Жаров М. Гравитационное линзирование в астрономии

– массивное тело, искривляющее своим гравитационным полем направление распространения проходящего мимо него излучения. Этот эффект тяготения называют «линзой» по той причине, что параллельный пучек излучения, пройдя мимо массивного тела, концентрируется позади него, подобно тому, как концентрируется световой луч, проходя сквозь стеклянную положительную линзу. В принципе, роль гравитационной линзы может играть любое тело, но на практике заметное искривление лучей способно вызвать лишь очень массивное тело, например, крупная планета или звезда, а также крупная система тел, такая как галактика или скопление галактик. Гравитационная линза одинаково влияет на все виды электромагнитного излучения и потоки релятивистских частиц.

Блиох П.В., Минаков А.А. Гравитационные линзы . – Природа, № 11, 1982
Сажин М.В., Сурдин В.Г. Астрономические инструменты, созданные природой . «Земля и Вселенная», 1983, № 5
Тернер Э.Л. Гравитационные линзы. «В мире науки», 1988, № 9
Блиох П.В., Минаков А.А. Гравитационные линзы . Киев: Наукова думка, 1989
Блиох П.В., Минаков А.А. Гравитационные линзы . М.: Знание, 1990
Гравитационная фокусировка. – Природа, 1994, № 11
Захаров А.Ф. Гравитационные линзы и микролинзы . М.: Янус, 1997
Сурдин В.Г. Портрет Вселенной сквозь гравитационную линзу . «Знание – сила», 1998, № 9/10

Найти "ГРАВИТАЦИОННАЯ ЛИНЗА " на

Космический плацдарм Постулаты относительности мира
Гравитационные линзы


Подобно миражам, которые путешественники встречают в пустынях, в космосе существуют свои миражи. Они возникают, когда свет от отдаленных объектов отклоняется, изгибается и даже усиливается гравитационным полем массивных объектов, таких как галактики, галактические скопления и черные дыры. Большая масса объекта способна создать эффект линзы. На изображении внизу показано, как лучи света (обозначенные серыми стрелками), исходящие из отдаленной спиральной галактики, отклоняются, проходя мимо объекта с большой массой, например галактического скопления (шар, окруженный голубым сиянием, в центре изображения). Когда этот свет наконец достигает Земли, то создается впечатление, что он пришел с несколько иного направления (обозначенного красными стрелками). Форма обычной спиральной галактики при этом также изменилась. В данном случае галактическое скопление ведет себя как гигантское увеличительное стекло, или гравитационная линза, увеличивая и искажая изображение отдаленной галактики.

Гравитационными линзами называют астрономическое явление, при котором изображение какого-либо

Если линза сферическая, то наблюдаемое изображение имеет вид "кольца Эйнштейна", то есто светящегося кольца. Гравитационное поле, отклоняя лучи света, действует, подобно собирательной линзе.

Если линза вытянутая, то изображение получается в виде "креста Эйнштейна". Когда источник, линза и наблюдатель находятся на одном луче зрения, изображения зависят от формы объекта, создающего гравитационную линзу.

Если в качестве линзы выступает галактическое скопление, то изображение разбивается на части дугообразной формы. В отличие от привычных линз "фокусное расстояние" гравитационных оказывается очень большим.

Три вида эффектов от гравитационных линз

удаленного источника (звезды, галактики, квазара) оказывается искаженным из-за того, что луч зрения между источником и наблюдателем проходит вблизи какого-то притягивающего тела (другой звезды, галактики и даже скопления галактик). Термин «гравитационная линза» появился, по всей вероятности, в 20-е годы ХХ века, когда резко возрос интерес ученых к проблеме преломления света в гравитационном поле как к эффекту, предсказанному общей теорией относительности А. Эйнштейна и обнаруженному экспериментальной группой английских астрономов во главе с А. Эддингтоном во время полного солнечного затмения, происходившего 29 мая 1919 года. Именно тогда изображения звёзд, видимые вблизи края солнечного диска, немного сместились относительно своих обычных мест, а величина этого смещения находилась в полном согласии с предсказанием Эйнштейна.
Ближайшая к Солнцу точка его фокуса расположена в 550 раз дальше 3емли, а потому наблюдать с 3емли линзовый эффект поля тяготения Солнца нельзя. Хотя в принципе гравитационной линзой может стать любая звезда при условии, что она находится на луче зрения между наблюдателем и удаленным источником, вот только вероятность осуществления такой конфигурации крайне мала из-за низкой плотности звезд в нашей Галактике. А потому никто и не надеялся на то, что изображение, «построенное» гравитацией, будет когда-либо обнаружено в природе. Появилось лишь несколько теоретических работ, посвященных тому, как должно выглядеть изображение звезды, если между ней и наблюдателем окажется другая звезда или линза.
Тогда согласно предположениям такая звезда будет экранировать прямые лучи от источника, а к наблюдателю попадут только те лучи, которые преломлены в ее поле тяготения по образующим конуса. Изображение же источника будет выглядеть ярким кольцом (названным «кольцом Эйнштейна»), окружающим диск фокусирующей звезды. Угловые размеры как фокусирующей звезды, так и кольца очень малы, и увидеть их в отдельности невозможно даже в лучшие наземные телескопы. Дaжe при незначительном смещении наблюдателя в сторону симметрия нарушается, светящееся кольцо разрывается на две дуги, которые по мере удаления от оси будут стягиваться в маленькие кружочки. Это значит, что пока наблюдатель находится в области фокусировки, он будет видеть вместо одной звезды дна ее изображения по разные стороны от звезды-линзы. К тому же и сама фокусирующая звезда может являться мощным источником света, так как расположена относительно наблюдателя гораздо ближе изображаемого ею объекта и ее ослепляющее действие можно преодолеть только в том случае, если она заметно усиливает яркость изображения источника. Любые нарушения симметрии поля тяготения звезды и ее вращение уменьшают его фокусирующее действие и затрудняют обнаружение линзового эффекта от одиночных звезд.
Однако в 1937 году американский астроном Фриц Цвикки пришел к выводу, что роль линзы могут играть не только отдельные звезды, но и целые галактики. В этом случае угловые расстояния между изображением источника и гравитационной линзой настолько увеличиваются, что оказываются в пределах разрешающей способности современных телескопов.
Обнаружить эффект гравитационного линзирования во Вселенной астрономам помогли квазары - одни из самых далеких и ярких объектов Вселенной. Чем дальше находится объект, тем больше вероятность того, что на луче зрения между ним и наблюдателем появится какая-нибудь галактика. В 1979 году группа астрономов из Англии и CШA получила спектры двух компонентов квазара QSO 0957+561, удаленного от нас более чем на 8 млрд. световых лет. Астрономы были поражены практически полной идентичностью их спектров и красного смещения. Вот только колебания яркости компонентов происходили не одновременно, а с разницей приблизительно в один год. Поэтому астрономы склонились к мнению, что два компонента квазара QSO 0957+561 - это всего лишь кажущийся эффект. На самом же деле существует лишь один квазар, а его двойное изображение является результатом действия гравитационной линзы, находящейся между наблюдателем и квазаром. В результате длительных наблюдений была обнаружена эллиптическая галактика, расположенная на расстоянии более 3 млн. световых лет от Земли, которая и разделила надвое своей гравитацией излучение квазара. Галактика-линза немного смещена в сторону от линии Земля-квазар, поэтому ход лучей в системе несимметричен: фотоны, огибающие галактику с одной стороны, должны преодолевать гораздо большее расстояние, чем фотоны, огибающие ее с другой, потому-то и прибывают они к наблюдателю с опозданием в год.
Конечно, гравитационная линза - «плохая» линза в том смысле, что у нее нет хорошего фокуса, где можно получить неискаженное изображение. Ведь структура изображений зависит от взаимного расположения источника, линзы и наблюдателя, а также массы и формы линзы. Наиболее экстремальное искажение света имеет место тогда, когда линза очень массивна и линзируемый источник достаточно близок к ней. В конце 80-х годов прошлого столетия стали наблюдаться гравитационные линзы на скоплениях галактик. При этом было обнаружено, что слабые голубые галактики, находящиеся за линзирующим скоплением, имеют вытянутые дугообразные формы. Классический пример такой картины - снимок скопления галактик Абелл 2218, полученный космическим телескопом «Хаббл».
В простейшем случае, когда размеры источника и линзы невелики, изображение источника «размножается» на два и более компонентов. Примером тому может служить знаменитый квазар «крест Эйнштейна», расстояние до которого оценивается в более чем 8 млрд. световых лет. Изображение самого квазара состоит из четырех компонентов, а яркое пятно между ними - линзирующая галактика, расположеная примерно в 20 раз ближе квазара. В общем случае расстояния, которые проходит свет, создающий разные изображения одного и того же объекта до наблюдателя, неодинаковы.
Часто линзу не удается обнаружить оптическими наблюдениями и искажение изображения далекого исследуемого источника излучения является единственным свидетельством того, что на луче зрения между ним и наблюдателем присутствует большое скопление вешества. Так, фотографии квазара MG2016+122 из созвездия Дельфина говорят о том, что свет от него преломляется мощной гравитационной линзой, однако наблюдения на самых мощных оптических телескопах не смогли обнаружить ничего, что могло бы вызывать отклонения света квазара! Изучить галактику выступающую в роли гравитационной линзы, гораздо сложнее, чем обнаружить ее влияние на изображение квазара. Слабое изображение галактики часто тонет в ярком свете квазара (хотя по земным меркам оба они - суперслабые).
Гравитационные микролинзы

Гравитационные линзы могут пролить свет на самые «темные» тайны Вселенной. В конце 1997 года астроном М. Хокинс заявил о том, что одним из невидимых массивных компонентов Вселенной, возможно, являются галактики, лишенные звезд. Свое предположение он основывает на том, что при изучении восьми пар изображений гравитационно линзированных квазаров ему только в двух случаях удалось обнаружить отклоняющие свет звездные системы. У остальных же шести пар оптических следов гравитационной линзы - галактики обнаружено не было. А судя по искажению изображений, эти линзы по массе не уступают нашей Галактике. Поэтому Хокинс и его коллеги считают, что им удалось открыть «несостоявшиеся галактики», лишенные звездного населения и состоящие только из газа. Если это действительно так, то открытие поможет решить загадку скрытой массы.
Скрытой массой (или, иначе, темной материей) называют вещество неизвестной природы, которое взаимодействует с обычным (видимым) веществом практически только посредством сил гравитации. Звезды как в нашей, как и в других спиральных галактиках вращаются так, словно большая часть массы этих систем сосредоточена не в диске, а в обширном несветящемся гало, протяженность которого, по некоторым данным, может превышать размеры диска в десятки раз. Одно из объяснений этого парадокса заключается в том, что гало типичной дисковой галактики заполнено объектами, названными МАСНО

На этом снимке, полученном телескопом «Хаббл», видны несколько голубых петлеобразных объектов, которые являются размноженными изображениями одной и той же галактики. Они размножены гравитационной линзой - скоплением спиральных и эллиптических галактик (желтого цвета), имеющих название 0024 + 1654. На этом изображении свет от отдаленной галактики отклоняется, когда он проходит вблизи скопления, разделяя изображение галактики на пять частей. Искажается также форма галактики: из обычиой спиральной она приобретает вид вытянутой дуги. Скопление находится на расстоянии 5 млрд. световых лет в созвездии Рыб, а голубая галактика - на вдвое большем расстоянии.

Тайна гравитационной линзы: прохождение лучей

На изображении в кадре, полученном телескопом Хаббл, видна очень маленькая слабосветящаяся галактика, недавно открытая совместными усилиями космического телескопа и наземными телескопами Кек на Гавайях с помощью галактического скопления Abell 2218, которое выполняет роль гравитационной линзы, усиливая свет в 30 раз. Без участия этого скопления открытие блока (13,4 млрд св лет), было невозможно. Все в поле зрения изображения покрыто тонкими дугами - искаженными галактиками находящимися за скоплением. Многие из этих галактик находятся во много раз дальше чем само скопление. Видны они стали благодаря гравитационной линзе.

(Massive Astrophysical Compact Наlо Оbjects - массивные астрофизические компактные галообъекты). К ним относятся слабосветящиеся звезды, или коричневые карлики (с массой, меньшей чем 0,08 массы Солнца, в недрах которых никогда не происходят термоядерные реакции), белые карлики - планеты с массами до одной тысячной массы Солнца, нейтронные звезды в неактивной стадии и черные дыры.
Согласно оценке Богдана Пачинского число темных тел в гало Галактики должно быть весьма велико, так что вероятность того, что звезда одной из ближайших галактик почти точно спроектируется на темное тело, составляет порядка одной миллионной. И хотя эта вероятность чрезвычайно мала, наблюдая одновременно миллионы звезд в небольшой компактной области неба с помощью панорамных приемников излучения, можно надеяться на достаточно частую регистрацию вспышек звезд, вызванных эффектом микролинзирования. А по длительности и частоте подобных событий можно судить о вкладе темных тел гало Галактики в полную массу невидимого вещества. Это, конечно, очень важный вывод: если МАСНО - объекты существуют, микролинзирование является подходящим методом для обнаружения темной материи, за которой астрономы охотятся в последние десятилетия.
Большие и Малые Магеллановы Облака - самые ближайшие наши соседи и самые яркие галактики на небе. Они выглядят как два туманных облачка, хотя эти облачка содержат миллиарды звезд и поэтому являются потенциальными целями для микролинзирования. Если бы между нами и Магеллановыми Облаками не было никаких тел, способных создавать эффект гравитационной микролинзы, то, наблюдая за звездами, мы получали бы информацию об их собственной переменности блеска. Но если между нами и звездами этик галактик время от времени пролетают неизлучающие или слабосветящиеся массивные тела (например, старые холодные белые карлики, нейтронные звезды, черные дыры или планеты типа Юпитера), то появляется вероятность того, что при достаточно долгом времени наблюдения такое темное тело «пролетит» настолько близко к лучу от одной из звезд Магеллановых Облаков, что блеск последней сначала резко увеличится, а затем уменьшится абсолютно симметрично за время такого близкого пролета. Очевидно, чем плотнее звездное поле, тем дольше можно следить за каждой из звезд и тем больше шансов обнаружить темные тела. Звезды Больших и Малых Магеллановых Облаков могут быть линзированы главным образом объектами Галактического гало. Другой потенциальной целью для микролинзирования является Галактический балдж - большое скопление звезд в окрестности галактического центра. В этом случае можно ожидать эффектов микролинзирования очень малыми объектами массой около одной миллионной массы Солнца.
Группа американских и австралийских ученых, назвавшая свой эксперимент МАСНО, проводила наблюдения на обсерватории Mount Stromlo в Австралии, вблизи Канберры, с использованием телескопа, в фокусе которого установлен панорамный фотоэлектрический приемник, позволяющий одновременно регистрировать и анализировать с помощью компьютера блеск около миллиона звезд. Помимо этого, группа МАСНО наблюдала также звезды в направлении на центр Галактики и Большого Магелланова Облака. Члены группы, следившие за блеском более 10 млн. звезд, зафиксировали два десятка открытых ими событий микролинзирования. Причем обычные звезды Галактики за все время наблюдений могли бы дать одно, максимум два события, а потому учеными был сделан вывод, что линзы находятся в гало Галактики. Продолжительность же уярчения фоновой звезды позволила оценить массу микролинз, которая составляла примерно 0,5 массы Солнца. Удалось также в процессе наблюдения отождествить источник одного из событий микролинзирования со слабой звездой, но не из гало Галактики, а из дискового населения.
Звезда-линза была найдена на снимках с телескопа «Хаббл» спустя б лет после наблюдения явления микролинзирования, длившегося долго - блеск далекой голубой звезды в БМО был выше нормы около 100 суток. На снимке с «Хаббла» была обнаружена близкая (на расстоянии 200 пк от нас) красная звезда класса М с массой около 0,1 массы Солнца. Спектральный анализ подтвердил наличие линий этой слабой звезды на фоне спектра голубой звезды из Большого Магелланова Облака.
На первом этапе группа МАСНО использовала небольшой телескоп обсерватории Mount Stromlo в Австралии. Теперь же идет новый, 5-летний цикл наблюдений на мощном 4-метровом телескопе, установленном в Чили. Он позволит резко увеличить статистику явлений микролинзирования и с гораздо более высокой степенью надежности поможет установить, какую долю в этих явлениях составляют видимые звезды.
Совместный проект французских и чилийских ученых, названный EROS, состоит из двух программ. Первая из них предусматривает поиск объектов с массой от 0,0001 до 0,1 массы Солнца, время линзирования которых заключено в пределах от 1 до 30 дней. Наблюдения проводились в Чили на широкоугольном 50-см телескопе вначале с помощью фотографической методики, а затем с помощью фотоэлектрического ПЗС-приемника. За несколько лет было изучено приблизительно 10 миллионов звезд. Вторая программа направлена на поиск объектов, имеющих до 0,001 массы Солнца с временем линзирования от 1 до 3 дней. Для этих наблюдений 150 000 звезд просматривались каждые 20 минут.

Проект наблюдения микролинзирования в астрофизике (МОА) - совместный эксперимент Японии и Новой 3еландии - был начат в 1995 году. Наблюдения группы МОА проводятся в Новой Зеландии.
Чтобы лучше оценить пространственное распределение темных тел в Галактике, необходимо наращивать число наблюдений явлений микролинзирования не только в направлении на БМО, но и в других направлениях. С этой целью группа астрономов Государственного астрономического института им. П.К.Штернберга МГУ начала поиск эффектов микролинзирования звезд галактики в созвездии Андромеда, которая расположена на Северном небе и доступна для наблюдений с обсерваторий России и стран СНГ.
К настоящему времени число обнаруженных явлений микролинзирования превышает 50. Анализ результатов наблюдений БМО позволяет предположить, что по крайней мере половина скрытой массы гало Галактики обязана своим происхождением вкладу маломассивных звезд и коричневых карликов.
Наблюдения микролинзирования звезд с высокой фотометрической точностью дают принципиальную возможность обнаружения не только темной материи, но также и планетных систем у звезд. Открытие эффектов микролинзиронания было сделано на небольших наземных телескопах простыми и дешевыми средствами. Наряду с обнаружением эффектов микролинзирования были получены высокоточные кривые блеска многих десятков тысяч переменных звезд разных типов, что является важным вкладом в проблему изучения переменных звезд.
Гравитационные линзы - весьма многообещающее явление, способное привести к самым неожиданным открытиям как в нашей Галактике, так и в самых далеких уголках Вселенной. Оно уже стало независимым и крайне важным астрономическим методом, с помощью которого можно получать ценную информацию о загадочной темной материи, измерять ключевые космологические параметры и наблюдать новые эффекты в движении небесных тел, которые невозможно увидеть традиционными астрономическими методами.

Гравитация [От хрустальных сфер до кротовых нор] Петров Александр Николаевич

Гравитационные линзы

Гравитационные линзы

Почему попугаи за номером один, два и три…, похожи друг на друга до такой степени?

Аркадий Стругацкий, Борис Стругацкий «Понедельник начинается в субботу»

С понятием «гравитационная линза», которое мы ввели выше, связаны бурно развивающиеся в последнее время области исследований в астрофизике и космологии. Из российских ученых активными теоретиками-исследователями в этой области являются Михаил Сажин и Александр Захаров. Изложение этой части будет во многом соответствовать статье Захарова «Гравитационные линзы» на сайте pereplet.ru.

По-видимому первый, кто использовал термин «линза» для отклонения луча света гравитационным полем тела, был английский физик Оливер Лодж (1851–1949) в 1919 году. Однако он отметил, что «гравитационное поле действует как линза, но она не имеет фокусной длины». Петербургский физик Орест Хвольсон (1852–1934) в 1924 году опубликовал короткую заметку, в которой заметил, что в случае, когда рассматривается отклонение луча света далекой звезды звездой-линзой, возможно возникновение второго изображения фоновой звезды, но угол между двумя изображениями столь мал, что эти изображения нельзя разрешить с помощью наземного телескопа. В случае, когда наблюдатель, линза и источник находятся на одной прямой, возникает изображение типа кольца.

Аналогичные результаты опубликовал Эйнштейн в 1936 году, где также описывалось появление кольца в случае, если наблюдатель, линза и источник находятся на одной прямой. Эти результаты более известны, возможно потому, что журнала «Science», где опубликована статья Эйнштейна, более популярен по сравнению с потсдамским астрономическим журналом «Astronomische Nachrichten», где опубликована статья Хвольсона. Поэтому кольца гравитационной линзы называют обычно «кольцами Эйнштейна», значительно реже «кольцами Хвольсона-Эйнштейна». Эйнштейн также заметил, что «конечно нельзя надеяться на то, что удастся прямо наблюдать это явление». Нужно сказать, правда, что и Хвольсон, и Эйнштейн рассматривали случай, когда и источник, и гравитационная линза являются звездами.

Однако в 1937 году американский астроном швейцарского происхождения Фриц Цвикки (1898–1974) пришел к выводу, что эффект может быть наблюдаем в случае, если источником является далекая яркая галактика, а гравитационной линзой – более близкая галактика. В публикации он ссылается на идеи нашего соотечественника, представителя первой русской эмиграции инженера Владимира Зворыкина (1888–1982), создателя современного телевидения, и чешского инженера Руди Мандла. То же самое написал Эйнштейн в своей работе: «Некоторое время тому назад меня посетил Руди Мандл и попросил опубликовать результаты небольшого расчета, который я провел по его просьбе. Уступая его желанию, я решил опубликовать эту заметку». Так что, может и была борьба за приоритеты, но исследователи вели себя очень корректно в отношении чужих идей и результатов. А ссылка Цвикки демонстрирует широкое влияние на развитие мировой науки российской научной школы.

Насколько плодотворным было замечание Зворыкина и, безусловно, последующий анализ Цвикки, стало ясно спустя более сорока лет. В 1979 году группа английских астрономов обнаружила первую гравитационную линзу при наблюдении двойного квазара QSO 0957+16 A, B: угловое расстояние между изображениями порядка 6? , а гравитационной линзой являлась галактика, рис. 7.4. Таким образом, предсказание Цвикки подтвердилось. На настоящий момент открыто более полусотни объектов, которые представляют результат гравитационного линзирования, и это число постоянно растет. Замечательный космолог, астрофизик, физик-теоретик Яков Зельдович (1914–1987), рис. 7.5, с его широчайшим научным кругозором, не мог не оценить важности этого открытия и обратил на него внимание одного из своих учеников – Михаила Сажина. Сейчас как теоретическое изучение этого явления, так и поиски новых наблюдательных подтверждений активно продолжаются.

Рис. 7.4. Первая гравитационная линза

Теперь расскажем о физике явления. Действительно, как было замечено Лоджем, гравитационные линзы не имеют «фокусного расстояния» в том смысле, как ее имеют оптические линзы. Поэтому их действие оказывается несколько непривычным. Они также «собирают» свет, при некоторых условиях это приводит к повышению яркости наблюдаемого объекта. Но более выдающимся их проявлением является «построение» двух , а иногда нескольких изображений этого объекта. Обратимся к схеме на рис. 7.6. На ней проиллюстрировано как действует точечная гравитационная линза. Собственно объект наблюдения (квазар) находится в точке S, линза в точке D, а наблюдатель в точке O .

Рис. 7.5. Яков Зельдович

Два луча (жирные линии) отклоняются линзой так, что наблюдатель видит два изображения квазара на небесной сфере: точки S 1 и S 2 .

В случае, если точечный источник находится точно на оси симметрии, изображение является кольцом, которое обсуждалось в работах Хвольсона и Эйнштейна. Однако наблюдать подобное кольцо в реальности в случае точечного источника невозможно, поскольку при самом малом изменении параметров кольцо исчезает и появляется два точечных изображения.

Чаще всего обнаружить гравитационные линзы можно по наблюдениям пар квазаров, которые имеют похожие спектры и временную переменность компонентов, отличающуюся лишь временным сдвигом, который может принимать значения для различных пар изображений от нескольких дней до нескольких лет!

Рис. 7.6. Геометрия точечной гравитационной линзы

В случае, когда источник не точечный, появление кольца в принципе возможно, хотя скорее будет два растянутых изображения в виде дуг. В реальных ситуациях или угловое расстояние между изображениями слишком мало, или линза имеет большую массу и большие размеры, так что ее нельзя рассматривать как материальную точку (как в первых наблюдаемых примерах гравитационных линз). Реальные эффекты гравитационного линзирования зависят от разных параметров, а число возможных изображений и сами изображения разнообразны.

Гравитационные линзы в настоящее время являются и важным инструментом астрономических исследований. С их помощью можно: 1) получить независимую от других методов исследований оценку параметров расширения Вселенной; 2) оценить массы гравитационных линз, большая часть которых испускает слишком мало электромагнитного излучения, чтобы их можно было обнаружить с помощью стандартных астрономических методов; 3) по наблюдаемому изменению формы удаленных фоновых галактик с помощью методов так называемого слабого гравитационного линзирования можно восстановить распределение поверхностной плотности удаленных скоплений галактик; 4) по характерному изменению наблюдаемой светимости фоновой звезды можно обнаружить невидимые объекты с массами порядка солнечной, то есть обнаружить так называемое микролинзирование. Это как раз то явление, которое Хвольсону и Эйнштейну казалось слишком недоступным для наблюдения.

Недавно, в 2007 году, было установлено, что одно из событий микролинзирования вызвано коричневым карликом – это почти невидимые объекты небольшой (по звездным меркам) массы. Таким образом, микролинзирование расширяет возможности исследования этих малодоступных для обнаружения и наблюдений, но очень интересных и важных тусклых звезд.

Из книги Звезды: их рождение, жизнь и смерть [Издание третье, переработанное] автора Шкловский Иосиф Самуилович

Глава 24 Черные дыры и гравитационные волны Основоположник теории внутреннего строения звезд выдающийся английский ученый А. С. Эддингтон был, как известно, крупнейшим знатоком общей теории относительности. Он впервые во время солнечного затмения в 1919 г. измерил

Из книги История лазера автора Бертолотти Марио

Гравитационные волны В 1919 г. Эйнштейн предсказал, что движущиеся массы производят гравитационные волны, распространяющиеся со скоростью света. К сожалению, амплитуда такого гравитационного излучения, испускаемого любым источником, созданным в лаборатории, слишком

Из книги Твиты о вселенной автора Чаун Маркус

140. Что такое гравитационные волны? Гравитационные волны являются гипотетическими волнами в структуре пространства-времени, движущимися со скоростью света, как рябь на поверхности пруда.Согласно общей теории относительности Эйнштейна, жесткое 4-мерное

Из книги Гравитация [От хрустальных сфер до кротовых нор] автора Петров Александр Николаевич

Глава 10 Гравитационные волны А синуса график волна за волной На ось ординат набегает. Студенческая песня Электромагнитные волны Развивая рассказ о создании новой теории гравитации ОТО, мы все время возвращались к идеям Ньютона и результатам его теории. Сейчас,

Из книги Интерстеллар: наука за кадром автора Торн Кип Стивен

Магнитные, электрические и гравитационные поля Силовые линии магнитных полей играют большую роль во Вселенной и очень важны для понимания «Интерстеллар», поэтому стоит поговорить о них, прежде чем углубиться в научные аспекты фильма.Наверное, на уроках физики вам

Из книги автора

7. Гравитационные пращи Управлять космическим кораблем вблизи Гаргантюа нелегко – из-за очень больших скоростей. Чтобы не погибнуть, планета, звезда или космический корабль должны противопоставить огромной гравитации Гаргантюа центробежную силу сравнимой величины.

Из книги автора

Гравитационные маневры NASA в Солнечной системе Давайте вернемся из мира вероятностей (то есть всего, что допускают законы физики) к реальным, без изысков, гравитационным пращам в уютных пределах нашей Солнечной системы (по состоянию на 2014 год).Возможно, вы слышали

Из книги автора

Гравитационные пращи у двойной черной дыры Третий способ – это моя собственная сумасбродная – крайне сумасбродная! – вариация одной из идей Дайсона .Представьте, что вы решили за несколько лет облететь изрядную часть Вселенной, совершив не просто

Из книги автора

16. Обнаружение червоточины: гравитационные волны Как люди в «Интерстеллар» могли обнаружить червоточину? У меня как физика есть любимая версия, о которой я сейчас поведаю, выйдя за рамки непосредственных событий «Интерстеллар». Разумеется, эта лишь мои догадки,

Из книги автора

Гравитационные волны и детекторы волн А теперь, прежде чем продолжить разговор об «Интерстеллар», я позволю себе удовольствие рассказать еще немного о гравитационных волнах.На рис. 16.6 – художественное изображение тендекс-линий двух черных дыр, которые вращаются

Из книги автора

Гравитационные волны от Большого взрыва В 1975 году Леонид Грищук, мой добрый приятель из России, сделал сенсационное заявление. Он сказал, что в момент Большого взрыва возникло множество гравитационных волн, причем механизм их возникновения (прежде неизвестный) был

Из книги автора

24. Гравитационные аномалии Гравитационная аномалия – это нечто такое, что связано с гравитацией и не укладывается в наши представления о Вселенной или не соответствует нашему пониманию законов физики, управляющих Вселенной: например падения книг

Из книги автора

Гравитационные аномалии в «Интерстеллар» В отличие от гравитационных аномалий, о которых я рассказал только что, в «Интерстеллар» гравитационные аномалии наблюдаются на Земле.Физики, начиная с самого Исаака Ньютона, усиленно искали аномалии на Земле. Находок было

Из книги автора

Глава 7. Гравитационные пращи О гравитационных пращах на более сложном уровне, чем в этой книге, см. статью в «Википедии» en.wikipedia.org/wiki/Gravity_assist, однако не верьте тому, что там говорится о пращах вокруг черных дыр: утверждение (по состоянию на 4 июля 2014 года): «Если

Из книги автора

Глава 16. Обнаружение червоточины: гравитационные волны Свежая информация о проекте ЛИГО и поиске гравитационных волн – на сайте научного коллектива ЛИГО ligo.org (в особенности см. разделы News и Magazine) и на сайте лаборатории ЛИГО ligo.caltech.edu; также см. фильм Кая Стаатса

Из книги автора

Глава 24. Гравитационные аномалии Подробную историю об открытии аномальной прецессии Меркурия и о поисках планеты Вулкан можно узнать из трактата историка науки Н. Т. Роузвера «Перигелий Меркурия. От Леверье до Эйнштейна» [Роузвер 1985], а также из более простого


Гравитационная линза

Любое массивное тело (планета, звезда) или система тел (галактика, скопление галактик), искривляющая своим гравитационным полем направление распространения излучения, подобно тому, как искривляет световой луч обычная линза.

Эффект гравитационной линзы был предсказан А.Эйнштейном, который в 1915 г. в рамках общей теории относительности впервые правильно вычислил угол отклонения луча света в гравитационном поле. Во время полного солнечного затмения 29 мая 1919 г. английские астрономы измерили отклонение света звезд, проходящего вблизи поверхности Солнца: смещение изображений звезд составило 1.75" в полном согласии с предсказанием Эйнштейна. Английский физик О.Лодж в 1919 г., по-видимому, первым использовал термин "линза", говоря об отклонении электромагнитного луча гравитацией. Петербургский физик О.Хвольсон в 1924 г. опубликовал в журнале "Astronomische Nachrichten" заметку о том, что луч света далекой звезды может быть отклонен притяжением другой звезды-линзы, в результате чего возникнет второе изображение далекой звезды; в случае, когда обе звезды и наблюдатель находятся на одной прямой, изображение будет иметь форму кольца. Эйнштейн опубликовал в 1936 г. в журнале "Science" заметку, в которой по просьбе чешского инженера Р.Мандла рассмотрел линзоподобное действие одной звезды на другую и также указал на возможность кольцеобразного изображения. Ни Хвольсон, ни Эйнштейн не верили в возможность экспериментального обнаружения эффекта гравитационной линзы в случае обычных звезд.

Однако в 1937 г. американский астроном швейцарского происхождения Фриц Цвикки пришел к выводу, что эффект гравитационной фокусировки света можно наблюдать в том случае, если линзой является галактика. В 1979 г. английские астрономы Д. Волш и др. впервые обнаружили "двойной квазар" QSO 0957+16 A,B (красное смещение z=1.4 и угловое расстояние между компонентами около 6"). Когда выяснилось, что оба квазара изменяют свой блеск в унисон, астрономы поняли, что в действительности это два изображения одного квазара, обязанные эффекту грав итационной линзы. Вскоре нашли и саму линзу - далекую галактику (z=0.36), лежащую между Землей и квазаром. К концу ХХ в. обнаружено несколько десятков гравитационных линз. Некоторые изображения действительно имеют форму ровного или разорванного кольца, которое называют "кольцом Эйнштейна" или "кольцом Хвольсона-Эйнштейна". Позже был обнаружен эффект гравитационной линзы и в пределах нашей Галактики: однократная спонтанная переменность блеска некоторых звезд указывает на то, что между ними и Землей проходят массивные и довольно темные тела, природа которых пока не ясна.

Направление распространения электромагнитного излучения, подобно тому, как искривляет световой луч обычная линза .

Как правило, гравитационные линзы, способные существенно исказить изображение фонового объекта, представляют собой достаточно большие сосредоточения массы: галактики и скопления галактик. Более компактные объекты, например, звёзды, тоже отклоняют лучи света, однако на столь малые углы, что зафиксировать такое отклонение не представляется возможным. В этом случае можно лишь заметить кратковременное увеличение яркости объекта-линзы в тот момент, когда линза пройдёт между Землёй и фоновым объектом. Если объект-линза яркий, то заметить такое изменение нереально. Если же объект-линза не яркий или же не виден совсем, то такая кратковременная вспышка вполне может наблюдаться. События такого типа называются микролинзированием . Интерес здесь связан не с самим процессом линзирования, а с тем, что он позволяет обнаружить массивные и не видимые никаким иным способом плотности материи.

Ещё одним направлением исследований микролинзирования стала идея использования каустик для получения информации как о самом объекте-линзе, так и о том источнике, чей свет она фокусирует. Подавляющее большинство событий микролинзирования вполне вписывается в предположение, что оба тела сферической формы. Однако в 2-3 % всех случаев наблюдается сложная кривая яркости, с дополнительными короткими пиками, которая свидетельствует о формировании каустик в линзированных изображениях . Такая ситуация может иметь место, если линза имеет неправильную форму, например, если линза состоит из двух или более тёмных массивных тел. Наблюдение таких событий безусловно интересно для изучения природы тёмных компактных объектов. Примером успешного определения параметров двойной линзы с помощью изучения каустик может служить случай микролинзирования OGLE-2002-BLG-069 . Кроме того, имеются предложения по использованию каустического микролинзирования для выяснения геометрической формы источника, либо для изучения профиля яркости протяжённого фонового объекта, и в частности для изучения атмосфер звёзд-гигантов.

Теория

Уравнение гравитационного линзирования

Гравитационную линзу можно рассматривать как обычную линзу, но только с коэффициентом преломления, зависящим от положения. Тогда общее уравнение для всех моделей можно записать следующим образом :

где η - координата источника, ξ - расстояние от центра линзы до точки преломления (прицельный параметр) в плоскости линзы, D s , D d - расстояния от наблюдателя до источника и линзы соответственно, D ds - расстояние между линзой и источником, α - угол отклонения, вычисляемый по формуле:

где Σ - поверхностная плотность, вдоль которой "скользит" луч. Если обозначить характерную длину в плоскости линзы за ξ 0 , а соответствующую ей величину в плоскости источника за η 0 =ξ 0 D s /D l и ввести соответствующие безразмерные векторы x=ξ/ξ 0 и y=η/η 0 , то уравнение линзы можно записать в следующем виде:

Тогда, если ввести функцию, называемой потенциалом Ферма , можно записать уравнение следующим образом :

Временную задержку между изображениями также принято записывать через потенциал Ферма :

Иногда удобно выбрать масштаб ξ 0 =D l , тогда x и y это угловое положение изображения и источника соответственно.

См. также

  • SDSSJ0946+1006 - система с двойными кольцами Эйнштейна.

Ссылки

Литература

  • Захаров А.Ф. Гравитационные линзы и микролинзы. - М .: Янус-К, 1997. - ISBN 5-88929-037-1
  • ЧЕРЕПАЩУК А. М. Гравитационное микролинзирование и проблема скрытой массы.

Категории:

  • Астрофизика
  • Релятивистские и гравитационные явления
  • Астрономические явления
  • Астрономические объекты, открытые методом гравитационного микролинзирования

Wikimedia Foundation . 2010 .

Смотреть что такое "Гравитационная линза" в других словарях:

    Космич. тело с большой массой, гравитац. поле к рого искривляет (фокусирует) излучение более далёкого объекта, находящегося на одном луче зрения с гравитирующей массой. Г. л. создаёт неск. изображений объекта, в нек рых из к рых происходит… … Естествознание. Энциклопедический словарь

    Гравитационная линза - тело большой массы, влияние которого на движение света похоже на действие обычной линзы, преломляющей лучи за счет изменения оптических свойств среды; отклонение света гравитационным полем предсказано А.Эйнштейном (1915), расчет вида… … Мир Лема - словарь и путеводитель

    Гравитационное линзирование света нейтронной звездой (модель) Гравитационная линза массивное тело (планета, звезда) или система тел (галактика, скопление галактик), искривляющая своим гравитационным полем направление распространения излучения,… … Википедия - Плоско выпуклая линза Линза (нем. Linse, от лат. lens чечевица) обычно диск из прозрачного однородного материала, ограниченный двумя полированными поверхностями сферическими или плоской и сферической. В настоящее время всё чаще применяются и т. н … Википедия

    Плоско выпуклая линза Линза (нем. Linse, от лат. lens чечевица) обычно диск из прозрачного однородного материала, ограниченный двумя полированными поверхностями сферическими или плоской и сферической. В настоящее время всё чаще применяются и т. н … Википедия

    Плоско выпуклая линза Линза (нем. Linse, от лат. lens чечевица) обычно диск из прозрачного однородного материала, ограниченный двумя полированными поверхностями сферическими или плоской и сферической. В настоящее время всё чаще применяются и т. н … Википедия аудиокнига