или снижать его качество. А это уже связано с балансом сознания и подсознания, особенностями психомоторики, интеллектом, психологическим статусом.

Из дебрей предположений к конкретным вопросам.

Какие бывают аберрации?

Хроматическая, астигматизм косых пучков, кома и др. Все вместе они и формируют на сетчатке изображение окружающего мира, восприятие которого у каждого человека строго индивидуальное. Каждый из нас действительно видит мир только по-своему. Одинаковой для всех может быть только полная слепота.

Вот несколько видов аберраций высшего порядка.

1. Сферическая аберрация. Свет, проходящий через периферию двояковыпуклой линзы, преломляется сильнее, чем в центре. Главным «поставщиком» сферической аберрации в глазу является хрусталик, во вторую очередь - роговица. Чем шире зрачок, то есть чем большая часть хрусталика принимает участие в зрительном акте, тем более заметна сферическая аберрация.

В рефракционной хирургии наиболее часто индуцирует сферическую аберрацию:

Искусственный хрусталик;

Лазерная термокератопластика.

2. Аберрации углов наклона оптических пучков. Асферичность преломляющих поверхностей. Представляет собой несовпадение центров изображений светящихся точек, расположенных вне оси оптической системы. Подразделяются на аберрации больших углов наклона (астигматизм наклонных пучков) и малых углов наклона (кома).

Кома не имеет никакого отношения к известному диагнозу реаниматологов. Ее аберрометрическая картина похожа на окружность, расположенную в оптическом центре роговицы и разделенную линией на две ровные половины. Одна из половин имеет высокую оптическую силу, а другая -низкую. При такой аберрации человек видит светящуюся точку как запятую. При описании предметов люди с такой аберрацией используют слова «хвост», «тень», «дополнительный контур», «двоение». Направление этих оптических эффектов (меридиан аберрации) может быть различным. Причиной комы может быть врожденная или приобретенная разбалансировка оптической системы глаза. Оптическая ось (на которой располагается фокус линзы) роговицы не совпадает с осью хрусталика и вся оптическая система не сфокусирована в центре сетчатки, в макуле. Кома может быть в том числе и одним из компонентов неравномерности рефракции при кератоконусе. При проведении ЛАСИК кома может появляться в результате децентровки зоны лазерной абляции или особенностей заживления роговицы при лазерной коррекции дальнозоркости.

3. Дисторсия - нарушение геометрического подобия между предметом и его изображением - искажение. Разноудаленные от оптической оси точки предмета изображаются с различным увеличением.

Лазерная коррекция не является монополистом в коррекции аберраций. Уже разработаны искусственные хрусталики и контактные линзы, компенсирующие некоторые виды аберраций высшего порядка.

Экскурс в офтальмологическую классификацию аберраций

Аберрации подразделяют на три основные группы:

Дифракционные;

Хроматические;

Монохроматические.

Дифракционные аберрации
появляются при прохождении луча света вблизи непрозрачного объекта. Световая волна отклоняется от своего направления, проходя рядом с четкой границей между прозрачной средой (воздухом) и непрозрачной средой. В глазу такой непрозрачной средой является радужка. Та часть светового пучка, которая проходит не в центре зрачка, а у его края, отклоняется, что приводит к светорассеянию по периферии.

Хроматические аберрации возникают вследствие следующего оптического явления. Солнечный свет, как уже говорилось, состоит из световых волн с очень разнообразной длиной. Видимый свет включает в себя диапазон от коротковолновых фиолетовых лучей до длинноволновых красных. Помните считалочку для запоминания спектра видимого света - цветов радуги? «Каждый охотник желает знать, где сидит фазан».

Красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый.

У каждого из этих видов лучей свой коэффициент преломления. Каждый цвет преломляется в роговице и хрусталике по-своему. Грубо говоря, изображение синих и зеленых частей предмета фокусируются у эметрона сетчаткой, а красные - за ней. В итоге изображение цветного предмета на сетчатке получается более расплывчатым, чем черно-белого. Именно на эффекте, связанном с хроматическими аберрациями, и базируется трехмерное видео.

Монохроматические аберрации, собственно, и являются основным предметом изучения рефракционных хирургов. Именно монохроматические аберрации подразделяются на аберрации высшего и низшего порядков. Монохроматические аберрации низшего порядка: близорукость, дальнозоркость и астигматизм. Монохроматические аберрации высшего порядка: сферическая аберрация, кома, астигматизм косых пучков, кривизна поля, дисторсия, нерегулярные аберрации.

Для описания комплекса монохроматических аберраций высшего порядка используют полиномы математического формализма Зернике (Цернике). Хорошо, если они близки к нулю, а среднеквадратичное отклонение волнового фронта RMS (root mean square) меньше длины волны или равно 0,038 мкм (критерий Марешаля). Впрочем, это уже тонкости рефракционной хирургии.

Стандартная таблица полиномов Зернике
является своего рода набором трехмерных иллюстраций аберраций вплоть до седьмого порядка: дефокус, астигматизм, астигматизм наклонных пучков, кома, сферическая аберрация, трилистник, четырехлистник и так далее, до восьмилистника (trefoil, tetrafoil, pentafoil, hexafoil...). «Трилистники» представляют собой от трех до восьми равномерных секторов окружности с повышенной оптической силой. Их возникновение может быть связано с основными центростремительными направлениями фибрилл стромы, своего рода ребрами жесткости роговицы.

Аберрационная картина глаза весьма динамична. Монохроматические аберрации маскируют хроматические. При расширении зрачка в более темном помещении увеличиваются сферические аберрации, но уменьшаются дифракционные, и наоборот. При возрастном снижении способностей к аккомодации аберрации высшего порядка, ранее являвшиеся стимулом и повышавшие точность аккомодирования, начинают снижать качество зрения.

Поэтому в настоящее время сложно определить значимость положительного и отрицательного влияния каждого вида аберраций на зрение каждого человека.

Роль аберрометрии (с функцией кератотопографии) в предоперационном обследовании

Об этом уже все сказано. По данным аберрометрии составляется индивидуальная карта волнового фронта, по параметрам которой проводится персонализированная лазерная коррекция. У большинства пациентов уровень аберраций высшего порядка, мягко говоря, очень небольшой. И использовать персонализированную лазерную абляцию нет необходимости. Достаточно данных авторефрактокератометрии. Но это не значит, что не стоит гоняться за персонализацией. Ведь если у вас есть аберрации, то их можно выявить только при аберрометрии. И при коррекции вероятнее получить более высокую остроту зрения, чем у вас была когда-либо в очках или даже в контактных линзах.

Рис. 17. Анализатор волнового фронта глаза (аберрометр с функцией кератотопографии). Суть кератотопографии в следующем. На переднюю поверхность роговицы проецируются светящиеся концентрические круги (диск Плачидо) (б) и их отражение фотографируется аппаратом (а). По разнице между параметрами проецируемых и отраженных кругов аппарат вычисляет кривизну роговицы в 10000 точек и формирует «карту» рефракции.

Персонализированную лазерную абляцию еще проводят при докоррекции, при коррекции после других операций и при тонкой роговице.

Что касается диагностики как таковой, то есть поиска патологии, то тут главное - не пропустить кератоконус.

Еще раз о кератоконусе

Рефракционному хирургу выявить кератоконус при наличии соответствующей аппаратуры достаточно просто. Но проблема не в этом. Проблема в ответственности. Так же, как и сложность работы сапера не только в знании премудростей ремесла. Сложность в том, что сапер ошибается только один раз. С кератоконусом ошибаться нельзя. Ни разу. А для этого нужно постоянно держать в голове его косвенные признаки:

Миопический астигматизм чаще с косыми осями;

Оптическая сила роговицы более 46 дптр;

Тонкая роговица;

Удивительно хорошее зрение без очков и удивительно плохое в очках при наличии выраженного астигматизма;

Прогрессирование астигматизма;

Локальное выпячивание роговицы, чаще в нижнем секторе.

Вот это выпячивание и невозможно пропустить при кератотопографии (либо аберрометрии) . Выпячивание сопровождается ростом оптической силы. Общепринятый стандарт цветовой индикации окрашивает на снимке волнового фронта в синий цвет участки с меньшей оптической силой (диоптрийностью), а в красный цвет - с большей. Классический кератоконус выглядит как пятно красного цвета в нижнеправом или нижнелевом секторе роговицы.

К слову, обычный астигматизм высокой степени выглядит как красная бабочка. Иногда крылья этой бабочки теряют симметричность. Одно крыло становится огромным, смещается книзу, а другое уменьшается. Как песок в песочных часах, оптическая сила перетекает из верхней части в нижнюю. Вот это уже может быть проявлением кератоконуса. Делать лазерную коррекцию в таком случае нельзя.

Кто хуже переносит приобретенные после ЛАСИК аберрации?

Молодые люди с лабильной психикой и широким зрачком. У каждого из нас размер зрачка на свету разный. В среднем три миллиметра, но у некоторых с рождения бывает на пару миллиметров больше. А чем больше зрачок, тем больше площадь роговицы и хрусталика, принимающая участие в акте зрения. И тем больше мелких шероховатостей искажают изображение. Как правило, мозг не обращает внимания на такие мелочи. Так же как исключает из зрительной информации плавающие помутнения в стекловидном теле (они есть у большинства близоруких людей), и человек обращает на них внимание только иногда, глядя на слепяще-белый снег или, скажем, на светлый экран компьютера. Но у тонких, творческих, нервических натур восприятие часто обострено, и это может способствовать тому, что они постоянно обращают внимание на подобные раздражители. Это не придирчивость, а особенность нервной системы, как, например, индивидуальный порог болевой чувствительности.

В таких случаях можно попробовать выработать у мозга привыкание к аберрациям, а точнее, отвлечь его внимание от этой проблемы, в течение месяца закапывая капли, сужающие зрачок (пилокарпин). В случае неудачи такой тактики придется сделать докоррекцию с целью уменьшения аберраций высшего порядка.

Где в повседневной практике окулист может столкнуться с аберрациями высшего порядка?

При кератоконусе острота зрения с полной очковой коррекцией часто недотягивает до 1,0. При проверке зрения через диафрагму в три миллиметра и меньше острота зрения значительно улучшается (см. выше). И в том и в другом случае причина происходящего в аберрациях.

После удаления катаракты с имплантацией искусственного хрусталика пациент часто, даже с полной очковой коррекцией, не видит 1,0. Далеко не во всех случаях это связано с заболеваниями сетчатки, амблиопией или вторичной катарактой.

Искусственный хрусталик меньшего диаметра, чем естественный. Иногда искусственный хрусталик может стоять неровно. При проведении операции роговичным разрезом изменяется сферическая форма роговицы. Все эти причины вызывают аберрации высшего порядка. В крайнем случае их можно уменьшить, проведя персонализированную лазерную коррекцию (более подробно о биоптике в следующей главе).

Имеет смысл провести аберрометрию и при так называемой куриной слепоте, проявляющейся ухудшением остроты зрения в сумерках, но не сопровождающейся признаками серьезных заболеваний сетчатки (тапеторетинальная абиотрофия и др.).

Примеров можно привести немало. При появлении подозрений на наличие аберраций пациента можно направить на обследование в центр рефракционной хирургии.

Статья из книги:

Что такое аберрации?

Когда мы, врачи, назначаем очки, мы преследуем только одну цель – переместить фокус глаза на сетчатку. Положительные линзы перемещают фокус вперед, а отрицательный линзы – назад. Перемещение тем сильнее, чем выше преломляющая сила линзы (на бытовом языке – чем больше номер линзы).

Однако, помимо этого основного действия, у оптических линз есть еще как минимум пять свойств, которые мы не можем отменить и к которым пациент должен адаптироваться. Эти дополнительные свойства мы называем аберрациями. Выраженность аберраций напрямую зависит от оптической силы линзы. При слабых линзах аберрации почти не ощущаются. Но примерно с 4,0-5,0 Д я предупреждаю пациентов о возможных неудобствах, а выше 7,0 Д – жалуются практически все.

Давайте разберемся подробно с каждой аберрацией!

1. Изменение величины изображения на глазном дне. Положительные линзы увеличивают изображение, отрицательные уменьшают его. Чем больше сила линзы, тем больше изменяется изображение предмета относительно его реальной величины. Дальнозоркие люди, как правило, на это не жалуются: из-за увеличения изображения у них повышается острота зрения. А вот у близоруких людей из-за уменьшения изображения снижается острота зрения с коррекцией, примерно выше -7,0 Д стопроцентное зрение получить уже трудно, выше -10,0 Д - невозможно. При высокой близорукости получается такая ситуация: без очков предметы размытые, но большие, а в очках – резкие, но маленькие; без очков предметы не разглядеть из-за расплывчатости очертаний, а в очках их не разглядеть из-за уменьшения размера. Отдельная проблема, когда глаза разные,и для коррекции требуются разные линзы. Из-за разной величины изображений на глазном дне расстраивается бинокулярное зрение, то есть слить изображения двух глаз в один образ становится невозможно. Как правило, мы не выписываем очки, в которых линзы отличаются больше, чем на 2,0 Д, более сильную разницу люди не переносят. Однако детей с раннего возраста можно приучить и к таким очкам. У меня есть пациентка (ей сейчас 6 лет), у которой правое стекло в очках +0,5 Д, а левое +5,0 Д, и девочка их спокойно носит. Адаптировалась!

2. Радужные контуры по краям рассматриваемых объектов. Напомню, что угол преломления зависит от длины волны: чем короче волна, тем сильнее преломление. Поэтому солнечный свет, проходя через линзу, распадается на радугу. Эта радуга видна в очках большой силы по контуру предметов (как и все аберрации, эта тоже тем сильнее выражена, чем больше оптическая сила линзы).

3. Параллакс – смещение изображения при движении линзы. Параллакс тем больше, чем сильнее линза и чем ближе к глазам рассматриваемый предмет. Отрицательные линзы смещают изображение в ту же сторону, положительные – в противоположную. Именно из-за параллакса возникает головокружение при ношении очков большой силы, пациенты жалуются, что все плывет перед глазами.

4. Изменения в поле зрения. Эта аберрация связана с тем, что центральная часть пространства видна через очки, а периферическая часть – мимо очков. При положительных собирающих стеклах есть часть пространства, которая не видна ни через очки, ни мимо очков. Это так называемая кольцевая скотома (скотома – выпадение внутри поля зрения). Предметы, попавшие в эту зону, становятся невидимками, как будто растворяются в пространстве. При рассеивающих отрицательных стеклах, наоборот,часть пространства видна и через стекла, и мимо них. В этой зоне получается удвоение предметов. Если сейчас на вас очки, попробуйте скосить глаза в сторону и посмотреть на что-то через край очков. Вы поймете, о чем я говорю. Опыт выполним даже при очках силой 1,0 Д. При сильных очках этот феномен мешает жить.

5. Астигматизм косого падения или косых лучей. Мы помним, что угол преломления зависит от угла падения и от кривизны поверхности, на которую падает луч. Для сферических линз рассчетная сила достижима строго по центру линзы. Если рассматривать изображение через край линзы, там кривизна поверхности другая и лучи падают под другим углом. Значит преломление на периферии линзы совсем другое, чем в центре. Сферическая линза на периферии ведет себя как торическая, то есть появляется косого падения. Если ребенок смотрит не через центр очков, а через их верхний край (так бывает, когда переносица оправы слишком широкая и очки съезжают на кончик носа) острота зрения может снижиться на две-три строчки. С другой стороны, ко мне на прием пришла дама с жалобами, что через центр своих минусовых сферических очков она видит плохо, а через их верхне-правую периферию зрение четкое, в итоге у нее ноет шея из-за постоянного вынужденного положения головы. Оказалось, что у нее не просто , а сложный близорукий , который она сама случайно нашла способ нейтрализовать. Правильно подобранные торические стекла в ее случае решили проблему.

Астигматические линзы имеют, кроме описанных, еще свои специфические аберрации. В первую очередь это искажение предметов. Это своеобразное проявление аберрации №1 – изменение величины изображения. Астигматическая линза будет менять его по разному в разных меридианах. В итоге предметы либо вытянуты в высоту, либо растянуты в ширину. В любом случае реального изображения через астигматические очки не получится.

Это особенно заметно на лестнице.

Те, кто впервые надел астигматические очки, жалуются, что либо верхние ступеньки выше нижних, либо наоборот (это зависит от положения сильного меридиана). В итоге повышенный травматизм при пользовании лестницей: человек либо промахивается, либо спотыкается, в любом случае – опасность упасть. Другая астигматическая аберрация проявляется только в том случае, если неправильно определена ось линзы: появляется излом прямых линий. Допустим, Вы смотрите на дверь, или на оконный переплет, или на дерево, или на любую другую прямую линию. Часть ее видна Вам через очки, а часть – мимо очков. Если ось установлена неправильно, через стекло эта линия будет видна под углом к реальной линии, угол излома тем больше, чем больше отклонение оси линзы от слабого меридиана астигматического глаза.

А теперь – самое главное. К аберрациям можно адаптироваться. Допустим, Вам выписали очки. Вы их надели, и на Вас навалились аберрации. Неделю-другую будет трудно, а потом Вы привыкнете и перестанете их замечать. Это не значит, что аберрации исчезли, но они перестанут Вас отвлекать. Это как фоновая музыка, которую сначала слышишь, а потом увлекаешься чем-то и не замечаешь ее. В организме возникают новые связи, и нога перестает промахиваться на ступеньках, при повороте головы не появляется головокружение и т.п. Это и называется адаптация.

Именно поэтому я детям сразу сильные очки не выписываю – из-за аберраций они отказываются их носить. Силу стекол детям я поднимаю ступенчато, на 1-1,5 Д каждые 3-4 месяца (если начинать с 3,0 Д), чтобы дать им время адаптироваться.

Не забывайте, уважаемые читатели, что у детей адаптационные способности очень сильны, а взрослые этим похвастаться не могут. Детей можно приучить носить практически любые очки. Взрослые же к аберрациям привыкают с трудом. Насколько я заметила, после 35 лет адаптироваться к астигматическим очкам практически невозможно.

Поэтому у окулистов есть золотое правило: детям мы очки назначаем, а взрослым подбираем. Детей не спрашивают, комфортно ли им в очках, они привыкнут. И носить очки мы их заставляем любыми способами, чтобы после 15 лет они сами могли решать, носить очки или нет: навык ношения сформировался, адаптация к аберрациям работает, в любой момент очки можно надеть снова. Если же человек зрелого возраста впервые надевает очки, будет выраженный дискомфорт. Обычно мы просим подождать две-три недели. Если за это время дискомфорт не проходит, приходится жертвовать остротой зрения ради переносимости очков, то есть выписывать очки послабее, в которых зрение хуже, но аберраций меньше.

К слову сказать,

если очки подобраны правильно, дети их носят с удовольствием, потому что зрение в них лучше, а к аберрациям они быстро привыкают. Я все время говорю родителям: если ребенок отказывается носить назначенные мною очки, берите очки, берите ребенка и идите ко мне, буду разбираться. Дело в том, что когда очки не подходят, взрослый человек пожалуется на боли в надбровных дугах, чувство распирания в глазах, тяжесть в лобной части головы, в конце концов на дискомфорт. Дети так пожаловаться не могут; не жалуются они, если оправа трет или давит, если очки на нос сползают. Они в таких случаях их просто снимают, и никакими силами родители не могут заставить их носить. И я должна посмотреть, как очки сидят на ребенке, чтобы понять, почему он их не носит.

В принципе, любой окулист должен отвечать за свою работу и подбирать очки так, чтобы дети их носили. Но это приходит с опытом. Да еще оптики, случается, готовят очки не по рецепту: или оси сместят, или стекло вставят другое, потому что выписанного в наличии нет. Я с этим много раз сталкивалась. Наши оптики хором уверяли меня, что они имеют право усилить или ослабить линзу на 0,5 Д, им, видите ли, так в лекциях объясняли. И спорить с ними было бесполезно, пришлось голосовать рублем. Я перестала посылать своих пациентов в те оптики, где с моими рецептами обращались слишком вольно. Теперь те, кто хотят со мной работать, при отсутствии нужной линзы звонят и спрашивают, какой линзой ее можно заменить.

Совет тем, кто не доволен очками, заказанными по рецепту: сначала пойдите к другому оптику (не к тому, у которого очки заказывали) и попросите проверить Ваши очки на диоптриметре (это аппарат, который может определить силу линзы в главных меридианах и положение осей) и результат выдать письменно, затем с этим документом и с рецептом на очки пойдите к врачу, который Вам очки выписал, и спросите его, в чем дело. Пусть разбирается, его это ошибка или оптика.

В заключение хочу привести письмо, которое я нашла в Живом Журнале (есть такой в Интернете). Цитирую:

«У меня в последнее время было -6/-6.5 Последние 10 лет все время носила линзы. На прошлой неделе пошла к американскому офтальмологу за очередным рецептом. Во-первых, он сказал, что у меня -10 на оба глаза (аппаратура в офисе супер-современная). Во-вторых, он сказал, что сосуды (?) подбираются к сетчатке, и мне полгода минимум нельзя носить линзы. Если я сейчас не одену очки, то линзы не смогу носить никогда. Об операции речи на ближайший год быть не может (а там посмотрим). Но проблема, собственно, не в этом. Сегодня я получила свои очки. Сказать, что я в ужасе - это ничего не сказать. Сплошные искажения - на меня падают с боку стены, валятся книжные полки, взятая в руки книга выглядит как трапеция (даже если держать прямо перед глазами). Монитор из плоского превратился в шарообразный. Жуткая хроматическая абберация. Ходить могу с трудом - постоянно натыкаюсь на предметы, которые в моем представлении должны быть в метре от меня. Работать тоже не могу - на экране монитора все выглядит в два раза меньше, и в жутких диспропорциях. На мои недоумения врач сказал не волноваться и подождать дня два - мол, глаза просто привыкают. Это действительно так? Неужели между линзами и очками должна быть настолько существенная разница? Я не помню, делались ли при выписке линз поправки на (компьютерная диагностика показала, что он есть и достаточно серьезный) - но в линзах я никогда в жизни не ощущала никакого дискомфорта. Помогите, пожалуйста, советом, потому что я просто в ужасе, как с этим жить дальше - я практически ничего не могу делать.»

Обсуждение:

Я привела это письмо, потому что оно очень наглядно показывает, что такое аберрации. Здесь необходимо пояснение. Контактные линзы радикально отличаются от очков одним свойством: они не являются отдельной оптической системой, как очки, а встраиваются в оптическую систему глаза, изменяя ее в нужную сторону. Поэтому контактные линзы в отличие от очковых линз обладают только одним свойством - изменяют положение фокуса относительно сетчатки. В контактных линзах мы имеем реальные размеры изображения, реальное поле зрения, отсутствие радужной каймы вокруг предметов и т.д. Женщина 10 лет носила контактные линзы. Надев в зрелом возрасте очки, она остро чувствует аберрации.

Давайте вчитаемся. «Сплошные искажения - на меня падают с боку стены, валятся книжные полки, взятая в руки книга выглядит как трапеция (даже если держать прямо перед глазами). Монитор из плоского превратился в шарообразный.» - это из-за астигматической аберрации, которая дает искажение контуров предметов. «Ходить могу с трудом – постоянно натыкаюсь на предметы, которые в моем представлении должны быть в метре от меня» - минусовые стекла уменьшают и отдаляют изображения предметов, а контактные линзы давали реальное изображение. Это письмо - наглядная иллюстрация, какую проблему создают впервые надетые очки. Представьте себе, наши дети испытывают то же самое, когда им впервые очки надевают, только они сказать об этом не могут. Поэтому они отказываются их носить. Поэтому к коррекции высоких степеней рефракции я подхожу ступенчато, постепенно увеличивая силу очков - так дети к ним легче адаптируются.

Как известно, оптические погрешности в виде сферической, волновой (неправильный астигматизм) и хроматической аберрации характерны для любого нормального человеческого глаза. Могут ли миопия или связанные с ней изменения усиливать имеющиеся аберрации либо вносить дополнительные погрешности в оптическую систему глаза?

Необходимо отметить, что понятие «аберрации» связано с физической рефракцией глаза, тогда как миопия представляет собой разновидность клинической рефракции и отличается от эмметропии только положением заднего главного фокуса относительно сетчатки. В связи с этим уже а priori можно утверждать, что сферические и волновые аберрации оптической системы миопического глаза в принципе не будут отличаться от аналогичных аберраций эмметропического глаза, если связанные с близорукостью изменения в глазу не затронут структуру его оптических поверхностей. Правда, следует считать, что одни и те же аберрации эмметропического и миопического глаза могут сильнее влиять на его различительную способность из-за большей длины глаза и больших в связи с этим фигур светорассеяния.

М.С.Смирнов (1971) заметил: «Аберрации разных глаз - разные», и тем самым подчеркнул, что они больше отражают индивидуальные особенности глаза, чем его обобщенные «групповые» свойства, в частности рефракцию. Своеобразно проявляет себя в зависимости от рефракции глаза хроматическая аберрация. Напомним, что она обусловлена неодинаковым коэффициентом преломления лучей с разной длиной волны. Это приводит к тому, что преломляющая сила глаза для коротковолновых, синих, лучей оказывается на 1,0-1,5 дптр больше, чем для длинноволновых, красных. Вследствие этого глаз, слабомиопический или слабогиперметропический по отношению к белому свету, может стать эмметропическим для красных и синих лучей. По той же причине миопическая рефракция для белого света усилится в синих лучах и станет слабее в красных. Наоборот, гиперметропическая рефракция будет сильнее в красных лучах и слабее в синих.

Свойство миопического глаза более четко видеть линии на красном фоне, а гиперметропического - на сине-зеленом используют для уточнения рефракции и оптической коррекции с помощью так называемого дуохромного теста. На феномене хроматической аберрации глаза основан и другой метод рефрактометрии - исследование с кобальтовым стеклом, пропускающим только две узкие полосы спектра - в области красных и в области синих лучей. При наблюдении через такой фильтр за светящейся точкой она бывает бесцветной только при идеальном фокусировании на сетчатке. При гиперметропической установке глаза видно синее пятно с красным венчиком, при миопической - красное пятно с синим венчиком. Венчики устраняют с помощью линзы, компенсирующей вид и степень аметропии.

Вопросу об оптических аберрациях глаза посвящено очень мало работ. Это объясняется главным образом тем, что измерение их на живом человеческом глазу представляет большие трудности. В отдельных работах приводятся данные о сферической аберрации человеческого глаза безотносительно к его рефракции. Как известно, суть сферической аберрации состоит в том, что преломляющая сила линз со сферическими поверхностями больше в их периферических частях, чем в центральных.

Установлено , что в роговице и хрусталике обычно наблюдаются аберрации противоположного знака. В результате суммарная оптическая аберрация глаза в большинстве случаев уменьшается. При исследовании преломляющей силы глаза в центре зрачка и на его периферии получены разноречивые данные. Н.Т. Рі (1925) обнаружил, что в большинстве глаз периферическая зона зрачка более близорука, чем центральная. Поданным G.H. Stine (1930), это наблюдалось только в 22 % исследованных глаз, в 14 % более сильной была центральная область зрачка и в 64 % выявлена смешанная аберрация, когда в одном и том же глазу в зависимости от участка периферии зрачка она была то более сильной, то более слабой, чем центральная область зрачка. Таким образом, в человеческом глазу в отличие от искусственных оптических систем может наблюдаться и сферическая аберрация против правила [Сергиенко Н.М., 1982].

Очевидно, прав М.С.Смирнов (1971), который отметил, что сферическая аберрация сильно варьирует в разных глазах и часто резко асимметрична, поэтому само понятие «сферическая аберрация» к большинству глаз неприменимо.

В связи с этим особый интерес вызывает исследование волновой аберрации или неправильного астигматизма. Измерение этого вида аберраций, который можно рассматривать как суммарный эффект нескольких оптических несовершенств, удалось осуществить М.С.Смирнову (1961), а затем G. van den Brink

Рис.29. Неправильный астигматизм - более легкий (а) и более выраженный (б). Объяснение в тексте.

(1962), Т.А.Корнюшиной (1979) и Н.М.Сергиенко (1982). Н.М.Сергиенко с помощью сконструированного им астигмометра исследовал 147 глаз, что позволило ему сделать заключение о структуре и степени неправильного астигматизма, который автор не совсем удачно называет физиологическим астигматизмом. Во всех случаях степень преломления в оптической зоне была различной. Резкие перепады его отмечались даже в соседних зонах, разделенных промежутком в 1-2 мм. При сопоставлении показателей неправильного астигматизма правого и левого глаза часто удается отметить симметрию в структуре астигматизма. Установлена четкая зависимость между степенью неправильного астигматизма, выраженного коэффициентом астигматизма, и остротой центрального зрения. Автор пришел к выводу, что прогрессирование миопии обусловливает рост иррегулярных аберраций роговицы и хрусталика. По его мнению, при прогрессировании близорукости происходит не только изменения в заднем отрезке глазного яблока, но и деформация его переднего отрезка. Однако даже при минимальной деформации роговицы нарушается ее сферичность.

Н.М.Сергиенко (1982) приводит характерный пример, показывающий влияние иррегулярных оптических несовершенств на корригированную остроту зрения. У одного из обследуемых с полной коррекцией острота зрения 1,5, у другого, несмотря на несколько меньшую степень близорукости, - только 0,3. Судя по рис. 29, это можно объяснить тем, что в первом глазу имеется неправильный астигматизм легкой степени - разница между самым сильным и самым слабым преломлением равна 0,8 дптр (4,3-5,1), тогда как во втором глазу эта разница составляет

2,4дптр (1,9-4,3). Оптические несовершенства роговицы удавалось корригировать только с помощью контактных линз.

Аналогичные результаты получила Т.А.Корнюшина (1979), которая исследовала неправильный астигматизм (волновые аберрации) по методу Смирнова на 63 глазах (из них 43 с миопической рефракцией от 1,0 до 17,0 дптр). Автором подтверждено наличие измеримых величин аберраций оптической системы глаза при всех видах рефракции. Расчет толщины «пластины погрешностей» показал, что не существует строгих закономерностей в распределении волновых аберраций при всех видах рефракции. При небольших степенях миопии (до 5,0 дптр) и корригированной остроте зрения 1,0 величины аберраций существенно не отличаются от тех, которые выявляются при эммет- ропической и гиперметропической рефракции. При миопии высокой степени аберрации в среднем существенно больше, однако встречаются лица с такой миопией и высокой остротой зрения, у которых аберрации малы. При всех видах клинической рефракции и высокой остроте зрения на гистограммах распределения локальных рефракций выявлялись острые узкие пики (разброс рефракции в пределах 2,0 дптр). Эти пики указывают на наличие на многих участках зрачка практически одинаковой рефракции. При миопии и остроте зрения с коррекцией ниже 0,5 отмечаются пологие кривые без четко определяющихся пиков, что свидетельствует о большем разбросе рефракции. Сравнение результатов исследований аберраций у одних и тех же лиц с миопией в условиях оптимальной очковой коррекции (острота зрения осталась низкой) и контактной коррекции (острота зрения повысилась) показало, что при контактной коррекции оптические дефекты поверхности роговицы устраняются.