Процессы пищеварения: переваривание жиров, углеводов, белков. Биохимия пищеварения

Любой живой организм питается органической пищей, которая разрушается в пищеварительной системе и участвует в клеточном метаболизме. И для такого вещества, как белок, переваривание означает полное расщепление до составляющих его мономеров. Это значит, что основной задачей пищеварительной системы является разрушение вторичной, третичной или доменной структуры молекулы, а затем отщепление аминокислот. Позже будут разнесены кровеносной системой по клеткам организма, где будут синтезированы новые белковые молекулы, необходимые для жизнедеятельности.

Ферментативное расщепление белка

Белок — сложная макромолекула, пример биополимера, состоящего из множества аминокислот. А некоторые белковые молекулы состоят не только из аминокислотных остатков, но и из углеводных или липидных структур. Ферментативные или транспортные белки и вовсе могут содержать ион металла. Чаще прочих в пище присутствуют белковые молекулы, которые содержатся в мясе животного. Это также сложные фибриллярные молекулы с длинной аминокислотной цепочкой.

Для расщепления белков в пищеварительной системе имеется набор ферментов протеолиза. Это пепсин, трипсин, хемотрипсин, эластаза, гастриксин, химозин. Окончательное переваривание белков происходит в тонком кишечнике под действием пептид-гидролаз и дипептидаз. Это группа ферментов, которые разрушают пептидную связь у строго специфичных аминокислот. Это значит, что для разрушения пептидной связи между остатками аминокислоты серина нужен один фермент, а для расщепления связи, образованной треонином, — другой.

Ферменты переваривания белков делятся на виды в зависимости от строения их активного центра. Это сериновые, треониновые, аспартильные, глютаминовые и цистеиновые протеазы. В структуре своего активного центра они содержат определенную аминокислоту, из-за которой получили свое название.

Что происходит с белком в желудке?

Многие ошибаются, говоря, что желудок является главным органом пищеварения. Это распространенное заблуждение, так как переваривание пищи частично наблюдается уже в ротовой полости, где разрушается небольшая часть углеводов. Здесь же происходит их частичное всасывание. Но основные процессы пищеварения и вовсе протекают в тонком кишечнике. При этом, несмотря на наличие пепсина, химозина, гастриксина и соляной кислоты, переваривания белков в желудке не происходит. Эти вещества под действием протеолитического и соляной кислоты денатурируют, то есть теряют свою особую пространственную структуру. Также под действием химозина створаживается белок молока.

Если выразить процесс переваривания белка в процентах, то в желудке происходит примерно 10 % разрушения каждой белковой молекулы. Это значит, что в желудке ни одна аминокислота от макромолекулы не отрывается и не всасывается в кровь. Белок лишь набухает и денатурирует, чтобы увеличить количество доступных мест для работы протеолитических ферментов в двенадцатиперстной кишке. Это значит, что под действием пепсина молекула белка увеличивается в объеме, обнажая больше пептидных связей, на которые затем присоединяются протеолитические ферменты панкреатического сока.

Переваривание белка в двенадцатиперстной кишке

После желудка обработанная и тщательно измельченная пища, смешанная с желудочным соком и подготовленная к дальнейшим этапам пищеварения, попадает в двенадцатиперстную кишку. Это участок пищеварительного тракта, расположенный в самом начале тонкого кишечника. Здесь происходит дальнейшее расщепление молекул под действием панкреатических ферментов. Это более агрессивные и более активные вещества, способные дробить длинную полипептидную цепочку.

Под действием трипсина, эластазы, химотрипсина, карбоксипептидаз А и В происходит расщепление молекулы белка на множество более мелких цепей. По сути, после прохождения двенадцатиперстной кишки переваривание белков в кишечнике только начинается. И если выразить в процентах, то после обработки пищевого комка белки перевариваются примерно на 30-35 %. Полная их «разборка» до составляющих мономеров будет проведена в тонком кишечнике.

Итоги панкреатического пищеварения белков

Переваривание белков в желудке и двенадцатиперстной кишке — это подготовительный этап, который нужен для дробления макромолекул. Если в желудок поступает белок с длиной цепочки в 1000 аминокислот, то на выходе из двенадцатиперстной кишки получится, к примеру, 100 молекул с 10 аминокислотами в каждой. Это гипотетическая цифра, так как эндопептидазы, указанные выше, не делят молекулу на равные участки. В образовавшейся массе будут присутствовать молекулы с длиной цепочки и 20 аминокислот, и 10, и 5. Это значит, что процесс дробления является хаотичным. Его цель — максимальное упрощение работы экзопептидаз в тонком кишечнике.

Пищеварение в тонком кишечнике

Для любого высокомолекулярного белка переваривание — это полное его разрушение до составляющих первичную структуру мономеров. И в тонком кишечнике под действием экзопептидаз достигается разложение олигопептидов на отдельные аминокислоты. Олигопептидами называются упомянутые выше остатки крупной белковой молекулы, состоящие из небольшого количества аминокислот. Их расщепление сопоставимо по энергетическим затратам с синтезом. Потому переваривание белков и углеводов — это энергоемкий процесс, как и само всасывание полученных аминокислот эпителиальными клетками.

Пристеночное пищеварение

Пищеварение в тонком кишечнике называется пристеночным, так как оно протекает на ворсинках — складках кишечного эпителия, где сконцентрированы ферменты экзопептидазы. Они присоединяются к молекуле олигопептида и гидролизуют пептидную связь. При этом для каждого типа аминокислоты существует свой фермент. То есть на разрыв связи, образованной аланином, нужен фермент аланин-аминопептидаза, глицина — глицин-аминопептидаза, лейцина — лейцин-аминопетидаза.

Из-за этого белковое переваривание занимает много времени и требует большого количества пищеварительных ферментов разных типов. За их синтез отвечает поджелудочная железа. Ее функция страдает у пациентов, злоупотребляющих алкоголем. Но нормализовать недостаток ферментов, принимая фармакологические препараты, практически невозможно.

Пища, поступающая в организм человека, не может быть усвоена и использована для пластических целей и образования жизненной энергии, так как её физическое состояние и химический состав очень сложны. Для превращения пищи в легкоусвояемое организмом состояние у человека есть специальные органы, осуществляющие пищеварение.

Пищеварение - совокупность процессов, обеспечивающих физическое изменение и химическое расщепление пищевых веществ на простые составные водорастворимые соединения, способные легко всасываться в кровь и участвовать в жизненно важных функциях организма человека.

Пищеварительный аппарат человека состоит из следующих органов: ротовая полость (ротовое отверстие, язык, зубы, жевательные мышцы, слюнные желёзы, желёзы слизистой оболочки полости рта), глотка, пищевод, желудок, двенадцатипёpcтнaя кишка, поджелудочная железа, печень, тонкий кишечник, толстый кишeчник с прямой кишкой. Пищевод, желудок, кишечник состоят из трёх оболочек: внутренней - слизистой, в которой расположены желёзы, выделяющие слизь, а в ряде органов - и пищеварительные соки; средней - мышечной, обеспечивающей путём сокращения передвижение пищи; наружной - серозной, выполняющей роль покровного слоя.

У человека в течение суток выделяется около 7 л пищеварительных соков, в состав которых входят: вода, разжижающая пищевую кашицу, слизь, способствующая лучшему передвижению пищи, соли и ферменты-катализаторы биохимических процессов, расщепляющие пищевые вещества на простые составные соединeния. В зависимости от действия на те или иные вещества ферменты делятся на протеазы , расщепляющие белки (протеины), амилазы, расщепляющие углеводы, и липазы, расщепляющие жиры (липиды). Каждый фермент активен только в определенной среде (кислой, или щелочной, или нейтральной). В результате расщепления из белков получаются аминокислоты, из жиров - глицерин и жирные кислоты, из углеводов в основном - глюкоза. Вода минеральные соли, витамины, содержащиеся в пище, в процессе пищеварения не претерпевают изменений.

Пищеварение в ротовой полости

Ротовая полость - это передний начальный отдел пищеварительного аппарата. С помощью зубов, языка и мышц щёк пища подвергается первоначальной механической переработке, а с помощью слюны - химической.

Слюна - пищеварительный сок слабощелочной реакции, вырабатываемый тремя парами слюнных желёз (околоушными, подъязычными, подчелюстными) и поступающий в ротовую полость по протокам. Кроме того, слюна выделяется слюнными желёзами губ, щёк и языка. Всего за сутки вырабатывается около 1 л слюны разной консистенции: густая слюна выделяется для переваривания жидкой пищи, жидкая - для сухой пищи. В слюне содержатся ферменты амилаза (птиалин), который расщепляет крахмал до мальтозы, фермент мальтаза, расщепляющий мальтозу до глюкозы, и фермент лизоцuм , обладающий антимикробным действием.

Пища в ротовой полости находится сравнительно короткое время (10-25 с). Пищеварение во рту сводится в основном к образованию пищевого комка, подготовленного к проглатыванию. Химическое воздействие слюны на пищевые вещества в ротовой полости ничтожно из-за непродолжительного пребывания пищи. Действие её продолжается в желудке до полного пропитывания пищевого комка кислым желудочным соком. Однако обработка пищи во рту имеет большое значение для дальнейшего xoда пищеварительного процесса, так как акт еды это мощный рефлекторный возбудитель деятельности всех пищеварительных органов. Пищевой комок с помощью координированных движений языка и щёк продвигается к глотке, где совершается акт глотания. Из полости рта пища поступает в пищевод.

Пищевод - мышечная трубка длиной 25-30 см, по которой благодаря сокращению мускулатуры пищевой комок передвигается к желудку за 1-9 с в зависимости от консистенции пищи.

Пищеварение в желудке. Желудок - самая широкая часть пищеварительного тракта. Он представляет собой полый орган, состоящий из входа, дна, тела и выхода. Входное и выходное отверстия закрываются мышечным валиком (жомом). Объём желудка взрослого человека составляет около 2 л, но может увеличиваться до 5 л. Внутренняя слизистая оболочка желудка собрана в складки, что увеличивает её поверхность. В толще слизистой оболочки размещено до 25000000 желёз, вырабатывающих желудочный сок и слизь.

Желудочный сок представяет собой бесцветную жидкость кислой реакции, содержащую 0,4-0,5% соляной кислоты, которая активизирует ферменты желудочного сока и оказывает бактерицидное воздействие на микробы, попадающие в желудок с пищей. В состав желудочного сока входят ферменты: пепсин , химозин (сычужный фермент), липаза . Фермент пепсин расщепляет белки пищи на более простые вещества (пептоны и альбумозы), которые подвергаются дальнейшему перевариванию в тонком кишечнике. Химозин содержится в желудочном соке грудных детей, свёртывая у них в желудочке белок молока. Липаза желудочного сока расщепляет только эмульгированные жиры (молока, майонеза) до глицерина и жирных кислот.

Человеческий организм выделяет желудочного сока 1,5-2,5 л в сутки в зависимости от количества и состава пищи. Пища в желудке переваривается от 3 до 10 ч в зависимости от состава, объёма, консистенции и способа её обработки. Пища жирная, плотная находится в желудке дольше, чем жидкая, содержащая углеводы.

Механизм секреции желудочного сока - это сложный процесс, состоящий из двух фаз. Первая фаза желудочной секреции представляет собой условный и безусловный рефлекторный процесс, зависящий от внешнего вида, запаха и условий приёма пищи. Этот желудочный сок великий русский ученый-физиолог И. П. Павлов назвал «аппетитным» или «запальным», от которого зависит дальнейший ход пищеварения. Вторая фаза желудочной секреции связана с химическими возбудителями пищи и называется нервно-химической. Механизм секреции желудочного сока зависит также от действия специфических гормонов пищеварительных органов. В желудке происходит частичное всасывание в кровь воды и минеральных солей.

После переваривания в желудке пищевая кашица небольшими порциями поступает в начальный отдел тонкого кишечника - двенадцатипёрстную кишку, где пищевая масса подвергается активному воздейсвию пищеварительных соков поджелудочной железы, печени и слизистой оболочки самой кишки.

Поджелудочная железа - пищеварительный орган, состоит из клеток, образующих дольки, которые имеют выводные протоки, соединяющиеся в общий проток. По этому протоку пищеварительный сок поджелудочной железы поступает в двенадцатиперстную кишку (до 0,8 л в сутки). Железа вырабатывает пищеварительные ферменты, бикарбонат натрия, который нейтрализует желудочную (соляную) кислоту, а также гормоны, включая инсулин и гликагон, регулирующие уровень сахара в крови.

Пищеварительный сок поджелудочной железы представляет собой бесцветную прозрачную жидкость щелочной реакции. В его состав входят ферменты: трипсин, химотрипсин, липаза, амилаза, мальтаза. Трипсин и химотрипсин расщепляют белки, пептоны, альбумозы, поступившие из желудка, до полипептидов. Липаза с помощью желчи расщепляет жиры пищи до глицерина и жирных кислот. Амилаза и мальтаза расщепляют крахмал до глюкозы. Кроме того, в поджелудочной железе есть специальные клетки (островки Лангерганса), вырабатывающие гормон инсулин , поступающий в кровь. Этот гормон регулирует углеводный обмен, способствуя усвоению сахара организмом. При отсутствии инсулина возникает заболевание сахарный диабет.

Печень - крупная железа массой до 1,5-2 кг, состоящая из клеток, вырабатывающих желчь до 1 л в сутки. Желчь - жидкость от светло-жёлтого до тёмно-зелёного цвета, слабощелочной реакции, активизирует фермент липазу поджелудочного и кишечного сока, эмульгирует жиры, способствует всасыванию жирных кислот, усиливает движение (перистальтику) кишечника, подавляет гнилостные процессы в кишечнике.

Желчь из печёночных протоков поступает в желчный пузырь тонкостенный грушевидный мешок объёмом 60 мл. В процессе пищеварения желчь из желчного пузыря по протоку вытекает в двенадцатиперстную кишку. Кроме процесса пищеварения печень участвует в обмене веществ и кроветворении, задерживании и обезвреживании ядовитых веществ, поступивших в кровь в процессе пищеварения.

Пищеварение в тонком кишечнике

Длина тонкого кишечника составляет 5-6 м. В нём завершается процесс пищеварения благодаря соку поджелудочной железы, желчи и кишечному соку, выделяемому желёзами слизистой оболочки кишечника (до 2 л в сутки).

Кишечный сок представляет собой мутноватую жидкость щелочной реакции, в состав которой входят слизь и ферменты: полипептидазы и дипептидазы , расщепляющие (гидролизующие) полипептиды до аминокислот; липаза , расщепляющая жиры до глицерина и жирных кислот; амилаза и мальтаза , переваривающие крахмал и мальтозу до глюкозы; сахараза , расщепляющая сахарозу до глюкозы и фруктозы; лактаза , расщепляющая лактозу до глюкозы и галактозы.

Основным возбудителем секретной деятельности кишечника являются химические вещества, содержащиеся в пище, желчь и сок поджелудочной железы.

В тонком кишечнике пищевая кашица (химус) перемешивается, распределяется тонким слоем по стенке, где происходит заключительный процесс пищеварения - всасывание продуктов расщепления пищевых веществ, а также витаминов, минеральных веществ, воды в кровь. Здесь водные растворы питательных веществ, образовавшихся в процессе пищеварения, через слизистую оболочку желудочно-кишечного тракта прони-кают в кровеносные и лимфатические сосуды.

В стенках тонкого кишечника имеются специальные органы всасывания - ворсинки, которых насчитывается 18-40 шт. на 1 мм 2 . Питательные вещества всасываются через поверхностный слой ворсинок. Аминокислоты, глюкоза, вода, минеральные вещества, витамины, растворимые в воде, поступают в кровь. Глицерин и жирные кислоты в стенках ворсинок образуют капельки жира, свойcтвенныe человеческому организму, которые проникают в лимфу, а затем в кровь. Далее кровь по воротной вене поступает в печень, где очистившись от ядовитых веществ пищеварения, снабжает питательными веществами все ткани и органы.

Роль толстого кишечника в процессе пищеварения.

В толстый кишечник поступают непереваренные остатки пищи. Незначительное количество желёз толстого кишечника выделяет малоактивный пищеварительный сок, который частично продолжает переваривание пищевых веществ. В толстых кишках содержится большое количество бактерий, вызывающих брожение остатков углеводов, гниение остатков белка и частичное расщепление клетчатки. При этом образуется ряд вредных для организма ядовитых веществ (индол, скатол, фенол, крезол), которые всасываются в кровь , а затем обезвреживаются в печени.

Состав бактерий толстого кишечника зависит от состава поступающей пищи. Так, молочно-растительная пища создаёт благоприятные условия для развития молочнокислых бактерий, а пища, богатая белком, способствует развитию гнилостных микробов. В толстых кишках происходит всасывание в кровь основной массы воды, в результате чего содержимое кишечника уплотняется и перемещается к выходу. Удаление каловых масс из организма осуществляется через прямую кишку и называется дефекацией .

Поскольку жиры плохо растворяются в воде, процесс переваривания и всасывания жиров (липидов), потребляемых в составе пищевых продуктов, имеет некоторые отличительные особенности. Более 90% жиров пищи — это нейтральные липиды (триглицериды), а остальные 10% приходятся на холестерол, эфиры холестерола, фосфолипиды и жирорастворимые витамины .

Прежде чем в тонком кишечнике станет возможным всасывание триглицеридов, должно произойти их расщепление на свободные жирные кислоты и моноглицериды под действием фермента липазы . Вместе с липазой, образующейся в небной части языка, липиды поступают в желудок, где расщеплению подвергается 10-30% жиров пищи. Затем переваривание липидов продолжается в двенадцатиперстной кишке, где оно завершается с помощью панкреатической липазы и фосфолипазы .

Условия для контакта ферментов с поступающими в кишечник липидами создаются благодаря предварительному эмульгированию липидов (образованию мельчайших капелек жира в водной среде) под влиянием желчных кислот, образующихся в печени и поступающих с желчью в виде солей.

Переваривание углеводов

Основная часть углеводов пищи представлена полисахаридом — растительным крахмалом . Остальные углеводы — это ж ивотный гликоген, дисахариды (например, сахароза) и моносахариды , такие как глюкоза (декстроза) и фруктоза (фруктовый сахар).

Переваривание углеводов начинается в ротовой полости с ферментативного расщепления крахмала на более мелкие фрагменты (олигосахариды, дисахариды) под действием амилазы (птиалина) слюны. Считается, что этому способствует интенсивное пережевывание и перемешивание пищи со слюной.

В тонком кишечнике переваривание углеводов продолжается в присутствии другой амилазы (амилазы панкреатического сока), а также других многочисленных ферментов, расщепляющих сахара. После расщепления углеводов дисахаридазами (например, мальтазой, лактазой, сахаридазой) образовавшиеся конечные продукты, моносахариды (например, глюкоза, галактоза, фруктоза) всасываются путем активного или пассивного транспорта клетками эпителия тонкого кишечника. Оттуда они поступают в кровяное русло и в печень. У многих людей встречается недостаточность определенных ферментов, например лактазы, при которой лактоза не расщепляется и, следовательно, не может всасываться. Это ведет к значительному образованию газов и к диарее, поскольку лактоза осмотически задерживает воду в тонком кишечнике.

Переваривание белков

В отличие от переваривания липидов и углеводов, расщепление белков не начинается до тех пор, пока они не попадут в желудок. Секретируемая в желудке в высокой концентрации соляная кислота денатурирует белки, облегчая расщепляющее воздействие желудочных ферментов, которые образуются в виде предшественников (пепсиногенов) в главных (зимогенных) клетках. Под влиянием соляной кислоты, выделяемой париетальными (обкладочными) клетками, пепсиноген превращается в активный пепсин. Пепсины (эндопептидазы) расщепляют крупные молекулы белков па более мелкие фрагменты (полипептиды, пептиды).

Оказавшись в нейтральной среде двенадцатиперстной кишки, фрагменты белковых молекул подвергаются дальнейшему расщеплению под действием специальных ферментов поджелудочной железы (трипсина, химотрипсипа). Эти ферменты (экзопептидазы) воздействуют на концевые пептидные связи полипептидных молекул, отщепляя дипептиды или трипептиды (мелкие фрагменты белков, состоящие из двух или трех аминокислот).

Однако прежде чем станет возможным поглощение индивидуальных аминокислот, дипептидов или трипептидов стенкой кишки, более крупные участки трипептидов и дипептидов должны быть разделены на составляющие их аминокислоты . В отличие от углеводов, молекулы дипептидов и трипептидов, а также свободные аминокислоты всасываются в интактном виде. Существуют специфические системы транспорта дипептидов, трипептидов и разнообразных аминокислот (нейтральных, кислых и основных). Они активно поглощаются эпителиальными клетками топкого кишечника, а оттуда поступают в кровяное русло. Примерно 10% белков пищи попадают в толстый кишечник непереваренными и там расщепляются бактериями.

10.3.1. Основным местом переваривания липидов является верхний отдел тонкого кишечника. Для переваривания липидов необходимы следующие условия:

  • наличие липолитических ферментов;
  • условия для эмульгирования липидов;
  • оптимальные значения рН среды (в пределах 5,5 – 7,5).

10.3.2. В расщеплении липидов участвуют различные ферменты. Пищевые жиры у взрослого человека расщепляются в основном панкреатической липазой; обнаруживается также липаза в кишечном соке, в слюне, у грудных детей активна липаза в желудке. Липазы относятся к классу гидролаз, они гидролизуют сложноэфирные связи -О-СО- с образованием свободных жирных кислот, диацилглицеролов, моноацилглицеролов, глицерола (рисунок 10.3).

Рисунок 10.3. Схема гидролиза жиров.

Поступающие с пищей глицерофосфолипиды подвергаются воздействию специфических гидролаз – фосфолипаз, расщепляющих сложноэфирные связи между компонентами фосфолипидов. Специфичность действия фосфолипаз показана на рисунке 10.4.

Рисунок 10.4. Специфичность действия ферментов, расщепляющих фосфолипиды.

Продуктами гидролиза фосфолипидов являются жирные кислоты, глицерол, неорганический фосфат, азотистые основания (холин, этаноламин, серин).

Пищевые эфиры холестерола гидролизуются панкреатической холестеролэстеразой с образованием холестерола и жирных кислот.

10.3.3. Уясните особенности структуры желчных кислот и их роль в переваривании жиров. Желчные кислоты – конечный продукт обмена холестерола, образуются в печени. К ним относятся: холевая (3,7,12-триоксихолановая), хенодезоксихолевая (3,7-диоксихолановая)и дезоксихолевая (3, 12-диоксихолановая) кислоты (рисунок 10.5, а). Две первые являются первичными желчными кислотами (образуются непосредственно в гепатоцитах), дезоксихолевая – вторичной (так как образуется из первичных желчных кислот под влиянием микрофлоры кишечника).

В желчи эти кислоты присутствуют в конъюгированной форме, т.е. в виде соединений с глицином Н2 N -СН2 -СООН или таурином Н2 N -СН2 -СН2 - SO3 H (рисунок 10.5, б).

Рисунок 10.5. Строение неконъюгированных (а) и конъюгированных (б) желчных кислот.

15.1.4. Желчные кислоты обладают амфифильными свойствами: гидроксильные группы и боковая цепь гидрофильны, циклическая структура гидрофобна. Эти свойства обусловливают участие желчных кислот в переваривании липидов:

1) желчные кислоты способны эмульгировать жиры, их молекулы своей неполярной частью адсорбируются на поверхности жировых капель, в то же время гидрофильные группы вступают во взаимодействие с окружающей водной средой. В результате снижается поверхностное натяжение на границе раздела липидной и водной фаз, вследствие чего крупные жировые капли разбиваются на более мелкие;

2) желчные кислоты наряду с колипазой желчи участвуют в активировании панкреатической липазы , сдвигая её оптимум рН в кислую сторону;

3) желчные кислоты образуют с гидрофобными продуктами переваривания жиров водорастворимые комплексы, что способствует их всасыванию в стенку тонкого кишечника.

Желчные кислоты, проникающие в процессе всасывания вместе с продуктами гидролиза в энтероциты, через портальную систему поступают в печень. Эти кислоты могут повторно секретироваться с желчью в кишечник и участвовать в процессах переваривания и всасывания. Такая энтеро-гепатическая циркуляция желчных кислот может осуществляться до 10 и более раз в сутки.

15.1.5. Особенности всасывания продуктов гидролиза жиров в кишечнике представлены на рисунке 10.6. В процессе переваривания пищевых триацилглицеролов около 1/3 их расщепляется полностью до глицерола и свободных жирных кислот, приблизительно 2/3 гидролизуется частично с образованием моно- и диацилглицеролов, небольшая часть совсем не расщепляется. Глицерол и свободные жирные кислоты с длиной цепи до 12 углеродных атомов растворимы в воде и проникают в энтероциты, а оттуда через воротную вену в печень. Более длинные жирные кислоты и моноацилглицеролы всасываются при участии конъюгированных желчных кислот, формирующих мицеллы. Нерасщеплённые жиры, по-видимому, могут поглощаться клетками слизистой кишечника путём пиноцитоза. Нерастворимый в воде холестерол, подобно жирным кислотам, всасывается в кишечнике в присутствии желчных кислот.

Рисунок 10.6. Переваривание и всасывание ацилглицеролов и жирных кислот.

Впервые, мысль о работе над этой статьей, зародилась давно, по прочтении постов «ДО и ПОСЛЕ»; « о моносахаридах…»; «о крахмале…» ...

Потом, на сайте многократно выкладывалась таблица о совместимости продуктов


Теперь вот пост, в котором сказано: ...." о возникновении привычки совмещать несовместимые ингредиенты в одном блюде, например в салате «Оливье»"

Но ведь во многих продуктах, ОДНОВРЕМЕННО, содержаться и белки, и жиры, и углеводы (см. справочники).

Поэтому решил, что пора самым серьезным образом разобраться в сути этого "несовмещения" и вообще о правильном, качественном питании и пищеварении.

Пищеварение

Процесс пищеварения начинается во рту. Все пищевые продукты дробятся на более мелкие частицы при помощи разжевывания, они тщательно насыщаются слюной. Что касается химической стороны пищеварения, то только пищеварение крахмала. начинается во рту. Слюна во рту, обычно представляющая собой щелочную жидкость, содержит энзим, называемый птиалином, он действует на крахмал, расщепляя его до мальтозы (комплексный сахар), на нее в кишечнике действует энзим мальтоза, превращая ее в простой сахар (декстрозу). Действие птиалина на крахмал является подготовительным, поскольку мальтоза не может действовать на крахмал. Считают, что амилаза (энзим панкреатической секреции), способная расщеплять крахмал, действует на крахмал сильнее, чем птиалин, так что крахмал, который не переварился во рту и желудке, может быть расщеплен на мальтозу и ахроодекстрин при условии, конечно, что он не подвергся ферментации прежде, чем достиг кишечника.

Переваривание белков. Этапы и последовательность переваривания белков

Переваривание белков в желудке. Пепсин — важный фермент желудка, расщепляющий белки. Пепсин только начинает процесс переваривания белка, обычно обеспечивая только 10-20% полного переваривания белков и превращение их в альбумозы, пептоны и мелкие полипептиды. Это расщепление белков происходит в результате гидролиза пептидной связи между аминокислотами.

Переваривание белка преимущественно происходит в верхних отделах тонкого кишечника, в двенадцатиперстной кишке и тощей кишке под воздействием протеолитических ферментов, секретируемых поджелудочной железой. Частично расщепленные продукты белковой пищи, поступая в тонкий кишечник из желудка, подвергаются воздействию главных протеолитических панкреатических ферментов: трипсина, хемотрипсина, карбоксиполипептидазы и проэластазы.

Заключительный этап переваривания белков в просвете кишечника обеспечивается энтероцитами тонкого кишечника, которые покрыты ворсинками, преимущественно в двенадцатиперстной кишке и тощей кишке.

Более 99% конечных продуктов переваривания белков, которые всасываются, являются одиночными аминокислотами. Очень редко происходит всасывание пептидов и чрезвычайно редко всасывается целая молекула белка. Даже крайне малое число всосавшихся молекул цельного белка может иногда вызывать серьезные аллергические или иммунологические нарушения.

Переваривание углеводов. Последовательность переваривания углеводов в ЖКТ

В пищевом рационе человека встречаются только три основных источника углеводов: (1) сахароза, которая является дисахаридом и широко известна как тростниковый сахар; (2) лактоза, являющаяся дисахаридом молока; (3) крахмал — полисахарид, представленный практически во всей растительной пище, в особенности в картофеле и различных видах зерновых. Другими углеводами, усваиваемыми в небольшом количестве, являются амилоза, гликоген, алкоголь, молочная кислота, пиро-виноградная кислота, пектины, декстрины и в наименьшем количестве — производные углеводов в мясе.

Пища также содержит большое количество целлюлозы, которая является углеводом. Однако в пищеварительном тракте человека не существует фермента, способного расщепить целлюлозу, поэтому целлюлоза не рассматривается как пищевой продукт, пригодный для человека.

Переваривание углеводов в ротовой полости и желудке. Когда пища пережевывается, она смешивается со слюной, которая содержит пищеварительный фермент птиалин (амилазу), секретирующийся в основном околоушными железами. Этот фермент гидролизует крахмал на дисахарид мальтозу и другие небольшие глюкозные полимеры, содержащие от 3 до 9 молекул глюкозы. Однако в ротовой полости пища находится короткое время, и, вероятно, до акта глотания гидролизуется не более 5% крахмала.

Переваривание крахмала продолжается в теле и дне желудка еще в течение 1 ч до тех пор, пока пища не начнет перемешиваться с желудочным секретом. Затем активность амилазы слюны блокируется соляной кислотой желудочного секрета.Несмотря на это, в среднем до 30-40% крахмала гидролизуется в мальтозу прежде, чем пища и сопутствующая ей слюна полностью перемешаются с желудочными секретами.

Переваривание углеводов в тонком кишечнике . Переваривание панкреатической амилазой. Секрет поджелудочной железы, как и слюна, содержит большое количество амилазы,но в несколько раз эффективнее. Таким образом, не более чем через 15-30 мин после того, как химус из желудка попадет в двенадцатиперстную кишку и смешается с соком поджелудочной железы, фактически все углеводы оказываются переваренными.

В результате прежде чем углеводы выйдут за пределы двенадцатиперстной кишки или верхнего отдела тощей кишки, они почти полностью превращаются в мальтозу и/или в другие очень небольшие полимеры глюкозы.

Дисахариды перевариваются сразу, как только соприкасаются с энтероцитами, выступающими ворсинками тонкого кишечника.

Лактоза расщепляется на молекулу галактозы и молекулу глюкозы. Сахароза расщепляется на молекулу фруктозы и молекулу глюкозы. Мальтоза и другие небольшие глюкозные полимеры расщепляются на многочисленные молекулы глюкозы. Таким образом, конечными продуктами переваривания углеводов являются моносахариды. Все они растворяются в воде и мгновенно всасываются в портальный кровоток.

В обычной пище , в которой из всех углеводов больше всего крахмала, более 80% конечного продукта переваривания углеводов составляет глюкоза, а галактоза и фруктоза — редко более 10%.

Переваривание жиров. Этапы переваривания жиров в кишечнике

Переваривание жиров в кишечнике . Небольшое количество триглицеридов переваривается в желудке под действием лингвальной липазы, которая секретируется железами языка в ротовой полости и проглатывается вместе со слюной. Количество перевариваемых таким образом жиров составляет менее 10%, а потому не существенно. Основное переваривание жиров происходит в тонком кишечнике, о чем сказано далее.

Эмульгирование жиров желчными кислотами и лецитином. Первый этап переваривания жиров заключается в физическом разрушении капель жира на мелкие частицы, поскольку водорастворимые ферменты могут действовать только на поверхности капли. Этот процесс называют эмульгированием жиров, он начинается в желудке с перемешивания жиров с другими продуктами переваривания желудочного содержимого.

Далее основной этап эмульгирования происходит в двенадцатиперстной кишке под влиянием желчи, секрета печени, который не содержит пищеварительных ферментов. Однако желчь содержит большое количество желчных солей, а также фосфолипид — лецитин. Эти компоненты, в особенности лецитин, чрезвычайно важны для эмульгирования жиров. Полярные частицы (места, в которых происходит ионизация воды) желчных солей и молекул лецитина хорошо растворимы в воде, тогда как большая оставшаяся часть этих молекул хорошо растворима в жирах.

Таким образом, жирорастворимые порции секрета печени растворяются в поверхностном слое жировых капель вместе с выступающей полярной частью. В свою очередь, выступающая полярная часть растворима в окружающей водной фазе, что значительно снижает поверхностное натяжение жиров и делает их также растворимыми.

Когда поверхностное натяжение капли нерастворимой жидкости низкое, нерастворимая в воде жидкость во время перемещения значительно легче разрушается на множество мелких частиц, чем при более высоком поверхностном натяжении. Следовательно, основная функция желчных солей и лецитина — делать капли жира способными к легкому размельчению при перемешивании с водой в тонком кишечнике. Это действие аналогично действию синтетических моющих средств, широко используемых в домашнем хозяйстве для устранения жира.

Связь гликемического и инсулинового индексов.

При составлении меню питания, весьма важно понимание еще одного показателя, связанного с этим индексом. Речь идет о так называемой «гликемической нагрузке» (Glycemic Load - GL ). Этот показатель позволяет судить о фактическом уровне «гликемической нагрузки» при потреблении конкретного количества углеводов в порции того или иного блюде и во всем суточном пищевом рационе в целом.

Поясним значение индекса гликемической нагрузки (GL ) и его расчета следующим примером. Предположим, что для приготовления блюда (каши) мы хотим использовать 30 г белого риса. Какова же будет фактическая углеводная нагрузка этого блюда? Следуя простым арифметическим правилам рассчитываем, что ежели гликемический индекс 100 г белого риса равен 70, то углеводная нагрузка (GL ) при использовании 30 г составит 21 (30х70: 100 = 21). Аналогично, рассчитвается углеводная нагрузка любого другого углеводного продукта. Т.е., предназначенное для использования конкретное содержание углеводов в порции умножаем на значение гликемического индекса данного продукта и результат умножения делим на 100.

Лицам с избыточной массой тела, больным сахарным диабетом а также некоторыми другими заболеваниями и состояниями, при которых требуется диетическое питание с ограничением количества потребляемых углеводов, следует так формировать свой суточный пищевой рацион, чтобы его суммарный гликемический индекс не превышал 80 - 100.

Приводим сравнительные значения гликемических и инсулиновых (в скобках) индексов некоторых пищевых продуктов и изделий: каша овсяная - 60 (40), макаронные изделия из белой муки - 46(40), рис белый - 110 (79), рис коричневый - 104 (79), хлеб ржаной - 60 (56), хлеб белый - 100 (100), картофель - 141(121), яйца - 42 (31), говядина - 21(51), рыба - 28 (59), яблоки - 50 (59), апельсины - 39(60), бананы - 79 (81), виноград - 74(82), мороженое - 70(89), батончики «Марс» - 79(112), йогурт - 62(115), молоко - 30 (90), мюсли - 60 (40), хлопья кукурузные - 76 (75).

Из приведенных выше данных видно, что хотя между инсулиновым и гликемич e скими индексами пищевых продуктов в большинстве случаев существует пропорциональная связь (выше гликемический идекс, выше и инсулиновый, и наоборот), такая зависимость не является обязательной для всех продуктов. Было обнаружено, что продукты, богатые белком и содержащие жиры углеводы, имеют инсулиновый индекс (ответ) непропорционально более высокий, нежели гликемический индекс этих продуктов.

Интерпретация подобного реагирования затруднительна. С одной стороны положительным является то, что повышение уровня инсулина способствует более низкому уровню постпрандиальной гликемии. Однако, отрицательным является то, что для достижения такого эффекта организм будет способствоать истощению бета-клеток поджулодочной железы и развитию второго типа диабета.

Непропорциональное повышение ИИ имеет свои обяснения. По мнению С.Холт и ее соавторов это связано с тем, что инсулин помогает усвоению пищи не только в плане усвоения углеводов. Он нужен для аминокислот в мышечных клетках, участвующих в процессе усвоения углеводов. Повышенный инсулин нужен и потому, что при потреблении белковых продуктов происходит выброс из печени глюкагона, повыщающего уровень сахара в крови. Для здоровых людей это не является проблемой. Иная картина при диабете, когда нарушен физиологический механизм компенсации и организму намного труднее компенсировать гликемию, т.к. он вынужден справляться еще и с дополнительной углеводной нагрузкой, вызванной выбросом глюкагона из печени под влиянием белковых продуктов

По уровню ИИ пищевые продукты делятся на три группы.

Первая . Обладающие высоким ИИ. К ним относятся хлеб, молоко, йогурт, кондитерские изделия, картофель, готовые завтраки

Вторая. Продукты с умеренно высоким (средним) уровнем И.И. - говядина, рыба

Третья. Продукты с низким ИИ. - яйца, крупа гречневая, крупа овсяная, мюсли.

Из сказанного следует важный для диетологии вывод:

при потреблении некоторых белковых продуктов с низким гликемическим индексом (например, говядины), для достижения относительно низкой гликемии выброс инсулина может оказаться непропорционально более высоким, чем при потреблении большинства углеводных продуктов.

Необходимо учитывать не только содержание углеводов в пище, но их энергетичскую ценность. При одинаковом содержании углеводов, энергетическая ценность продуктов за счет белков и жиров более высока и это в свою очередь обусловливает потребность в более высокой инсулинемии.

Из этого следует, что только гликемический индекс пищевых продуктов далеко не всегда характеризует необходимую для их усвоения потребность в инсулине и нагрузку на его выделение бета-клетками поджелудочной железы. Это наблюдение имеет очень важное практическое значение, т.к. позволяет более правильно регулировать инсулинотерапию при сахарном диабете.
Кроме того, равные порции углеводов, продуктов питания, не обязательно стимулирует секрецию инсулина в той же степени. Например, изоэнергетической порций макарон и картофеля как содержащиеся ~ 50г углеводов, но ИС для картофеля был в три раза больше, чем для макарон.

В диетологии принята следующая шкала уровней гликемической нагрузки отдельных порций (приемов, блюд) пищи: низким считается GL до 10, средним - от 11 до 19, высоким - более 20.

Зная, чему равен ГИ исходных продуктов и индекс гликемической нагрузки фактического рациона питания можно оценить и отрегулировать общий уровень и допустимость гликемической нагрузки за сутки. Обычная суммарная повседневная пищевая нагрузка по гликемическому индексу колеблется в широких пределах, в среднем между 60 и 180. Низким считается уровень суммарной гликемической нагрузки (GL ) не превышающий 80, средним - от 81 до 119, высоким - 120 и более.

Реактивная гипогликемия возникает при одновременном употреблении большого количества углеводов. Возросший уровень инсулина подает печени сигнал об одновременном поступлении большого количества сахара. Чтобы уберечь мозг (избыток глюкозы опасен для него), печень начинает превращать сахар в жир. Поступление сахара уменьшается, и мозг, не получая достаточного количества энергии, посылает сигнал надпочечникам, требуя увеличить выработку адреналина. Под действием адреналина запасы сахара из печени поступают в кровь, чтобы поддержать на постоянном уровне снабжение мозга сахаром. В это время мозг начинает требовать, чтобы вы съели еще что-нибудь, содержащее углеводы. После того как вы подчинитесь требованию мозга, уровень инсулина возрастает, печень опять превращает почти весь поступивший сахар в жир — круг замкнулся.

Углеводы, инсулин и глюкагон

Углеводы — это сахар

Углеводы подразделяются на простые и сложные. Молекулы простых углеводов состоят из одной или двух молекул сахара, молекулы сложных углеводов представляют собой цепочку из трех и более молекул сахара, соединенных между собой. Углеводы содержатся во многих продуктах питания, настоящих и «искусственных»: крупах и злаковых хлопьях, крахмалистых овощах, фруктах, большинстве молочных продуктов, хлебе, макаронах и сладостях. В пищеварительном тракте происходит расщепление простых (фрукты, конфеты) и сложных (овощи, крупы) углеводов на одиночные молекулы сахара (моносахариды). Следовательно, все углеводы — это сахар.

Инсулин и глюкагон

Способность организма использовать углеводы, поступающие с пищей, зависит от соотношения уровней инсулина и глюкагона — двух основных гормонов поджелудочной железы, регулирующих распределение питательных веществ в организме.

Глюкагон — гормон, под действием которого печень начинает высвобождать сахар (глюкозу), благодаря чему повышается уровень глюкозы в крови, поступающей в мозг и клетки тела. Помимо этого, глюкагон заставляет клетки высвобождать жир (для использования его в качестве энергии) и белки (чтобы использовать их в качестве строительных материалов).

Если глюкагон отвечает за использование питательных веществ, то инсулин — за их хранение. Под действием инсулина сахар, жир и белки направляются из кровеносного русла в клетки. Процесс миграции питательных веществ из крови в клетки имеет жизненно важное значение по двум причинам. Во-первых , при этом клетки получают энергию и строительные материалы, необходимые для их жизнедеятельности и обновления, а уровень сахара в крови поддерживается в сбалансированном состоянии, что защищает мозг от опасных для него перепадов концентрации сахара. во-вторых , инсулин сообщает печени о поступлении в организм избыточного количества сахара, и печень начинает превращать лишний сахар в жир.

От соотношения уровней инсулина и глюкагона зависит, будет ли съеденная нами пища использована организмом для получения энергии и строительных материалов , или же превратится в жировые запасы.

При низком соотношении уровней инсулина и глюкагона (т. е. при относительно высоком уровне глюкагона) основная часть пищи превращается в энергию и строительные материалы

при высоком соотношении инсулин/гаюкагон (т. е. при относительно высоком уровне инсулина) — в жир.

Поджелудочная железа начинает вырабатывать глюкагон при поступлении в организм белков.

Выработку инсулина вызывают углеводы, а также некоторые из аминокислот.

При поступлении в организм некрахмалистых овощей (клетчатки) и жиров не вырабатываются ни инсулин, ни глюкагон.

Следовательно, если пища состоит из одних углеводов , то соотношение уровней инсулина и глюкагона станет слишком высоким.

Если пища состоит из одних белков, то это соотношение будет слишком низким.

Если пища состоит из одних некрахмалистых овощей или жиров, соотношение инсулин/ глюкагон останется таким же, как и до еды.

Если в пище есть белки, жиры, некрахмалистые овощи и углеводы, то соотношения инсулин/глюкагон будет поддерживаться в равновесии.

Достижение и поддержание баланса инсулина и глюкагона в организме — цель сбалансированного питания.

1 Когда вы едите рафинированные углеводы (прошедшие переработку, например, белый хлеб): рафинированные углеводы в кишечнике быстро перевариваются, превращаясь в сахар. Сахар сразу же поступает в воротную вену, вызывая резкий рост уровня инсулина.

2 Когда вы едите сложные углеводы (например, хлеб из цельно-зерновой пшеничной муки): сложные углеводы перевариваются медленнее, поэтому сахар поступает в воротную вену не сразу, а постепенно. При этом не происходит резкого скачка уровня сахара в крови, поэтому не происходит и резкого увеличения выработки инсулина, однако уровень инсулина все равно превышает равновесную величину.

3 Когда вы едите пищу, сбалансированную по питательному составу (например, курятину, брокколи и печеный картофель со сливочным маслом): когда в пище в сбалансированном количестве присутствуют белки, жиры, углеводы и некрахмалистые овощи (клетчатка), пищеварение происходит еще медленнее, чем при употреблении сложных углеводов. В результате уровень инсулина поддерживается в пределах нормы на протяжении длительного периода времени.

Соотношение уровней инсулина и глюкагона, помимо упомянутых факторов, зависит от гликемического индекса продуктов питания. Гликемический индекс продуктов — показатель, характеризующий скорость превращения углеводов пищи в глюкозу крови, а следовательно, скорость роста уровня инсулина после употребления этого продукта. Чем быстрее растет уровень глюкозы в крови воротной вены, тем выше гликемический индекс данного продукта. Как правило, гликемический индекс простых сахаров выше, чем сложных. Это означает, что после употребления простых сахаров уровень глюкозы в крови растет быстрее.

Цельно-зерновая крупа и мука обладают более низким гликемическим индексом, чем рафинированная мука и шлифованная крупа. В цельно-зерновой крупе и муке содержатся отруби, т. е. клетчатка, которая замедляет всасывание сахара в кровь, отчего снижается соотношение уровней инсулина и глюкагона. Из рафинированной муки и шлифованной крупы (в частности, белого риса) удалена клетчатку защищающая организм от резкого перепада уровня сахара, и гликемический индекс этих продуктов выше.

Почему питание должно быть сбалансированным?

Крайне важно, чтобы на вашем столе обязательно присутствовали все четыре группы питательных веществ одновременно (белки, жиры, углеводы, клетчатка). Если ваш обед состоит из одного картофеля, то общий гликемический индекс такого обеда будет довольно высоким. Если добавить к картофелю рыбу, тушеную капусту и салат из свежих овощей, то общий гликемический индекс вашего обеда будет ниже, чем в первом случае, так как углеводы перевариваются и всасываются в кровь значительно быстрее, чем белки и жиры. Углеводы вызывают секрецию инсулина, но не повышают уровень глюкагона.

При избытке углеводов в рационе либо при употреблении одних только углеводов без жиров и белков секреция инсулина усиливается, а секреция глюкагона уменьшается (т. е. растет величина соотношения инсулин/глюкагон). Следовательно, избыток углеводов в основном отложится в вашем организме в виде жировых запасов.

Если вы едите одновременно углеводы и белки, то поджелудочная железа выделяет и инсулин, и глюкагон (соотношение уровней инсулина и глюкагона меньше, чем в первом случае). В результате ваш обед не превратится в жир, а будет использован как источник энергии или строительный материал для обновления клеток организма.

Вопреки очевидным фактам, люди продолжают верить, что от белков и жиров толстеют. В действительности же белки и жиры, способствуя подержанию баланса инсулина и глюкагона, предотвращают образование жировых отложений .

Наоборот, углеводы, повышая величину соотношения инсулин/глюкагон, способствуют образованию и отложению жира в организме.

Еще одно распространенное заблуждение: углеводы вызывают быстрое чувство насыщения. Но и это убеждение ошибочно. При употреблении углеводов чувство сытости возникает лишь тогда, когда вы уже съели больше, чем следовало бы!

В организме предусмотрен «защитный механизм», не допускающий употребления избыточного количества белков и жиров. Однако у организма нет защиты от употребления избытка углеводов.

Настоящее чувство голода (в отличие от псевдоголода, вызванного дефицитом серотонина в мозге) возникает, когда мозг начинает получать меньшее количество питательных веществ. Мозг посылает организму сообщение: «Скорее накормите меня, мне не хватает энергии».

Когда вы съедаете блюдо, содержащее белки и жиры, оно переваривается в желудке, где белки под действием желудочного сока и пищеварительных ферментов расщепляются на аминокислоты. Желудок посылает в мозг электрические сигналы, сообщая о поступлении питательных веществ в организм, и чувство голода ослабевает.

Из желудка белки и жиры попадают в тонкий кишечник. Клетки стенок кишечника выделяют гормон холецистокинин (ХЦК). Попадая с кровью в мозг, ХЦК сообщает, что пища уже переваривается. Под действием ХЦК желчный пузырь начинает сокращаться, выделяя в кишечник желчь, необходимую для полного переваривания и усваивания жиров. При избытке ХЦК появляется тошнота. Если вы не обратите внимания на этот сигнал и продолжите есть, то тошнота усилится, и в конце концов вас вырвет.

Многие утверждают, что употребление углеводов вызывает приятное ощущение легкости в желудке. Дело в том, что углеводы минуют желудок, не задерживаясь в нем, и идут сразу в тонкий кишечник.

Не происходит ни раздражения стенок желудка, ни выделения ХЦК, сигнализирующих мозгу о насыщении.

И лишь когда сахар всосется в кровь и вызовет выделение инсулина, а тот в свою очередь стимулирует временное повышение уровня серотонина в мозге, чувство голода начнет ослабевать. Полное насыщение наступает лишь после попадания крови, насыщенной глюкозой, из печени в мозг. Весь этот процесс занимает довольно длительное время, достаточное, чтобы опустошить целую коробку злаковых хлопьев.

В отличие от углеводов - б елки и жиры еще задолго до окончания их переваривания подают мозгу сигналы: «Уже достаточно, больше не проси».

Часто люди говорят: «Мне постоянно хочется есть. Я ем, ем, ем и никак не могу наесться». Но почти всегда оказывается, что эти люди поглощают в огромных количествах не белки и жиры, а углеводы. Тем, кто никак не может решиться принять «право на полноценную еду», я предлагаю сделать эксперимент: изменить питание всего на одну неделю. На завтрак есть яйца (столько, сколько захочется) с овощами и «деревенской» колбасой без нитратов, а также один бутерброд из цельно-зернового хлеба со сливочным маслом. На обед — салат из овощей с курицей и фрукты. На ужин — порцию рыбы, курятины или красного мяса с тушеными овощами, салат из свежих овощей с уксусом и оливковым маслом, а также одну печеную картофелину, щедро политую сметаной или сливочным маслом.

На случай, если захочется есть между приемами пищи, должна быть наготове закуска, содержащая белки, жиры и углеводы (например, орехи или творожный сыр плюс какой-нибудь фрукт).

Для успешного изменения рациона и образа жизни очень важно не допускать дефицита серотонина в мозге. Помните, что для исцеления необходимы время, терпение и восстановление баланса серотонина, а это не может произойти за один день.

Тем не менее, проявив терпение и выдержку, вы будете вознаграждены. Одним из приятных сюрпризов для вас станет восстановление идеального состава тела, избавления от лишнего жира.

Выводы:

1.Основной процесс переваривания пищи происходит не в желудке, а в специальном отделе кишечника - двенадцатиперстной кишке и в тонком кишечнике, в которых ферменты для расщепления пищи действуют одновременно

2. Двенадцатиперстная кишка, тонкий кишечник в которых ферменты - одновременно и великолепно переваривают и белки (трипсин), и жиры (липаза), и углеводы (амилаза) - что лишний раз доказывает неестественность и несостоятельность концепции "раздельного" питания.

По материалам сайта: zazdorovie.ru - шведского биохимика, врача, диетолога Дианы Шварцбайн.