Ингаляционные анестетики в анестезиологии. Ингаляционные анестетики: общие сведения

Кафедра фармакологии

Профессор В.С. Заугольников

СПИРТ ЭТИЛОВЫЙ

Наркоз или общая анестезия

ИНГАЛЯЦИОННЫЕ АНЕСТЕТИКИ

Под ингаляционными анестетиками понимают такие общие анестетики, которые вводятся в организм пациента через дыхательные пути путем вдыхания больным газонаркотической смеси. Эта газонаркотическая смесь состоит из ингаляционного анестетика и кислорода.

Для применения ингаляционных анестетиков используют маску и эндотрахеальную трубку. Из ингаляционных анестетиков (эфир, хлороформ, циклопропан, метоксифлуран, фторотан, закись азота) в настоящее время используются лишь два (закись азота и фторотан). Эфир и циклопропан не используются в связи с опасностью воспламенения и взрыва, а хлороформ, хлорэтил и метоксифлуран - в связи с высокой токсичностью.

При использовании ингаляционных анестетиков определенная часть из них разрушается в организме, а часть попадает в атмосферу операционной, оказывая неблагоприятный эффект на персонал. Эти препараты представляют собой легко испаряющиеся жидкости (фторотан) или газ (закись азота) и вводятся они в дыхательные пути больного в смеси с кислородом через маску наркозного аппарата или эндотрахеальную трубку. В процессе общего обезболивания на различных его этапах могут использоваться у одного и того же больного как ингаляционные, так и неигаляционные анестетики. Поэтому деление на ингаляционный и неингаляционный наркоз несколько условно.

Фармакология эфира.

Физико-химические свойства.

Бесцветная, летучая, с характерным запахом жидкость. Взрывоопасен в смеси с воздухом и кислородом, что создает угрозу взрыва в операционной,оэтому редко используется в современной анестезиологии.

Действие на центральную нервную систему .

Вызывает медленное наступление наркоза, в связи с чем не используется для введения в наркоз.

Эфир оказывает анальгетический эффект и вызывает любую необходимую глубину наркоза, являясь полным анестетиком. Депрессия центров дыхания продолговатого мозга развивается поздно и предшествует депрессии сосудодвигательных центров. Действие эфира на ЦНС проявляется последовательным развитием стадий наркоза.

1 стадия - анальгезии . Она характеризуется постепенной утратой болевой чувствительности при сохранении сознания.

2 стадия - возбуждение . Клинически она проявляется потерей сознания, развитием двигательного и речевого возбуждения. Тонус скелетных мышц повышен, больные делают попытку сорвать маску, соскочить со стола. Субъективные воспоминания больного об этом периоде весьма неприятные (ощущение удушья).

3 стадия - хирургического наркоза . Она делится на три уровня:

3 1 - легкий наркоз. Мышечного расслабления нет, сознание и болевые ощущения подавлены, однако хирургическая стимуляция вызывает двигательные и вегетативные реакции. При наркозе чистым эфиром оперировать в этой стадии нельзя, но при сочетании с релаксантами и анальгетиками - можно.

3 2 - выраженный наркоз. Характеризуется сужением зрачка со снижением реакции на свет и начинающимся расслаблением скелетных мышц. Однако, мышечного расслабления в этой стадии недостаточно для операций на брюшной полости. Сохранена также двигательная реакция в ответ на болевые раздражения.

3 3 - глубокий наркоз. Он характеризуется выраженной и вместе с тем предельно допустимой депрессией жизненно-важных функций. На этом уровне мышечное расслабление допускает операции в брюшной полости. Начинается расширение зрачков с утратой их реакции на свет, дыхание становится поверхностным, частым и постепенно приобретает диафрагмальный характер. Однако, в этой стадии гемодинамика остается стабильной, а спонтанное дыхание - адекватным. Эта стадия наркоза использовалась в прошлом для хирургических операций.

4 стадия - передозировка . В этой стадии нарастают расстройства дыхания. Оно становится поверхностным, частым. Зрачки расширены, реакция их на свет отсутствует. Снижается артериальное давление и

постепенно наступает остановка дыхания, а еще через некоторое время - остановка сердечной деятельности.

Такое детальное выделение стадий наркоза эфиром возможно вследствие большой широты терапевтического действия препарата. Концентрация анестетика в крови, вызывающая хирургический наркоз и остановку дыхания, различается в 2 раза. Поэтому эфир является весьма безопасным в отношении передозировки по сравнению с другими общими анестетиками.

Действие на вегетативную нервную систему .

Эфир вызывает стимуляцию симпатических центров ствола мозга с повышением в крови адреналина и норадреналина и клиническим проявлением адреностимуляции (тахикардия, увеличение сократимости миокарда, гипергликемия и т.д.).

Действие на дыхательную систему .

Эфир обладает местным раздражающим действием на дыхательные пути и может вызвать кашель, ларингоспазм и рефлекторную задержку дыхания. Поэтому введение в наркоз эфиром осуществляется постепенным повышением вдыхаемой концентрации. Вызывает стимуляцию дыхательного центра и лишь при глубокой передозировке наступает центральная депрессия дыхания.

Кровообращение .

Действие эфира на кровообращение сложно и разнонаправлено. Эфир прямо угнетает сократимость миокарда, оказывая отрицательный инотропный эффект пропорционально концентрации анестетика в крови.

Одновременно эфир вызывает центральную симпатическую стимуляцию, что оказывает противоположный эффект на сократимость миокарда. В конечном итоге при поверхностном наркозе обычно преобладает второй эффект и сердечный выброс увеличен, а артериальное давление нормально или даже повышено.

При передозировке начинает преобладать первый эффект на миокард - снижение сократимости миокарда, сердечного выброса и артериального давления.

Метаболические эффекты .

Это - гипергликемия, которая обусловлена симпатической стимуляцией. Не повреждает печени и почек.

Выделение.

85% ингалированного эфира выделяется через легкие в неизменном виде, 15% метаболизируются.

Клиническое использование эфира .

Не смотря на высокую безопасность эфира, большую широту терапевтического действия и благоприятные гемодинамические эффекты, в настоящее время используется в клинической практике только вынужденно (наркоз в примитивных условиях, отсутствие других средств анестезии). Это обусловлено исключительно тем, что эфир взрывоопасен. В те годы, когда эфир широко использовался, случаи взрыва эфира в наркозных аппаратах изредка наблюдали из-за наличия статического электричества.

Фармакология фторотана .

Введен в клиническую практику в 1956 году и вскоре полностью заменил эфир.

Физико-химические свойства .

Бесцветная жидкость, легко испаряется, с приятным фруктовым запахом. Не воспламеняется и не взрывается в смеси с воздухом и кислородом.

Центральная нервная система.

Очень мощный анестетик. По силе действия в 4-5 раз превосходит эфир и в 50 раз закись азота. Вызывает любую необходимую степень депрессии нервной системы. В отличие от эфира не обладает анальгетическим эффектом.

Клиника стадий наркоза фторотана несколько отличается от эфира.

1 стадия - начальная. В этой стадии происходит постепенное засыпание. Анальгезии здесь нет.

2 стадия - возбуждения. Эта стадия непостоянна и лишь у 25% больных при введении в наркоз наблюдаются признаки двигательного возбуждения. Эта стадия, если она есть, кратковременна и умеренна.

3 стадия - хирургическая. Она делится на три уровня по аналогии с эфирным наркозом.

3 1 - поверхностный наркоз. Отличается сужением зрачков и сохранением их реакции на свет. Артериальное давление слегка снижено, небольшая брадикардия. В ответ на болевое раздражение - тахикардия, задержка дыхания и двигательная реакция. В этой стадии можно оперировать только при добавлении мышечного релаксанта и наркотического анальгетика.

3 2 - наркоз средней глубины. Зрачок узкий, но реакция на свет исчезает. Артериальное давление снижено на 15-20 мм рт. ст. Имеется тенденция к брадикардии. Появляется мышечная релаксация, но не достаточная для операции в брюшной полости.

3 3 - глубокий наркоз. Зрачок начинает расширяться. Мышцы полностью расслаблены, выраженное угнетение дыхания. Выраженная брадикардия. Заметная гипотензия. Обычно стараются не использовать 3 3 уровень из-за нарушений витальных функций.

Вегетативная нервная система.

Фторотан угнетает симпатические центры ствола, поэтому тонус парасимпатической нервной системы относительно преобладает.

Дыхание.

Не раздражает дыхательных путей. Вызывает расслабление гладких мышц бронхов. Вызывает депрессию дыхания пропорционально глубине наркоза, что проявляется частым поверхностным дыханием. Глубокий уровень наркоза обычно не совместим со спонтанным дыханием и требует перевода на искусственную вентиляцию легких.

Кардиоваскулярная система .

Вызывает уменьшение частоты сердечных сокращений пропорционально глубине наркоза. Оказывает отрицательное инотропное действие на сократимость миокарда и снижает сердечный выброс и артериальное давление пропорционально глубине наркоза.

Фторотан сенсибилизирует проводящую систему сердца к эндогенным и экзогенным катехоламинам, таким как адреналин и норадреналин, что проявляется развитием аритмий, если эти препараты вводятся на фоне фторотанового наркоза. Из-за снижения сократимости и частоты сердечных сокращений снижается потребность миокарда в кислороде.

Печень.

С частотой 1 на 10000 наркозов вызывает фторотановый гепатит. Этот гепатит вызывается метаболитами фторотана и иногда приводит к массивному печеночному некрозу. 20% фторотана, поступившего в кровь, метаболизируется печенью, остальное удаляется с выдыхаемым воздухом.

Клиническое использование .

Фторотан пришел на смену эфиру в связи с его взрывобезопасностью. Широко используется в клинической практике для вызывания наркоза, особенно в сочетании с мышечными релаксантами и анальгетиками. Дополнительно во время наркоза используются благоприятные фармакологические эффекты фторотана у соответствующих больных. Это:

Снижение потребности миокарда в кислороде у больных с ИБС;

Снижение артериального давления у больных с гипертензией;

Расслабление гладких мышц бронхов у больных с бронхиальной астмой.

Осложнения.

Фторотановый гепатит с частотой 1:10000 наркозов. Другое редкое осложнение - злокачественная гипертермия.

Фармакология закиси азота.

Физико-химические свойства .

Закись азота - бесцветный газ без запаха. Хранится в баллонах, в которых находится в сжиженном состоянии под высоким давлением. При выходе из баллона превращается в газ. Закись азота не воспламеняется, но поддерживает горение, т.к. при высокой температуре закись азота разлагается с выделением кислорода, а О2поддерживает горение.

Действие на ЦНС.

Закись азота обладает сильным анальгетическим действием, которая заключается в подавлении болевой чувствительности без утраты сознания. По силе анальгетического эффекта закись азота сравнима с введением 10 мг морфина. Анальгетический эффект достигается в концентрации от 30% до 50% во вдыхаемой смеси. При вдыхании более 50% уже возможна утрата сознания и переход из анальгезии в стадию возбуждения и утраты сознания. Анальгетический эффект закиси азота осуществляется через опиоидную эндогенную систему двумя путями. Во-первых, закись азота прямо связывается с опиоидными рецепторами головного и спинного мозга, а во-вторых, анестетик стимулирует освобождение собственных эндогенных опиоидов-эндорфинов, которые связываются с опиоидными рецепторами. В анальгетических концентрациях закись азота влияет на психическую сферу человека, вызывая состояние эйфории и ощущение физического и психического подъема, в связи с чем закись азота часто называли в прошлом “веселящий газ”.Изредка встречаются случаи зависимости к закиси азота.

Сила действия закиси азота в отношении ее способности вызывать утрату сознания ограничена. Этот анестетик является весьма слабым и способен вызывать наркоз лишь у детей, стариков, истощенных и ослабленных. У физически здоровых людей закись азота не может вызвать наркоза, приводя при попытке введения в наркоз к сохраняющейся стадии возбуждения. В клинической практике для проведения наркоза используется в концентрации 50-70%, что обеспечивает только 50-70% потребности в общем анестетике. Поэтому закись азота не может использоваться одна для вызывания наркоза и ее эффект дополняется другими средствами общей анестезии и депрессантами ЦНС. Чаще всего закись азота комбинируется с другими ингаляционным анестетиком фторотаном.

Закись азота вызывает стимуляцию симпатической нервной системы. Ограниченная сила закиси азота как анестетика имеет как свои преимущества, так и недостатки. С одной стороны невозможна передозировка закиси азота, но с другой стороны одной закиси азота недостаточно для проведения наркоза.

Длительное время считалось, что закись азота полностью инертна в организме и ни на что не действует. В последние годы выяснилось, что это не так. Небольшие количества газа метаболизируются бактериями кишечника с образованием токсических веществ - в частности свободных радикалов азота. Эти вещества при длительном или хроническом использовании могут оказать неблагоприятный эффект на систему кроветворения, в частности на витамин В12, вплоть до развития В12- дефицитной анемии. Поэтому не допускается проведение анальгезии этим препаратом более 24 часов длительностью из-за угнетения кроветворения. Мало влияет на дыхание и один из немногих препаратов, допускающих спонтанное дыхание при использовании наркоза закисью азота.

Действие препарата на кровообращение сложно, разнонаправлено и напоминает эфир, но менее выражено.

С одной стороны прямо угнетает сократимость миокарда, а с другой стороны через стимуляцию симпатической нервной системы увеличивает сократимость миокарда. Обычно клинически преобладает второй эффект.

Не оказывает неблагоприятных эффектов на печень и почки. Угнетает иммунные реакции.

Место закиси азота в современной клинической практике.

В настоящее время закись азота является наиболее широко используемым в клинической практике общим анестетиком и трудно представить современный эндотрахеальный наркоз без добавления этого анестетика. Он обеспечивает анестетический компонент (т.е. утрату сознания), хотя и не в полной мере для поддержания наркоза, а также используется для вызывания анальгезии, т.е. подавления болевой чувствительности без утраты сознания.

НЕИНГАЛЯЦИОННЫЕ АНЕСТЕТИКИ

При проведении наркоза принято выделять введение в наркоз, поддержание наркоза и выход из наркоза.

В принципе любой депрессант ЦНС может вызвать бессознательное состояние при использовании в достаточно больших дозах. Однако, большинство из них вызывает неприемлемо длительное пробуждение и угнетение кровообращения и дыхания. Лишь очень ограниченное число препаратов клинически используются для вызывания наркоза внутривенным или внутримышечным введением.

Неингаляционные анестетики вводятся в организм человека внутривенно или внутримышечно. Они имеют определенные преимущества перед ингаляционными: быстрое и приятное для больного введение в наркоз, отсутствие стадии возбуждения, отсутствие профессиональной вредности. Но если при использовании ингаляционных анестетиков мы можем вывести большую часть препарата тем же путем (т.е. через дыхательные пути), то при использовании неингаляционных анестетиков после введения препарата уже невозможно искусственно убрать анестетик из организма и он будет метаболизироваться и выводиться естественными путями. Поэтому неингаляционный наркоз характеризуется меньшей управляемостью. Неингаляционные анестетики легко кумулируются (накапливаются), что может серьезно замедлить пробуждение.

Основным показанием к использованию неингаляционных анестетиков является введение в наркоз в связи с тем, что они мягко, быстро и без возбуждения вызывают бессознательное состояние больного. В дальнейшем поддержание бессознательного состояния обычно достигается ингаляционными анестетиками в виду легкой управляемости глубиной бессознательного состояния и быстрым пробуждением. Введение в наркоз занимает время кровотока рука – мозг (примерно 30 секунд).

Тиопентал .

Основным неингаляционным анестетиком является тиопентал. Он используется уже 70 лет. Представляет собой желтоватый порошок с запахом чеснока. Перед введением растворяется в дистиллированной воде до 2,5% раствора, который имеет резко щелочную реакцию и не совместим ни с какими другими препаратами. Относится к барбитуратам ультракороткого действия

При в/в введении при дозе 3-4 мг/кг вызывает нарастающую сонливость, быстро переходящую в бессознательное состояние без стадии возбуждения. Длительность бессознательного состояния 5-7 минут. Пробуждение происходит в связи с разведением препарата в организме. Тиопентал не оказывает анальгетического действия. Оказывает противосудорожный эффект, в связи с чем используется для снятия эпилептического статуса. Если используются повторные дозы, то это ведет к кумуляции и затягивает пробуждение.

Угнетает дыхание пропорционально дозе, приводя к поверхностному и частому дыханию. Хирургическая стимуляция на фоне наркоза тиопенталом стимулирует дыхание, но после ее прекращения дыхание вновь угнетается. Степень депрессии дыхания может достигать полного его прекращения в связи с чем должна быть предусмотрена возможность проведения искусственной вентиляции легких.

Тиопентал является депрессантом кровообращения. Он снижает сократимость миокарда и сердечный выброс пропорционально дозе, поэтому его использование опасно у больных с миокардиальной недостаточностью.

Тиопентал почти идеально обеспечивает вызывание бессознательного состояния, но не обеспечивает ни анальгезии, ни мышечного расслабления, поэтому используется почти исключительно для введения в наркоз.

Осложнения, связанные с использованием тиопентала включают:

Дыхательную депрессию:

Циркуляторную депрессию.

Форма выпуска: во флаконах по 0,5 и 1г

Калипсол (кетамин, кеталар).

Неингаляционный небарбитуратовый анестетик, обладающий уникальным набором фармакологических свойств, отличающихся от других неингаляционных анестетиков. Единственный препарат, который может вызвать наркоз не только при внутривенном, но и при внутримышечном ведении.

Обладает сильным анальгетическим эффектом. При внутривенном введении в дозе 2 мг/кг через 20-30 секунд вызывает бессознательное состояние длительностью 5-6 минут. При в/м введении 10 мг/кг вызывает бессознательное состояние через 4-6 минут длительностью 20 минут. Пробуждение после наркоза замедленное и сопровождается психотическими расстройствами в виде галлюцинаций, беспокойства, кошмарных цветных снов и амнезии. Длительность сновидений, часто с неприятной эмоциональной окраской, может достигать нескольких часов. Предварительное введение седуксена снижает их выраженность. Калипсол увеличивает метаболический уровень мозга и повышает внутричерепное давление. Мало влияет на дыхание и поэтому можно проводить наркоз калипсолом при спонтанном дыхании больного. Обладает бронхолитическим действием, что важно для больных с бронхиальной астмой.

Стимулирует симпатические центры ствола мозга, в связи с чем повышает содержание катехоламинов в крови, увеличивает сердечный выброс и повышает артериальное давление. Это очень важная особенность калипсола, в связи с чем препарат может применяться у больных с шоком и низким артериальным давлением. Если симпатическая стимуляция не желательна (например, больные с артериальной гипертензией), то предварительное введение седуксена позволяет предотвратить ее. Вызывает увеличение работы миокарда и потребности его в кислороде, в связи с чем его использование опасно у больных с ишемической болезнью сердца. Не вызывает мышечного расслабления.

Области клинического использования анестетика связаны с особенностями фармакологических эффектов анестетика.

То, что калипсол не угнетает кровообращение, делает оправданным его использование у больных с шоком и низким артериальным давлением. Возможность достижения общей анестезии при внутримышечном введении делает препарат очень ценным в педиатрической практике, где внутривенное введение часто затруднено, а также в военно-полевой хирургии и при проведении наркоза в неблагоприятных условиях. В низких дозах калипсол может использоваться для подавления боли без выключения сознания.

Калипсол противопоказан больным с артериальной гипертензией и ишемической болезнью сердца.

Основным осложнением, ограничивающим использование калипсола, является возникновение послеоперационного психоза.

Формы выпуска: 5% раствор в ампулах по 2 и 10 мл.

Сомбревин.

Небарбитуратовый неингаляционный анестетик кратковременного действия. Выпускается в ампулах по 500 мг в 10 мл специального растворителя кремофора, т.к. сомбревин плохо растворим в воде. Представляет собой очень плотный раствор, который трудно вводить через тонкую иглу. Растворитель сомбревина кремофор обладает сильным гистаминогенным эффектом в связи с чем клиническое использование этого анестетика снижается и, пожалуй, единственной страной, где его использование не запрещено, является Россия.

Вызывает быстрое засыпание при внутривенном введении в дозе 500 мг. Длительность бессознательного состояния 4-6 минут после чего больной практически полностью просыпается.

Вызывает кратковременную стимуляцию дыхания (гипервентиляцию), совпадающую по времени с утратой сознания. Гипервентиляция сменяется кратковременной гиповентиляцией, после чего восстанавливается нормальное дыхание. Вызывает кратковременное снижение АД, обусловленное выбросом гистамина в ответ на введение кремофора. Гипотензивный эффект может быть значительным и представлять серьезную угрозу и считается опасным.

Сомбревин используется при кратковременных операциях, но его популярность снижается из-за гистаминогенного эффекта. Препарат противопоказан при наличии шока и низкого артериального давления.

Пропофол (диприван).

Неингаляционный анестетик с быстрым началом действия, кратковременным эффектом и быстрым пробуждением. Он используется для вызывания наркоза при кратковременных оперативных вмешательствах, а с помощью дозированной внутривенной инфузии применяется для поддержания наркоза любой продолжительности. Независимо от длительности проведения наркоза кумуляции не наблюдается, так как пропофол быстро разрушается в организме.

Как и барбитураты является центральным депрессантом дыхания и кровообращения. Наиболее частым побочным эффектом является артериальная гипотензия.

Опиоиды.

В высоких дозах опиоиды (морфин или фентанил) вызывают бессознательное состояние и могут использоваться в некоторых случаях для вызывания наркоза.

Их использование ограничивается кардиохирургией, где важно избежать угнетения сократимости миокарда, вызываемой ингаляционными анестетиками.

Оксибутират натрия.

Представляет собой аналог тормозного медиатора центральной нервной системы, вызывающий состояние, напоминающее естественный сон. Оказывает угнетающее действие на ЦНС с развитием бессознательного состояния. Дозы, вызывающие состояние, в котором можно оперировать больного, вызывают плохо управляемое состояние с угнетением витальных функций (дыхание, кровообращение). В современной клинической практике используется не часто.

ЭТИЛОВЫЙ СПИРТ (этанол)

Не является лекарством. Он не продается в аптеках. Его продают в продовольственных магазинах, но он не является и продуктом питания.

С фармакологической точки зрения этиловый спирт является распространенным бытовым антидепрессантом. В низких дозах он повышает настроение, вызывает эйфорию, ощущение легкости, раскованности и безмятежности. В связи с этим к этиловому спирту легко возникает психическая и физическая зависимость и алкоголизм.

В высоких дозах алкоголь вызывает тяжелое отравление и кому. Длительное применение алкоголя сопровождается развитием хронического алкоголизма. И то и другое нередко встречается в быту и требует медицинской помощи. Еще более тяжелое отравление возникает при отравлении суррогатами алкоголя.

В больших дозах оказывает токсические эффекты – седация, сон и даже коматозное состояние. Угнетает дыхание и кровообращение, вызывает вазодиляцию кожных сосудов и потение, но суживает спланхнические сосуды. Отравление этанолом может вызывать аритмии (синдром воскресного сердца), гипертензионный криз и сердечную недостаточность.

Длительное хроническое потребление этанола вызывает многочисленные метаболические расстройства, заболевания печени, поджелудочной железы, а также психическую деградацию.

Хроническое потребление этанола угнетает бета и альфа-адренорецепторы ЦНС и активирует тормозной передатчик в ЦНС GABA (гамма-амино-бутировая кислота). В ответ на это цнс увеличивает нейрональную активность. Когда потребление алкоголя резко прекращается, то эта увеличенная нейрональная активность ведет к гиперадренергическому состоянию или синдрому отмены с развитием гиперрефлексии, тахикардии, гипертензии. Крайняя степень синдрома отмены называется белая горячка и она сопровождается коматозным состоянием, судорогами, галлюцинациями.

Как лекарство этиловый спирт используется только наружно. Он обладает бактерицидным действием по отношению ко всем распространенным патогенным бактериям, но не убивает споры бактерий.

Обычно как антисептик используется 70° спирт, который убивает 90% кожных бактерий за 2 минуты. Поэтому он используется для обеззараживания кожи при инъекциях, а также для обеззараживания операционного поля. Он также обеззараживает кожу. Механизм антисептического действия этанола связан с коагуляцией бактериальных белков.

ЭКСПЕРИМЕНТАЛЬНАЯ РАБОТА

Результаты. Выводы

Кафедра фармакологии

Методическая разработка для самостоятельной подготовки студентов 3 курса лечебного и педиатрического факультетов

Профессор В.С. Заугольников

ИНГАЛЯЦИОННЫЕ И НЕИНГАЛЯЦИОННЫЕ АНЕСТЕТИКИ.

СПИРТ ЭТИЛОВЫЙ

Общие анестетики – это вещества, которые вызывают потерю всех видов чувствительности, особенно болевой, бессознательное состояние и амнезию (потеря памяти), утрату рефлексов и движений.

16 октября 1846 года американский зубной врач Мортон впервые использовал эфир для проведения наркоза во время операции. С тех пор стало возможным проведение операции без чудовищных страданий со стороны пациента.

За исключением некоторых тканей, таких как мозг, висцеральная плевра и висцеральная брюшина, в организме человека имеются специфические рецепторы, раздражение которых вызывает болевые ощущения. Эти болевые рецепторы являются хеморецепторами, то есть они реагируют на химические вещества (гистамин, серотонин, брадикинин), которые высвобождаются при повреждении тканей. Кроме того, неболевые рецепторы могут давать ощущение боли, если превышается порог раздражения. На уровне рецепторов патологическое воздействие преобразуется в электрический сигнал, который далее распространяется по волокнам чувствительных нервов через задние корешки в спинной мозг. Из спинного мозга поток импульсов в составе спиноталамического тракта распространяется к зрительным буграм, где формируется ощущение нелокализованной боли, а, распространяясь в кору больших полушарий, приводит к окончательному формированию локализованной боли.

Однако сами по себе болевые ощущения являются лишь видимой частью айсберга. Боль является мощнейшим фактором, вызывающим развитие хирургического стресса, который представляет собой совокупность эндокринных, метаболических и воспалительных процессов, развивающихся в ответ на хирургическую травму и боль и ведущих к нарушению нормальной деятельности всех жизненно важных функциональных систем. Реакция организма на стресс и травму проявляется нарушениями легочной, сердечно-сосудистой и желудочно-кишечной систем, а также нейроэндокринными и метаболическими нарушениями. Это не может не влиять на результаты хирургического лечения. В частности, хирургам хорошо известно, что при операции аппендэктомии под наркозом заметно меньше осложнений, чем при использовании местной анестезии, где качество обезболивания значительно ниже.

Устойчивая боль и страдания, вне зависимости от причины, вызывают серьезные физические, поведенческие, психические, психологические и психосоциальные пагубные последствия.

Большинство людей связывает боль с заболеванием и опасаются ее. Страх боли часто ведет к задержке обращения к врачу, что само по себе может иметь неблагоприятные последствия. Обратим внимание, как неохотно мы идем к стоматологу из-за страха боли.

Чувство боли является защитной реакцией. Она сигнализирует о грозящей опасности, связанной с повреждением тканей. Однако, когда боль сильна и длительна, то она теряет свою защитную роль и является патологическим состоянием, вызывая тяжелейшие страдания и серьезные расстройства многих систем и органов. Необходимость обезболивания особенно очевидна при проведении хирургических вмешательств. Оперативное лечение невозможно без обезболивания. Хорошее обезболивание превращает операцию из средневековой пытки в процедуру, лишенную боли и неприятных ощущений.

Обезболивание может быть достигнуто подавлением проведения болевых импульсов на различных уровнях, начиная от рецепторов и заканчивая центрами восприятия боли в мозге.

Наркоз или общая анестезия предусматривает подавление восприятия боли в центральной нервной системе.

ИНГАЛЯЦИОННАЯ АНЕСТЕЗИЯ – вид общей анестезии, обеспечиваемой при помощи газообразных или летучих анестетиков попадающих в организм через дыхательные пути.

Желаемые эффекты анестезии Седация Амнезия Анальгезия Обездвиженность в ответ на болевую стимуляцию Мышечная релаксация

Что такое общая анестезия Амнезия (гипнотический компонент) Анальгезия Акинезия (неподвижность) Автономных рефлексов контроль (Snow, Guedel 1937, Eger 2006) Концепция Perouansky, 2011: Амнезия Акинезия Гипнотический компонент Eger и Soner, 2006: Амнезия Неподвижность Исключили сон (пример кетамин) и гемодинамический контроль (умеренная тахикардия переносится нормально, вазоактивными препаратами можно все нивелировать)

Концепция многокомпонентности анестезии Протезирование жизненно важных функций Мониторинг Аналгезия Гипнотический компонент Миорелаксация

Концепция общей анестезии-определение клинических целей Stansky и Shafer, 2005 Угнетение ответа на вербальные стимулы Подавление двигательного ответа на травмирующие стимулы Подавление гемодинамической реакции на интубацию трахеи С этой точки зрения ингаляционные анестетики – истинные анестетики

Общая анестезия – возможности ИА Выключение сознания-уровень базальных ядер, коры головного мозга, дезинтеграция сигналов в ЦНС Амнезия – воздействие на разные области Обезболивание – боль (ВОЗ)= это неприятное сенсорное или эмоциональное ощущение, связанное с фактическим или потенциальным повреждением тканей, которое можно описать в момент наступления этого повреждения. Во время операции ноцицепивные пути активируются, но чувства боли нет (пациент без сознания). Контроль БОЛИ актуален после выхода из анестезии Неподвижность пациента – отсутствие двигательной реакции на болевой стимул-реализуется на уровне спинного мозга Отсутствие гемодинамических реакций

Ингаляционная анестезия Достоинства Недостатки ØБезболезненная индукция в наркоз ØХорошая управляемость глубиной анестезии ØНизкая угроза сохранения сознания во время анестезии ØПредсказуемый быстрый выход из анестезии ØМощная общеанестетическая активность препарата ØБыстрое пробуждение и возможность ранней активизации больных Ø Сокращение применения опиоидов, миорелаксантов и более быстрое восстановление функции ЖКТ ØОтносительно медленная индукция ØПроблемы стадии возбуждения ØУгроза развития обструкции дыхательных путей ØВысокая стоимость (при использовании традиционной анестезии с высоким газовым потоком) ØЗагрязнение воздуха операционной

Основное преимущество использования ИА – возможность управлять ими на всех этапах анестезии ИА показаны для индукции (особенно, при прогнозируемой трудной интубации, у пациентов с ожирением, сопутствующей патологией и отягощенным аллергологическим анамнезом, в педиатрической практике) и поддержания анестезии при длительных операциях в составе общей комбинированной анестезии. Абсолютным противопоказанием к использованию ИА является факт злокачественной гипертермии и побочных (прежде всего, аллергических) реакций в анамнезе. Относительным противопоказанием является кратковременные оперативные вмешательства, когда ИА используют по открытому дыхательному контуру при самостоятельном дыхании пациентом или при полузакрытом контуре с ИВЛ в условиях высокого газотока, что не вредит пациенту, но значительно повышает стоимость анестезии.

ИСТОРИЧЕСКИЕ ДАННЫЕ - ЭФИР Диэтиловый эфир синтезирован в 8 веке н. э. арабский философ Jabir ibn Hayyam в Европе был получен в 13 (1275) веке алхимиком Раймондом Люллиусом в 1523 г. – Парацельсом открыты его обезболивающие свойства 1540 г. – вновь синтезирован Кордусом и включен в Европейскую Фармакопею William E. Clarke, студент-медик из Рочестера (США) в январе 1842 году первым использовал эфир для анестезии при хирургической операции (удаление зуба). Несколько месяцев 30 мая 1842 года спустя хирург Crawford Williamson Long (США) использовал эфир с целью анестезии при удалении двух небольших опухолей на шее у пациента, боявшегося боли, но это стало известно лишь в 1952 году. Мортон зубной врач, получивший диплом в 1844 году по совету химика Джексона использовал эфир вначале в эксперименте на Ингаляционная анестезия // 10 собаке, потом себе, затем в своей практике с 1 августа и 30 сентября А. Е. Карелов, СПб МАПО 1846 года.

Исторические даты обезболивания 16 октября 1846 г. Уильям Мортон - первая публичная демонстрация общей анестезии эфиром Уильям Томас Грин Мортон (William Thomas Green Morton, 1819 -1868)

История ингаляционной анестезии - хлороформ Хлороформ был впервые получен в 1831 году независимо в качестве растворителя каучука Самуэлем Гутри (Samuel Guthrie), затем Либихом (Justus von Liebig) и Суберейном (Eugène Soubeiran). Формулу хлороформа установил французский химик Дюма (Dumas). Он же и придумал в 1834 г. название «хлороформ» , благодаря свойству этого соединения образовывать муравьиную кислоту при гидролизе (лат. formica переводится как «муравей»). В клинической практике в качестве общего анестетика хлороформ первым применил Холмс Кут (Holmes Coote) в 1847 г. , в широкую практику он был внедрён акушером Джеймсом Симпсоном (James Simpson), который использовал хлороформ для уменьшения боли при родах. В России метод производства медицинского хлороформа предложил учёный Борис Збарский в 1916 году, когда проживал на Урале в селе Всеволодо-Вильва в Пермском крае.

Джеймс Янг Симпсон (James Yuong Simpson, 1811– 1870) 10 ноября 1847 г. на заседании Медикохирургического общества Эдинбурга Дж. Я. Симпсон сделал публичное сообщение об открытии им нового анестетика - хлороформа. Тогда же он впервые успешно применил хлороформ для обезболивания родов (21 ноября 1847 г. опубликована статья «О новом анестетике, более эффективном, чем серный эфир»).

Закись азота (N 2 O) синтезирована в 1772 году Джозефом Пристли. Гэмпфри Дэви (1778 -1829) экспериментировал с N 2 O на себе в «Пневматическом институте» Томаса Беддо. В 1800 г. вышло в свет сочинение сэра Дэви, посвященное собственным ощущениям от воздействия N 2 O (веселящий газ). Кроме того, он не раз высказывал мысль о применении N 2 O в качестве анальгезии при различных хирургических манипуляциях («…. Закись азота, по видимому, наряду с другими свойствами обладает способностью уничтожать боль, её можно с успехом применять при хирургических операциях…. » . . В качестве анестетика впервые использовали Гарднер Колтон и Гораций Уэллс (при удалении зуба) в 1844 г. , Эдмонд Эндрюс в 1868 г. применил в смеси с кислородом (20%) после первой зарегистрированной смерти во время наркоза чистой закисью азота.

Американский стоматолог Хорас Велс (1815 -1848) в 1844 г. случайно оказался на показе эффекта от ингаляции N 2 O, который организовал Гарднер Колтон. Велс обратил внимание на абсолютную нечувствительность пациента к боли в поврежденной ноге. В 1847 году вышла в свет его книга «История открытия применения закиси азота, эфира и других жидкостей при хирургических операциях» .

Второе поколение ингаляционных анестетиков В 1894 и 1923 г. г. произошло во многом случайное внедрение в практику хлорэтила и этилена Циклопропан был синтезирован в 1929 и внедрен в клиническую практику в 1934 г. Все ингаляционные анестетики того периода были взрывоопасны за исключением хлороформа, обладали гепатотоксичностью и кардиотоксичностью, что ограничивало их применение в клинической практике

Эра фторированных анестетиков Вскоре после второй мировой войны началось производство галогенизированных анестетиков В 1954 г. был синтезирован fluroxene первый галогенизированный ингаляционный анестетик В 1956 г. появился галотан В 1960 г. появился метоксифлюран В 1963 -1965 г. г. были синтезирован энфлюран и изофлюран В 1992 г. началось клиническое использование десфлюрана В 1994 г. в клиническую практику внедрен севофлюран Ксенон был впервые экспериментально применен в 50 -е годы 20 века, однако до сих пор не пользуется популярностью из-за чрезвычайно высокой стоимости

История развития ингаляционной анестезии 20 Анестетикик, используемые в клинической практике (суммарно) Севофлуран Изофлуран 15 Галотан Этил виниловый эфир Винетен 0 1830 Флуроксен Пропил метиловый эфир Изопропренил виниловый эфир Трихлорэтилен 5 Энфлуран Метиксифлуран 10 Циклопропан Этилен Хлороформ Этил хлорид Эфир NO 2 1850 Дезфлуран 1870 1890 1910 1930 1950 Год «выхода» в клиническую практику 1970 1990

Наиболее часто используемые в настоящее время ингаляционные анестетики Галотан Изофлюран Десфлюран Севофлюран Закись азота Ксенон

Действие развивается быстро и носит легко обратимый характер, представляется, что оно в большей степени зависит от свойств самого анестетика и образуемых им низкоэнергетических межмолекулярных взаимодействий и связей. ИА действуют на синаптические мембраны нейронов в головном и спинном мозге, преимущественное влияя на фосфолипидные либо на белковые составляющие мембран.

Механизм действия Предполагают, что механизм действия у всех ингаляционных анестетиков на молекулярном уровне примерно одинаков: анестезия возникает благодаря адгезии молекул анестетика к специфическим гидрофобным структурам. Связываясь с этими структурами, молекулы анестетика расширяют билипидный слой до критического объёма, после чего функция мембраны претерпевает изменения, что в свою очередь приводит к снижению способности нейронов индуцировать и проводить импульсы между собой. Таким образом, анестетики вызывают депрессию возбуждения как на пресинаптическом, так и на постсинаптическом уровне.

Согласно унитарной гипотезе механизм действия всех ингаляционных анестетиков на молекулярном уровне одинаков и определяется не типом а скорее числом молекул вещества в месте действия. Действие анестетиков является скорее физическим процессом, чем взаимодействием с определенными рецепторами. Сильная корреляция с мощностью анестетиков была отмечена у коэффициента масло/газ (Meyer and Overton, 1899 -1901) Это положение подтверждается наблюдением, из которого следует, что мощность анестетика находится в прямой зависимости от его жирорастворимости (правило Мейера-Овертона). Связывание анестетика с мембраной может значительно изменить ее структуру. Две теории (теория текучести и теория разобщения латеральной фазы) объясняют действие анестетика влиянием на форму мембраны, одна теория - снижением проводимости. То, каким образом изменение структуры мембраны вызывает общую анестезию, можно объяснить несколькими механизмами. Например, разрушение ионных каналов приводит к нарушению проницаемости мембраны для электролитов. Могут возникать конформационные изменения гидрофобных белков мембраны. Таким образом, вне зависимости от механизма действия развивается депрессия синаптической передачи.

Механизм действия ингаляционных анестетиков до сих пор не изучен и внутренние механизмы возникновения общей анестезии посредством их действия в настоящее время остаются до конца неизвестными. «Теории» = гипотезы: Коагуляционная, Кюн, 1864 г. Липоидная, Мейер, Овертон, 1899 -1901 гг. Поверхностного натяжения, Траубе, 1913 г. Адсорбционная, Лове, 1912 г. Критического объема Нарушений окислительно-восстановительных процессов в клетках, гипоксическая, Ферворн, 1912 г. Водных микрокристаллов, Полинг, 1961 г. Мембранная, Хобер, 1907, Бернштейн, 1912, Ходжкин, Кац, 1949 г. Парабиоза, Введенский, Ухтомкий, Ретикулярная.

При взаимодействии галогенсодержащие ИА с ГАМКрецепторами происходит активация и потенциирование эффектов γ-аминомасляной кислоты, а взаимодействие с глициновыми рецепторами вызывает активацию их тормозных эффектов. Одновременно имеет место ингибирование НМДАрецепторов, Н-холинорецепторов, торможение пресинаптических Na+-каналов и активация К 2 Р и К+-каналов. Предполагают, что газообразные анестетики (закись азота, ксенон) блокируют НМДА-рецепторы и активируют К 2 Р каналы, но не взаимодействуют с ГАМК-рецепторами.

Действие различных анестетиков на ионные каналы неидентично. В 2008 г. S. A. Forman и V. A. Chin предложили разделить все общие анестетики на три класса: – 1 -й класс (пропофол, этомидат, барбитураты) – это «чистые» ГАМК-сенситизаторы (ГАМК – γ-аминомасляная кислота); – 2 -й класс – активные в отношении ионотропных рецепторов глутамата (циклопропан, закись азота, ксенон, кетамин); – 3 -й класс – галогенсодержащие препараты, которые активны в отношении не только ГАМК-, но и ацетилхолиновых рецепторов в центре и на периферии. Галогенсодержащие анестетики – строго говоря, скорее гипнотики с выраженной анальгетической активностью, чем истинные анестетики.

На макроскопическом уровне не существует единственной области мозга, где реализуют своё действие ингаляционные анестетики. Они влияют на кору больших полушарий, гиппокамп, клиновидное ядро продолговатого мозга и другие структуры. Подавляют они и передачу импульсов в спинном мозге, особенно на уровне вставочных нейронов задних рогов, вовлечённых в рецепцию боли. Считается, что анальгезирующий эффект вызван воздействием анестетика в первую очередь на ствол мозга, и на спинной мозг. Так или иначе, высшие центры, контролирующие сознание, первыми подвергаются воздействию, а жизненно важные центры (дыхательный, вазомоторный) более резистентны к воздействию анестетика. Таким образом, пациенты в состоянии общего наркоза способны сохранять спонтанное дыхание, близкие к норме сердечный ритм и артериальное давление. Из всего вышесказанного становится понятным, что «мишенью» для молекул ингаляционных анестетиков являются мозговые нейроны.

Конечный (ожидаемый) эффект действия анестетиков зависит от достижения их терапевтической (определенной) концентрации в ткани ЦНС (анестетической активности), а быстрота получения эффекта зависит от скорости достижения этой концентрации. Анестетический эффект ингаляционных анестетиков реализуется на уровне головного мозга, а анальгетический – на спинальном уровне.

Функции испарителей Обеспечение испарения ингаляционных агентов Смешивание пара с потоком несущего газа Контроль состава газовой смеси на выходе, несмотря на переменные Доставка больному безопасных и точных концентраций ингаляционных анестетиков

Классификация испарителей ♦ Тип подачи При первом варианте газ втягивается через испаритель за счет снижения давления в конечном отделе системы; при втором - газ заполняет испаритель, продавливаясь через него под высоким давлением. ♦ Характер анестетика Определяет, какой анестетик может быть использован в данном испарителе. ♦ Термокомпенсация Указывает, является ли данный испаритель термокомпенсированным. ♦ Стабилизация по потоку Важно определить оптимальную скорость газотока для данного испарителя. ♦ Сопротивление потоку Определяет, какое усилие требуется для прохождения газа через испаритель. В целом, испарители чаще всего классифицируются по типу подачи газа и по наличию калибровки (с калибровкой и без калибровки). Калибровка - это термин, который используется для описания точности процедуры, протекающей в определенных условиях. Так, испарители могут быть калиброваны на подачу концентрации анестетика с погрешностью ± 10% от установленных значений при газотоке 2 -10 л/мин. Вне этих пределов газотока точность испарителя становится менее предсказуемой.

Типы испарителей Прямоточные испарители (drawover) – газ-носитель «протягивается» через испаритель за счет снижения давления в конечном отделе системы (во время вдоха больного) Испарители заполнения (plenum) – газ-носитель «проталкивается» через испаритель под давлением, превышающим окружающее.

Схема проточного испарителя Низкое сопротивление потоку газовой смеси Газ проходит через испаритель лишь на вдохе, поток не постоянный и пульсирующий (до 30 -60 л в мин на вдохе) Нет потребности в подведении сжатых газов

Испарители заполнения (plenum) Сконструированы для использования с постоянным потоком газа под давлением и обладают высоким внутренним сопротивлением. Современные модели специфичны для каждого анестетика. Стабилизированы по потоку, работают с точностью +20% при потоке свежей газовой смеси от 0, 5 до 10 л/мин

Безопасность испарителей Специальная маркировка испарителей Указатель уровня препарата Правильное размещение испарителя в контуре: - Испарители заполнения устанавливаются за ротаметрами и перед кислородом - Проточные испарители устанавливаются перед дыхательным мехом или мешком Запирательное устройство для исключения одновременного включения нескольких испарителей Мониторинг концентрации анестетика Потенциальные опасности: Переворачивание испарителя Обратное соединение Опрокидывание испарителя Ошибочное заполнение испарителя

Фармакокинетика изучает ØAбсорбция ØРаспределение ØMетаболизм ØЭкскреция Фармакокинетика – изучает взаимоотношения между дозой лекарственного препарата, его концентрацией в тканях и продолжительностью действия.

Фармакокинетика ингаляционных анестетиков Глубина анестезии определяется концентрацией анестетика в тканях головного мозга Концентрация анестетика в альвеолах (FA) связана с концентрацией анестетика в тканях головного мозга На альвеолярную концентрацию анестетика влияют факторы, связанные: ▫ с поступлением анестетика в альвеолы ▫ с элиминацией анестетика из альвеол

Основные физические параметры ингаляционных анестетиков Летучесть или «Давление Насыщенного Пара» Растворимость Мощность

Препараты, которые мы называем "ингаляционными анестетиками", при комнатной температуре и атмосферном давлении являются жидкостями. Жидкости состоят из молекул, находящихся в постоянном движении и имеющих общее сродство. Если поверхность жидкости контактирует с воздухом или с другим газом, некоторые молекулы отрываются от поверхности. Данный процесс представляет собой испарение, которое увеличивается с нагреванием среды. Ингаляционные анестетики способны быстро испаряться и не требуют нагревания для того, чтобы превратиться в пар. Если мы нальем ингаляционный анестетик в какую-либо емкость, например, в банку с крышкой, со временем пар, образующийся из жидкости, будет накапливаться в свободном пространстве этой банки. При этом молекулы пара движутся и создают определенное давление. Некоторые из молекул пара будут взаимодействовать с поверхностью жидкости и снова переходить в жидкое состояние. В конце концов, этот процесс достигает равновесия, при котором одинаковые количества молекул будут покидать жидкость и возвращаться в нее. "Давление насыщенного пара" - это давление, создаваемое молекулами пара в точке равновесия.

Давление насыщенных паров (ДНП) давление насыщенных паров (ДНП) определяется как давление, создаваемое паром в равновесии с жидкой фазой. Это давление зависит от препарата и его температуры. Если давление насыщенных паров (ДНП) равно атмосферному давлению, жидкость закипает. Так, вода на уровне моря при 100°С обладает давлением насыщенных паров (ДНП) = 760 мм рт. ст. (101, 3 к. Па).

Летучесть Это общий термин, который связан с давлением насыщенных паров (ДНП) и латентным теплом испарения. Чем более летучим является препарат, тем меньше энергии требуется для перевода жидкости в пар и тем больше давление создается этим паром при заданной температуре. Этот показатель зависит от характера температуры и от препарата. Так, трихлорэтилен менее летуч по сравнению с эфиром.

Летучесть или «Давление Насыщенного Пара» ДНП отражает способность анестетика к испарению, или другими словами, его летучесть. Все летучие анестетики имеют разную способность к испарению. Отчего же зависит интенсивность испарения того или иного анестетика. . ? Давление, которое будет оказывать на стенки сосуда максимальное количество испарённых молекул, называют «давлением насыщенного пара» . Количество испаряемых молекул зависит от энергетического статуса данной жидкости, то есть от энергетического статуса её молекул. То есть чем больше энергетический статус анестетика, тем выше его ДНП важный показатель потому, что, используя его можно рассчитать максимальную концентрацию паров анестетика.

Например, ДНП изофлюрана при комнатной температуре равно 238 mm. HG. Следовательно, для того чтобы рассчитать максимальную концентрацию его паров, производим следующие вычисления: 238 mm. Hg / 760 mm. HG * 100 = 31%. То есть максимальная концентрация паров Изофлюрана при комнатной температуре может достигать 31%. В сравнении с изофлюраном, анестетик метоксифлюран имеет ДНП всего 23 mm. HG и его максимальная концентрация при той же температуре достигает максимум 3%. Из примера видно, что есть анестетики, характеризующиеся высокой и низкой летучестью. Высоколетучие анестетики используют только с применением специально откалиброванных испарителей. Давление насыщенного пара анестетиков может изменяться при повышении или понижении температуры окружающей среды. В первую очередь эта зависимость актуальна для анестетиков с высокой летучестью.

Примеры: Снимите крышку с банки с краской, и вы почувствуете ее запах. Сначала запах достаточно сильный, так как в банке сконцентрирован пар. Этот пар находится в равновесии с краской, поэтому его можно назвать насыщенным. Банка была закрыта в течение длительного промежутка времени, и давление насыщенных паров (ДНП) представляет точку, в которой равные количества молекул краски становятся паром или возвращаются в жидкую фазу (краску). Очень скоро после того, как вы сняли крышку, запах исчезает. Пар диффундировал в атмосферу, а поскольку краска обладает низкой летучестью, в атмосферу выделяются лишь крайне незначительные ее количества. Если оставить емкость с краской открытой, краска остается густой до того момента, как она полностью испарится. При снятой крышке, запах бензина, который обладает большей летучестью, продолжает сохраняться, так как с его поверхности испаряется большое количество молекул. В течение короткого промежутка времени в емкости не остается бензина, он полностью переходит в пар и попадает в атмосферу. Если емкость была наполнена бензином, при ее открывании в более жаркий день вы услышите характерный свист, а в холодный день она наоборот будет засасывать в себя воздух. Давление насыщенных паров (ДНП) выше в теплые дни и ниже - в холодные, так как оно зависит от температуры.

Латентное тепло испарения Латентное тепло испарения определяется как количество энергии, которое необходимо для перевода 1 г жидкости в пар без изменения температуры. Чем более летучей является жидкость, тем меньше энергии для этого необходимо. Латентное тепло испарения выражается в к. Дж/г или к. Дж/моль, исходя из того, что различные препараты обладают различным молекулярным весом. При отсутствии внешнего источника энергии, она может быть взята из самой жидкости. Это приводит к остыванию жидкости (использование тепловой энергии).

Растворимость Газ растворяется в жидкости. В начале растворения молекулы газа активно переходят в раствор и обратно. По мере того как всё больше и больше молекул газа смешиваются с молекулами жидкости, постепенно наступает состояние равновесия, когда больше нет интенсивного перехода молекул из одной фазы в другую. Парциальное давление газа в состоянии равновесия в обеих фазах будет одинаковым.

Скорость наступления ожидаемого эффекта ингаляционного анестетика зависит от степени его растворимости в крови. Анестетики с высокой растворимостью, в большом количестве поглощаются кровью, что долго не позволяет достигать достаточного уровня альвеолярного парциального давления. Степень растворимости ингаляционного анестетика характеризует коэффициент растворимости кровь/газ Освальда (λ – это отношение концентраций анестетика в двух фазах в состоянии равновесия). Он показывает, сколько частей анестетика должно находиться в 1 мл крови от того количества анестетика, которое находится в 1 мл наркозно-дыхательной смеси в альвеолярном пространстве, чтобы парциальное давление этого анестетика было равным и одинаковым и в крови и в альвеолах.

Пары и газы с разной растворимостью создают разное парциальное давление в растворе. Чем ниже растворимость газа, тем большее парциальное давление он способен создавать в растворе по сравнению с высокорастворимым газом при одних и тех же условиях. Анестетик с низкой растворимостью создаст большее парциальное давление в растворе, чем высокорастворимый. Парциальное давление анестетика, это главный фактор, обусловливающий его воздействие на мозг.

коэффициент растворимости севофлурана 0, 65 (0, 630, 69), т. е. это значит, что при одинаковом парциальном давлении 1 мл крови содержит 0, 65 от того количества севофлурана, которое находится в 1 мл альвеолярного газа, т. е. емкость крови севофлурана составляет 65 % от емкости газа. для галотана коэффициент распределения кровь/газ 2, 4 (240% от емкости газа)- для достижения равновесия в крови должно раствориться в 4 раза больше галотана, чем севофлурана.

КРОВЬ / ГАЗ Ксенон Десфлюран Закись азота Севофлюран Изофлюран Энфлюран Галотан Метоксифлюран Трихлорэтилен Эфир – 0, 14 – 0, 42 – 0, 47 – 0, 59 – 1, 4 – 1, 9 – 2, 35 – 2, 4 – 9, 0 – 12, 0 Ингаляционная анестезия // А. Е. Карелов, СПб МАПО 59

В крови растворено 12 пузырьков / мл севофлюрана Газообразный севофлюран содержит 20 пузырьков / мл Нет диффузии, когда парциальное давления равны коэффициент растворимости кровь/газ севофлюрана = 0. 65

Кровь - 50 пузырьков / мл Газ - 20 пузырьков / мл Нет диффузии, когда парциальное давления равны коэффициент растворимости кровь/газ галотана= 2. 5

Коэффициент растворимости определяет возможности использования ингаляционного анестетика Индукция – можно ли провести масочную индукцию? Поддержание – как быстро будет меняться глубина анестезии в ответ на изменение концентрации на испарителе? Пробуждение – как долго пациент будет просыпаться после прекращения подачи анестетика?

Мощность ингаляционного анестетика Идеальный ингаляционный анестетик позволяет проводить анестезию с использованием высоких концентраций кислорода (и низкой концентрацией ингаляционного анестетика) Минимальная альвеолярная концентрация (МАК) является мерой мощности ингаляционных анестетиков. МАК идентична ED 50 в фармакологии. МАК определяется измерением концентрации анестетика непосредственно в выдыхаемой газовой смеси у молодых и здоровых животных, подвергшихся ингаляционной анестезии без какой либо премедикации. МАК по сути, отражает концентрацию анестетика в мозге, потому, что при наступлении анестезии наступит равновесие между парциальным давлением анестетика в альвеолярном газе и в ткани мозга.

МАК МИНИМАЛЬНАЯ АЛЬВЕОЛЯРНАЯ КОНЦЕНТРАЦИЯ МАК – это мера активности (эквипотентности) ингаляционного анестетика и определяется как минимальная альвеолярная концентрация в фазе насыщения (steady-state), которой достаточно для предотвращения реакции 50% больных на стандартный хирургический стимул (разрез кожи), находящихся на уровне моря (1 атм = 760 мм рт ст = 101 к. Ра). Ингаляционная анестезия // А. Е. Карелов, СПб МАПО 65

Концепция МАК- подход «доза-ответ» для ИА Облегчает сравнение между препаратами Помогает в исследованиях механизма действия Характеризует взаимодействие препаратов

Почему МАК? 1. Альвеолярную концентрацию можно измерить 2. В состоянии, близком к равновесию, парциальное давление в альвеолах и головном мозге примерно одинаковы 3. Высокий мозговой кровоток приводит к быстрому выравниванию парциальных давлений 4. МАК не изменяется в зависимости от разных болезненных стимулов 5. Индивидуальная вариабельность крайне невысока 6. Пол, рост, вес и длительность анестезии НЕ влияют на МАК 7. МАКи разных анестетиков суммируются

Сравнивая концентрацию различных анестетиков, необходимую для достижения МАК, можно сказать какой из них более сильный. Например: МАК. для изофлюрана 1, 3%, а для севофлюрана 2, 25%. То есть для достижения МАК требуется разная концентрация анестетиков. Следовательно, препараты с низким значением МАК, являются мощными анестетиками. Высокое значение МАК говорит о том, что препарат обладает менее выраженным анестезирующим эффектом. К мощным анестетикам можно отнести галотан, севофлюран, изофлюран, метоксифлюран. Закись азота и десфлюран являются слабыми анестетиками.

ФАКТОРЫ, УВЕЛИЧИВАЮЩИЕ МАК Дети до 3 -х лет Гипертермия Гипертиреодизм Катехоламины и симпатомиметики Хроническое злоупотребление алкоголем (индукция системы Р 450 печени) Передозировка амфетаминами Гипернатриемия Ингаляционная анестезия // А. Е. Карелов, СПб МАПО 69

ФАКТОРЫ, УМЕНЬШАЮЩИЕ МАК Период новорожденности Старческий возраст Беременность Гипотензия, снижение СВ Гипотермия Гипотиреоидизм Альфа 2 – агонисты Седативные препараты Острое алкогольное опьянение (депрессия – конкурентная - системы Р 450) Хроническое злоупотребление амфетаминами Ингаляционная анестезия // Литий А. Е. Карелов, СПб МАПО 70

ФАКТОРЫ, УМЕНЬШАЮЩИЕ МАК Беременность Гипоксемия (менее 40 торр) Гиперкапния (более 95 торр) Анемия Гипотония Гиперкальциемия Ингаляционная анестезия // А. Е. Карелов, СПб МАПО 71

ФАКТОРЫ, НЕ ВЛИЯЮЩИЕ НА МАК Гипертиреоз Гипотиреоз Пол Длительность экспозиции Ингаляционная анестезия // А. Е. Карелов, СПб МАПО 72

МАК 1, 3 МАК – эффективная доза для 95% испытуемых. 0, 3 -0, 4 МАК – МАК пробуждения. МАК разных анестетиков складываются: 0, 5 МАК N 2 O (53%) + 0, 5 МАК галотана (0, 37%) вызывают депрессию ЦНС, сопоставимую с действием 1 МАК энфлурана (1, 7%). Ингаляционная анестезия // А. Е. Карелов, СПб МАПО 73

МАК И КОЭФФИЦИЕНТ ЖИР/ГАЗ Метоксифлюран Трихлорэтилен Галотан Изофлюран Энфлюран Эфир Севофлюран Дезфлюран Ксенон Закись азота – 0, 16 // … – 0, 17 // 960 – 0, 77 // 220 – 1, 15 // 97 – 1, 68 // 98 – 1, 9 // 65 – 2, 0 // … – 6, 5 // 18, 7 – 71 // … – 105 // 1, 4 Мера жирорастворимости Растворимость в жирах коррелирует с мощностью анестетика Выше растворимость в жирах – выше мощность анестетика Ингаляционная анестезия // А. Е. Карелов, СПб МАПО 74

Анестезирующий эффект зависит от достижения определённого парциального давления анестетика в мозге, которое в свою очередь напрямую зависит от парциального давления анестетика в альвеолах. Абстрактно, это отношение можно представить как гидравлическую систему: давление, созданное на одном конце системы передаётся через жидкость на противоположный конец. Альвеолы и ткань мозга являются « противоположными концами системы» , а жидкость это кровь. Соответственно, чем быстрее возрастёт парциальное давление в альвеолах, тем быстрее возрастёт и парциальное давление анестетика в мозге, а значит быстрее произойдёт индукция в наркоз. Фактическая концентрация анестетика в альвеолах, циркулирующей крови и в мозге важна только потому, что она участвует в достижении анестезирующего парциального давления.

Самым главным в формировании и поддержании анестезии требованием является доставка соответствующего количества анестетика к мозгу пациента (или другому органу или ткани). Для внутривенной анестезии характерно прямое попадание препарата в кровоток, который доставляет его к месту действия. При использовании ингаляционных анестетиков для попадания в кровоток им следует пройти предварительно легочной барьер. Таким образом, основная фармакокинетическая модель для ингаляционного анестетика должна быть дополнена двумя дополнительными секторами (дыхательный контур и альвеолы), реально представляемыми анатомическим пространством. Из-за наличия этих двух дополнительных секторов ингаляционной анестезией управлять несколько сложнее, чем внутривенной. Однако, именно способность регулировать степень поступления и вымывания через легкие из крови ингаляционного анестетика является единственным и главным элементом управления таким видом анестезии.

Схема наркозно-дыхательного аппара Дыхательный контур Испаритель Aдсорбер СО 2 Вентилятор Управляющий блок + монитор

Барьеры между наркозным аппаратом и головным мозгом Легкие Поток свежего газа Артериальная кровь Мертвое пространство Дыхательный контур Мозг Венозная кровь Fi Растворимость FA Fa Альвеолярный кровоток Растворимость и поглощение Летучесть (ДНП) Мощность (МАК) Фармакологические эффекты СИ

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ФАРМАКОКИНЕТИКУ Факторы, влияющие на фракционную концентрацию во вдыхаемой смеси (FI). Факторы, влияющие на фракционную альвеолярную концентрацию (FA). Факторы, влияющие на фракционную концентрацию в артериальной крови (Fa).

Fi – фракционная концентрация анестетика во вдыхаемой смеси v Поток свежего газа v Объем дыхательного контура – шланги аппарата для МРТ – 3 м v Абсорбирующая способность поверхностей соприкасаемых со смесью- резиновые трубки поглощают ˃ пластик и силикон → задерживают индукцию и восстановление. Чем больше поток свежего газа, меньше объем дыхательного контура и ниже абсорбция, тем точнее концентрация анестетика во вдыхаемой смеси соответствует концентрации, установленной на испарителе

FА – фракционная альвеолярная концентрация анестетика Вентиляция. Эффект концентрации. Эффект второго газа. Эффект усиления притока. Интенсивность поглощения кровью.

Факторы, влияющие на поступление анестетика в альвеолы Вентиляция ▫ При увеличении альвеолярной вентиляции увеличивается поступление анестетика в альвеолы ▫ Депрессия дыхания замедляет увеличение альвеолярной концентрации

Концентрация N. B. Увеличение фракционной концентрации анестетика во вдыхаемой смеси не только увеличивает фракционную альвеолярную концентрацию, но также быстро повышает FA/Fi-эффект концентрации. Если на фоне высокой концентрации закиси азота вводить другой ингаляционный анестетик, то увеличится (благодаря тому же механизму) поступление в легочный кровоток обоих анестетиков. Влияние концентрации одного газа на концентрацию другого получило название эффекта второго газа.

Факторы, влияющие на элиминацию анестетика из альвеол Растворимость анестетика в крови Альвеолярный кровоток Разница между парциальным давлением анестетика в альвеолярном газе и венозной крови

Поступление анестетика из альвеол в кровь Если анестетик не поступает из альвеол в кровь, то его фракционная альвеолярная концентрация (FА) быстро станет равна фракционной концентрации во вдыхаемой смеси (Fi). Так как во время индукции анестетик всегда в какой-то степени поглощается кровью легочных сосудов, то фракционная альвеолярная концентрация анестетика всегда ниже его фракционной концентрации во вдыхаемой смеси (FA/Fi

Растворимость высокая (К=кровь/газ) - FA - Р парциальное в альвеолах и в крови растут медленно!!! Диффузия в кровь Легкие (FA) Действующая/ растворенная фракции ткани Растворимость низкая (К=кровь/газ) - FA - Р парциальное в альвеолах и в крови растут быстро!!! Диффузия в кровь Насыщение тканей Требуемая концентрация газа во вдыхаемой смеси Время на индукцию

Факторы, влияющие на элиминацию анестетика из альвеол Альвеолярный кровоток ▫ В отсутствии легочного или внутрисердечного шунтирования крови равен сердечному выбросу ▫ При увеличении сердечного выброса увеличивается скорость поступления анестетика из альвеол в кровоток, уменьшается рост FA, таким образом индукция длится дольше ▫ Низкий сердечный выброс наоборот увеличивает риск передозировки анестетиков, так как в этом случае FA возрастает гораздо быстрее ▫ Данный эффект особенно выражен у анестетиков с высокой растворимостью и отрицательным воздействием на сердечный выброс

Факторы, влияющие на элиминацию анестетика из альвеол Разница между парциальным давлением анестетика в альвеолярном газе и венозной крови ▫ Зависит от поглощения анестетика тканями ▫ Определяется растворимостью анестетика в тканях ткани (коэффициент распределения кровь/ткань) и тканевым кровотоком ▫ Зависит разницы между парциальным давлением в артериальной крови и таковым в ткани В зависимости от кровотока и растворимости анестетиков все ткани можно разделить на 4 группы: хорошо васкуляризированные ткани, мышцы, жир, слабо васкуляризированные ткани

Разница между парциальным давлением анестетика в альвеолярном газе и парциальным давлением в венозной крови - этот градиент зависит от поглощения анестетика различными тканями. Если анестетик абсолютно не поглощается тканями, то венозное и альвеолярное парциальное давление будут равны, так что новая порция анестетика не поступит из альвеол в кровь. Перенос анестетиков из крови к тканям зависит от трех факторов: растворимости анестетика в ткани (коэффициент распределения кровь/ткань), тканевого кровотока разницы между парциальным давлением в артериальной крови и таковым в ткани. Характеристика Доля массы тела, % Доля сердечного выброса, % Перфузия, мл/мин/100 г Относительная растворимость Время достижения равновесия 10 50 20 Слабо васкуляризованные ткани 20 75 19 6 О 75 3 3 О 1 1 20 О 3 -10 мин 1 -4 часа 5 дней Хорошо Мышцы васкуляризованные ткани Жир О

Головной мозг, сердце, печень, почки и эндокринные органы составляют группу хорошо васкуляризованных тканей, именно сюда в первую очередь и поступает значительное количество анестетика. Небольшой объем и умеренная растворимость анестетиков существенно ограничивают емкость тканей этой группы, так что в них быстро наступает состояние равновесия (артериальное и тканевое парциальное давление становятся равны). Кровоток в группе мышечных тканей (мышцы и кожа) меньше, и потребление анестетика происходит медленнее. Кроме того, объем группы мышечных тканей и, соответственно, их емкость гораздо больше, поэтому для достижения равновесия может потребоваться несколько часов. Кровоток в группе жировой ткани практически равен кровотоку в мышечной группе, но чрезвычайно высокая растворимость анестетиков в жировой ткани приводит к настолько высокой общей емкости (Общая емкость = Растворимость ткань/кровь X Объем ткани), что для достижения равновесия требуется несколько суток. В группе слабо васкуляризованных тканей (кости, связки, зубы, волосы, хрящи) кровоток очень низок и потребление анестетика незначительно.

Подъем и снижение альвеолярного парциального давления предшествуют аналогичным изменениям парциального давления в других тканях fa быстрее достигает Fi при использовании закиси азота (анестетик с низкой растворимостью в крови), чем метоксифлюрана (анестетик с высокой растворимостью в крови).

Факторы, влияющие на фракционную концентрацию анестетика в артериальной крови (Fa) Нарушение вентиляционно-перфузионных отношений В норме парциальное давление анестетика в альвеолах и в артериальной крови после достижения равновесия становится одинаковым. Нарушение вентиляционно-перфузионных отношений приводит к появлению значительного альвеоло-артериального градиента: парциальное давление анестетика в альвеолах увеличивается (особенно при использовании высокорастворимых анестетиков), в артериальной крови - снижается (особенно при использовании низкорастворимых анестетиков).

Содержание анестетика в мозге быстро выравнивается с артериальной кровью Константа времени (2 -4 мин) – коэффициент распределения кровь/мозг, деленный на мозговой кровоток. Коэффициенты распределения кровь/мозг мало отличаются среди ИА После одной константы времени, парциальное давление в мозге составляет 63% от парциального артериального давления.

Константа времени Мозгу требуется около 3 констант времени, чтобы достичь равновесия с артериальной кровью Постоянная времени для N 2 O / десфлюрана = 2 мин Постоянная времени для галотана / ISO / SEVO = 3 -4 минут

Для всех ингаляционных анестетиков равновесие между тканями мозга и артериальной кровью достигается примерно через 10 минут

Артериальная кровь имеет одинаковое парциальное давление с альвеолами PP вдыхаемое = 2 A Равновесие полное по обе стороны альвеолярно -капиллярной мембраны PP альвеолярное = A = PP

Fет. ИА= ключевая величина В настоящее время измеряя Fет. ИА в равновесном состоянии, мы имеем хороший способ определения концентрации в головном мозге, несмотря на все сложности фармакокинетики. При достижении равновесия: End tidal = альвеолярная = артериальная = мозг

Резюме (1) (Fi): (2) (FA): 1 - поток свежего газа 2 - абсорбция газа контуром 3 - объем дыхательного контура Поступление газа: 1 - концентрация 2 - МОАльв. Вент Выведение газа: 1 - растворимость в крови (3) (Fa): V/Q нарушения 2 - альвеолярный кровоток 3 - потребление газа тканями

FA является балансом между поступлением и выведением ИА из альвеол Увеличение поступления ИА в альвеолы: Высокий % на испарителе+МОД+поток свежей смеси. Венозное давление ИА (PA) = 4 mm Hg FI = 16 mm Hg FA = 8 mm Hg FA / FI = 8/16 = 0. 5 Артериальное давление агента (PV) agent = 8 mm Hg Увеличение выведения ИА из альвеол в кровь: Низкое Р в вене, высокая растворимость, высокий СВ

Высокая растворимость = медленное нарастание FA N 2 O, low blood / gas Halothane, high blood / gas

Поступление ИА из альвеол в кровь – «поглощение» FI = 16 mm Hg FA = 8 mm Hg Venous (PA) agent = 4 mm Hg Arterial (PV) agent = 8 mm Hg

Поступление газа из альвеол (“поглощение”) пропорционально коэфф-ту кровь/газ Input Inhaled “FI” PP = 16 mm Hg Alveoli “FA” PP = 8 mm Hg Output (“uptake”) is low Sevoflurane b/g = 0. 7 Blood and tissues PP = 6 mm Hg

Поступление газа из альвеол (“поглощение”) пропорционально коэфф-ту кровь/газ Input Inhaled “FI” PP = 16 mm Hg Alveoli “FA” PP = 4 mm Hg Output (“uptake”) is large Halothane b/g = 2. 5 Blood and tissues PP = 2 mm Hg

Время задержки между включением испарителя и накоплением ИА в мозге 4% sevoflurane Закрытая система (“шланги”) PP= 30 mm Hg PP = 24 mm Hg испаритель На уровне мора Вдыхаемый ИА “FI” PP = 16 mm Hg Альвеолы “FA” PP = 8 mm Hg Артериальная кровь PP = 8 mm Hg мозг PP = 5 mm Hg

Когда давление в венозной крови=альвеолярному, поглощение останавливается и FA / FI = 1. 0 FI = 16 mm Hg FA = 16 mm Hg Venous (PA) agent = 16 mm Hg FA / FI = 16/16 = 1. 0 Arterial (PV) agent = 16 mm Hg

Пробуждение зависит: - удаление выдыхаемой смеси, - высокий поток свежего газа, - небольшой объем дыхательного контура, - незначительная абсорбция анестетика в дыхательном контуре и наркозном аппарате, - низкая растворимость анестетика, - высокая альвеолярная вентиляция

Преимущества современной ингаляционной анестезии ØМощная общеанестетическая активность препарата. Ø Хорошая управляемость. Ø Быстрое пробуждение и возможность ранней активизации больных. Ø Сокращение применения опиоидов, миорелаксантов и более быстрое восстановление функции ЖКТ.

«Ингаляционная анестезия наиболее показана при длительных и травматичных операциях, тогда как при относительно малотравматичных и непродолжительных вмешательствах преимущества и недостатки ингаляционных и внутривенных методик взаимокомпенсируются» (Лихванцев В. В. , 2000).

Условия использования ингаляционных анестетиков: наличие предназначенной для использования ингаляционных анестетиков наркознодыхательной аппаратуры наличие соответствующих испарителей («каждому летучему анестетику свой испаритель») полноценный мониторинг газового состава дыхательной смеси и функциональных систем организма вывод отработанных газов за пределы операционной.

Основное преимущество использования ИА – возможность управлять ими на всех этапах анестезии, что обеспечивает, прежде всего, безопасность пациента во время операции, т. к. их действие на организм можно быстро прекратить.

малые гинекологические операции при выраженной сопутствующей патологии (система кровообращения, дыхательная система) кратковременные вмешательства у больных с ожирением

кратковременные диагностические исследования (ЯМРТ, КТ, колоноскопия и т. п.) New Drugs: Alternatives and Adjuncts to Bupivacaine in Paediatric Regional Anaesthesia Per-Arne Lönnqvist, Stockhom, Sweden - SGKA-APAMeeting 2004

при ограниченной возможности использования неингаляционных анестетиков - аллергические реакции - бронхиальная астма - затруднения с обеспечением сосудистого доступа и др.

в педиатрии - обеспечение сосудистого доступа, - индукция анестезии, - проведение кратковременных исследований Rapid Sequence Induction in Paediatric Anaesthesia Peter Stoddart, Bristol, United Kingdom - SGKAAPA-Meeting 2004

Абсолютным противопоказанием к использованию ИА является факт злокачественной гипертермии и побочных (прежде всего, аллергических) реакций в анамнезе. Относительным противопоказанием является кратковременные оперативные вмешательства, когда ИА используют по открытому дыхательному контуру при самостоятельном дыхании пациентом или при полузакрытом контуре с ИВЛ в условиях высокого газотока, что не вредит пациенту, но значительно повышает стоимость анестезии.

«Идеальный ингаляционный анестетик» Свойства Физико-химические стабильность - не должен разрушаться под воздействием света и тепла инертность - не должен вступать в химические реакции с металлом, резиной и натриевой известью отсутствие консервантов не должен быть легковоспламеняющимся или взрывоопасным должен обладать приятным запахом не должен накапливаться в атмосфере иметь высокий коэффициент распределения масло/газ (т. е. быть жирорастворимым), соответственно низкий МАК иметь низкий коэффициент распределения кровь/газ (т. е. низкая растворимость в жидкости) не метаболизироваться - не иметь активных метаболитов и выводиться в неизменном виде быть не токсичным Клинические иметь анальгетический, противорвотный, противосудорожный эффекты отсутствие респираторной депрессии бронхолитические свойства отсутствие отрицательного влияния на сердечно-сосудистую систему отсутствие снижения коронарного, почечного и печёночного кровотока отсутствие влияния на мозговой кровоток и внутричерепное давление не триггер злокачественной гипертермии не обладать эпилептогенными свойствами Экономические относительная дешевизна доступность для системы здравоохранения приемлемость по показателям эффективность затрат и полезность затрат экономическая целесообразность применения для системы здравоохранения экономия затрат бюджета здравоохранения

Каждый из ингаляционных анестетиков имеет свою так называемую анестетическую активность или «мощность» . Определяется она понятием «минимальная альвеолярная концентрация» или МАК. Она равна концентрации анестетика в альвеолярном пространстве, которая у 50% пациентов предотвращает рефлекторную двигательную реакцию на болевой стимул (разрез кожи). МАК – усредненная величина, которая рассчитана для людей в возрасте 30 -55 лет и выражена в процентах от 1 атм, отражает парциальное давление анестетика в головном мозге и позволяет сравнивать «мощность» разных анестетиков Чем выше МАК – тем ниже анестетическая активность препарата МАК пробуждения – 1/3 МАК 1, 3 МАК – 100% отсутствия движения у больных 1, 7 МАК – МАК BAR (гемодинамически значимый МАК)

MAC – парциальное давление, не концентрация Да - MAC выражается в %, но это подразумевает % от атмосферного давления на уровне моря

Можно ли выжить при 21% содержании кислорода в воздухе? Нет, если вы на вершине Эвереста!!! Также и МАК, отражает парциальное давление а не концентрацию.

MAК На высоте уровня моря атмосферное давление составляет 760 мм рт ст. % MAC =2, 2%, а парциальное давление составит: 2. 2% X 760 = 16. 7 мм рт ст На высоте давление ниже и составит 600 мм рт ст, и МАК% севорана составит=2. 8%, а давление остается неизменным (16. 7 / 600 = 2. 8%)

Вопрос: каков % МАК севорана на глубине 33 фута под водой? Ответ: 1. 1%, поскольку барометрическое давление составляет 2 атмосферы или 1520 мм рт ст. А поскольку парциальное давление севорана постоянно, то: 16. 7 мм рт ст/ 1520 мм рт ст=1. 1%

Значение МАК ингаляционных анестетиков у пациента в возрасте 30 -60 лет при атмосферном давлении Анестетик МАК, % Галотан 0, 75 Изофлюран 1. 15 Севофлюран 1. 85 Десфлюран 6, 6 Закись азота 105

Свойства идеального ингаляционного анестетика Достаточная сила Низкая растворимость в крови и тканях Устойчивость к физической и метаболической деградации, отсутствие повреждающего действия на органы и ткани организма Отсутствие предрасположенности к развитию судорог Отсутствие раздражающего воздействия на дыхательные пути Отсутствие или минимальное влияние на сердечнососудистую систему Экологическая безопасность (отсутствие влияния на озоновый слой земли) Приемлемая стоимость

Растворимость анестетика в крови Низкий коэффициент распределения кровь/газ указывает на низкое сродство анестетика к крови, что является желаемым эффектом, так как обеспечивает быстрое изменение глубины анестезии и быстрое пробуждение пациента после окончания анестезии Коэффициент распределения ингаляционных анестетиков в крови при t 37°C Анестетик Десфлюран Кровь-газ 0, 45 Закись азота Севофлюран Изофлюран Галотан 0, 47 0, 65 1, 4 2, 5

Коэффициент распределения ингаляционных анестетиков в тканях при t 37°C Анестетик Мозг/кровь Мышцы/кровь Жир/кровь Закись азота 1, 1 1, 2 2, 3 Десфлюран 1, 3 2, 0 27 Изофлюран 1, 6 2, 9 45 Севофлюран 1, 7 3, 1 48 Галотан 1, 9 3, 4 51

Устойчивость к деградации При оценке метаболизма ингаляционных анестетиков наиболее важными аспектами являются: ▫ Доля препарата, подвергающегося биотрансформации в организме ▫ Безопасность для организма метаболитов, образующихся в ходе биотрансформации

Устойчивость к деградации Галотан, Изофлюран и Десфлюран подвергаются биотрансформации в организме с образованием трифлуороацетата, который может вызывать поражение печени Севофлюран обладает внепеченочным механизмом биотрансформации, уровень его метаболизма составляет от 1 до 5%, что несколько выше чем у изофлюрана и десфлюрана, но значительно ниже чем у галотана

Устойчивость к метаболической деградации и потенциальный гепатотоксичный эффект некоторых ингаляционных анестетиков Анестетик Галотан Метаболизм, % Частота случаев повреждения печени 15 -20 1: 35000 Изофлюран 0, 2 1: 1000000 Десфлюран 0, 02 1: 10000000 Севофлюран 3, 3 -

Устойчивость к деградации Закись азота практически не подвергается метаболизму в организме, однако она вызывает повреждение тканей путем подавления активности витамин B 12 -зависимых ферментов, к которым относится метионинсинтетаза, участвующая в синтезе ДНК Повреждение тканей связано с депрессией костного мозга (мегалобластная анемия), а также повреждением нервной системы (периферическая нейропатия и фуникулярный миелоз) Эти эффекты редки и возникают предположительно только у пациентов с дефицитом витамина B 12 и при длительном использовании закиси азота

Устойчивость к деградации Севофлюран не обладает гепатотоксичностью Примерно 5% севофлюрана метаболизируются в организме с образованием ионов фтора и гексафтороизопропанола Ион фтора обладает потенциальной нефротоксичностью при его плазменной концентрации превышающей 50 мкмоль/л Исследования по оценке метаболизма севофлюрана у детей продемонстрировали, что максимальный уровень фтора колеблется в пределах 10 -23 мкмоль/л и быстро снижается по окончании анестезии Случаев нефротоксичности у детей после анестезий севофлюраном отмечено не было

Защитный эффект ингаляционных анестетиков Клинические исследования применения пропофола, севофлюрана и десфлюрана в качестве анестетиков у пациентов с ИБС при операциях аортокоронарного шунтирования показали, что процент пациентов с повышенным послеоперационным уровнем тропонина I, отражающим повреждение клеток миокарда, был значительно выше в группе пропофола по сравнению с группами севофлюрана и десфлюрана

Свойства идеального ингаляционного анестетика Достаточная сила Низкая растворимость в крови и тканях Устойчивость к физической и метаболической деградации, отсутствие повреждающего действия на органы и ткани организма Отсутствие предрасположенности к развитию судорог Отсутствие раздражающего воздействия на дыхательные пути Отсутствие или минимальное влияние на сердечно- сосудистую систему Экологическая безопасность (отсутствие влияния на озоновый слой земли) Приемлемая стоимость

Предрасположенность к развитию судорог Галотан, изофлюран, десфлюран и закись азота не вызывают судорог В медицинской литературе описаны случаи эпилептиформной активности на ЭЭГ и судорожноподобных движений во время анестезии севофлюраном, однако эти изменения были кратковременными и самопроизвольно разрешались без каких либо клинических проявлений в послеоперационном периоде В ряде случаев на этапе пробуждения у детей отмечается повышенная возбуждение, психомоторная активность ▫ Может быть связано с быстрым восстановлением сознания на фоне недостаточной анальгезии

Свойства идеального ингаляционного анестетика Достаточная сила Низкая растворимость в крови и тканях Устойчивость к физической и метаболической деградации, отсутствие повреждающего действия на органы и ткани организма Отсутствие предрасположенности к развитию судорог Отсутствие раздражающего воздействия на дыхательные пути Отсутствие или минимальное влияние на сердечнососудистую систему Экологическая безопасность (отсутствие влияния на озоновый слой земли) Приемлемая стоимость

Раздражающее действие на дыхательные пути Галотан и Севофлюран не вызывают раздражения дыхательных путей Порог развития раздражения дыхательных путей составляет 6% при использовании десфлюрана и 1, 8% при использовании изофлюрана Десфлюран противопоказан для использования в качестве индукции через маску у детей в связи с высоким процентом развития побочных эффектов: ларингоспазма, кашля, задержки дыхания, десатурации Из-за отсутствия раздражающего запаха и низкого риска раздражения дыхательных путей севофлюран является наиболее часто используемым ингаляционным анестетиком, применяемым для индукции в анестезию

Свойства идеального ингаляционного анестетика Достаточная сила Низкая растворимость в крови и тканях Устойчивость к физической и метаболической деградации, отсутствие повреждающего действия на органы и ткани организма Отсутствие предрасположенности к развитию судорог Отсутствие раздражающего воздействия на дыхательные пути Отсутствие или минимальное влияние на сердечнососудистую систему Экологическая безопасность (отсутствие влияния на озоновый слой земли) Приемлемая стоимость

Влияние ингаляционных анестетиков на гемодинамику При быстром повышении концентрации десфлюрана и изофлюрана наблюдается тахикардия и повышение артериального давления более выраженное у десфлюрана по сравнению с изофлюраном, однако при использовании этих анестетиков для поддержания анестезии больших отличий в гемодинамических эффектах нет Севофлюран снижает сердечный выброс, но в значительно меньшей мере чем галотан, а также уменьшает системное сосудистое сопротивление Быстрое повышение концентрации севофлюрана (0, 5 МАК, 1, 5 МАК) вызывает умеренное снижение ЧСС и АД Севофлюран в значительно меньшей степени сенсибилизирует миокард к эндогенным катехоламинам, сывороточная концентрация адреналина, при которой наблюдаются нарушения сердечного ритма, у севофлюрана в 2 раза выше чем у галотана и сопоставима с изофлюраном

Выбор анестетика: закись азота Низкая мощность ограничивает применение, используется в качестве газа-носителя других более мощных ингаляционных анестетиков Не имеет запаха (позволяет облегчить восприятие других ингаляционных анестетиков) Имеет низкий коэффициент растворимости, что обеспечивает быструю индукцию и быстрый выход из анестезии Вызывает усиление кардиодепрессивного действия галотана, изофлюрана Повышает давление в системе легочной артерии Обладает высокой диффузионной способностью, увеличивает объем полостей, заполненных газом, поэтому не используется при кишечной непроходимости, пневмотораксе, операциях с искусственным кровообращением В период выхода из анестезии снижает альвеолярную концентрацию кислорода, поэтому в течение 5 -10 минут после отключения анестетика необходимо использовать высокие концентрации кислорода

Выбор анестетика: галотан Галотан имеет некоторые характеристики идеального ингаляционного анестетика (достаточная мощность, отсутствие раздражающего действия на дыхательные пути) Однако высокая растворимость в крови и тканях, выраженное кардиодепрессивное действие и риск гепатотоксичности (1: 350001: 60000) привели к вытеснению его из клинической практики современными ингаляционными анестетиками

Выбор анестетика: изофлюран Не рекомендуется для индукции в анестезию ▫ Обладает раздражающим действием на дыхательные пути (кашель, ларингоспазм, апноэ) ▫ При резком увеличении концентрации оказывает выраженное влияние на гемодинамику (тахикардия, гипертензия) Обладает потенциальной гепатотоксичностью (1: 1000000) Имеет относительно высокую растворимость в крови и тканях (выше чем у севофлюрана и десфлюрана) Оказывает минимальное воздействие на озоновый слой Земли Более дешевый препарат по сравнению с севофлюраном и десфлюраном Наиболее распространенный ингаляционный анестетик

Выбор анестетика: десфлюран Не рекомендуется для индукции в анестезию ▫ Оказывает раздражающее действие на дыхательные пути (кашель, ларингоспазм, апноэ) ▫ При резком увеличении концентрации оказывает выраженное влияние на гемодинамику (тахикардия гипертензия) Имеет наименьшую растворимость в органах и тканях по сравнению с изофлюраном и севофлюраном Не обладает гепатотоксичностью Обладает кардиопротективным действием Экологически безопасен Имеет относительно высокую стоимость, сравнимую с севофлюраном

Выбор анестетика: севофлюран Не вызывает раздражения дыхательных путей Не оказывает выраженного влияния на гемодинамику Менее растворим в крови и тканях, чем галотан и изофлюран Не обладает гепатотоксичностью Обладает кардиопротективным действием Продукты метаболизма обладают потенциальной нефротоксичностью (не отмечено достоверных случаев нефротоксичности после применения севофлюрана) Экологически безопасен Повышает эпилептиформную активность на ЭЭГ В ряде случаев способен вызывать развитие послеоперационной ажитации Препарат выбора для ингаляционной индукции Наиболее распространенный ингаляционный анестетик в детской практике

Выделяют три фазы первой степени наркоза по Артузио (1954): начальная – болевая чувствительность сохранена, пациент контактен, сохраняются воспоминания; средняя – болевая чувствительность притупляется, легкое оглушение, возможно сохранение воспоминаний об операции, характерна их неточность и спутанность; глубокая – потеря болевой чувствительности, полусонное состояние, реакция на тактильное раздражение или громкий звук присутствует, но она слабая.

Стадия возбуждения При проведении общего обезболивания эфиром утрата сознания по окончании фазы анальгезии сопровождается выраженным речевым и двигательным возбуждением. Достигнув этой стадии эфирного наркоза, пациент начинает совершать беспорядочные движения, произносит бессвязные речи, поет. Длительная стадия возбуждения, около 5 минут – одна из особенностей эфирного наркоза, которая заставила отказаться от его применения. Фаза возбуждения у современных средств для общего обезболивания слабо выражена или отсутствует. Кроме того, анестезиолог может использовать их комбинацию с другими препаратами, чтобы исключить негативные эффекты. У пациентов, страдающих алкоголизмом и наркоманией, исключить стадию возбуждения бывает довольно сложно, так как биохимические изменения в тканях головного мозга способствуют ее проявлению.

Стадия хирургического наркоза Она характеризуется полной потерей сознания и болевой чувствительности и ослаблением рефлексов и их постепенным угнетением. В зависимости от степени снижения мышечного тонуса, утраты рефлексов и способности к спонтанному дыханию выделяют четыре уровня хирургического наркоза: 1 уровень – уровень движения глазных яблок – на фоне спокойного сна еще сохраняются мышечный тонус, гортанно-глоточные рефлексы. Дыхание ровное, пульс несколько учащен, артериальное давление на исходном уровне. Глазные яблоки совершают медленные кругообразные движения, зрачки равномерно сужены, живо реагируют на свет, роговичный рефлекс сохранен. Поверхностные рефлексы (кожные) исчезают. 2 уровень – уровень роговичного рефлекса. Глазные яблоки фиксированы, роговичный рефлекс исчезает, зрачки сужены, реакция их на свет сохранена. Гортанный и глоточный рефлексы отсутствуют, тонус мышц значительно снижен, дыхание ровное, замедленное, пульс и артериальное давление на исходном уровне, слизистые оболочки влажные, кожные покровы розовые.

3 уровень – уровень расширения зрачка. Появляются первые признаки передозировки – зрачок расширяется вследствие паралича гладкой мускулатуры радужной оболочки, реакция на свет резко ослаблена, появляется сухость роговицы. Кожные покровы бледные, резко снижается тонус мышц (сохранен только тонус сфинктеров). Реберное дыхание постепенно ослабевает, преобладает диафрагмальное, вдох несколько короче выдоха, пульс учащается, артериальное давление снижается. 4 уровень – уровень диафрагмального дыхания – признак передозировки и предвестник летального исхода. Для него характерны резкое расширение зрачков, отсутствие их реакции на свет, тусклая, сухая роговица, полный паралич дыхательных межреберных мышц; сохранено только диафрагмальное дыхание – поверхностное, аритмичное. Кожные покровы бледные с цианотичным оттенком, пульс нитевидный, учащенный, артериальное давление не определяется, возникает паралич сфинктеров. Четвертая стадия – АГОНАЛЬНАЯ СТАДИЯ – паралич дыхательного и сосудодвигательного центров, проявляется остановкой дыхания и сердечной деятельности.

Стадия пробуждения – выход из наркоза После прекращения поступления средства для общего обезболивания в кровь, начинается пробуждение. Длительность выхода из состояния наркоза зависит от скорости инактивации и выведения наркотизирующего вещества. Для эфира это время составляет порядка 10 -15 минут. Пробуждение после общего обезболивания пропофолом или севофлюраном наступает практически мгновенно.

Злокачественная гипертермия Заболевание, возникающее при проведении общей анестезии или же сразу после нее, характеризующееся гиперкатаболизмом скелетной мускулатуры, проявляется повышенным потреблением кислорода, накоплением лактата, повышенной продукцией CO 2 и тепла Впервые описана в 1929 г. (синдром Омбредана) Развитие ЗГ провоцируется ▫ Ингаляционными анестетиками ▫ Сукцинилхолином

Злокачественная гипертермия Наследственное заболевание, передающееся по аутосомно-доминантному типу Средняя частота встречаемости составляет 1 случай на 60 000 общих анестезий с использованием сукцинилхолина и 1 на 200 000 без его использования Признаки ЗГ могут возникать как во время анестезии с использованием триггерных агентов, так и через несколько часов после ее окончания У любого пациента может развиться ЗГ, даже если предыдущая общая анестезия протекала без осложнений

Патогенез Пусковым механизмом развития ЗГ являются ингаляционные анестетики (галотан, изофлюран, севофлюран) по отдельности или в сочетании с сукцинилхолином Триггерные вещества высвобождают кальциевый запас из саркоплазматического ретикулума, вызывая контрактуру скелетных мышц и гликогенолиз, повышая клеточный метаболизм, результатом которого является повышенное потребление кислорода, избыточная продукция тепла, накопление лактата У пораженных пациентов развиваются ацидоз, гиперкапния, гипоксемия, тахикардия, рабдомиолиз с последующим повышением в сыворотке крови креатинфосфокиназы (КФК), а также ионов калия с риском развития сердечной аритмии или остановки сердца и миоглобинурия с риском развития почечной недостаточности

Злокачественная гипертермия, ранние признаки В большинстве случаев признаки ЗГ возникают в операционной, хотя они могут проявиться и в течение первых послеоперационных часов ▫ Необъяснимая тахикардия, нарушения ритма (желудочковые экстрасистолы, желудочковая бигемения) ▫ Гиперкапния, увеличение ЧД, если пациент находится на спонтанном дыхании ▫ Спазм жевательной мускулатуры (невозможно открыть рот), генерализованная мышечная ригидность ▫ Мраморность кожи, потливость, цианоз ▫ Резкое повышение температуры ▫ Адсорбер наркозного аппарата становится горячим ▫ Ацидоз (респираторный и метаболический)

Лабораторная диагностика ЗГ Изменения в КОС: ▫ Низкий p. H ▫ Низкий p. O 2 ▫ Высокий p. CO 2 ▫ Низкий бикарбонат ▫ Большой дефицит оснований Другие лабораторные признаки ▫ Гиперкалиемия ▫ Гиперкальциемия ▫ Гиперлактатемия ▫ Миоглобинурия (темный цвет мочи) ▫ Увеличение уровня КФК Кофеин-галотановый контрактильный тест – золотой стандарт диагностики предрасположенности к ЗГ

Диагностика предрасположенности к ЗГ Кофеиновый тест Тест с галотаном Мышечное волокно помещают в раствор кофеина с концентрацией 2 ммоль/л В норме его разрыв происходит прикладывании к мышечному волокну усилия в 0, 2 г При предрасположенности к ЗГ разрыв происходит при усилии в > 0, 3 г Мышечное волокно помещают в контейнер с физиологическим раствором, через который пропускают смесь кислорода и углекислого газа и галотана Волокно стимулируется электрическим разрядом каждые 10 сек. В норме оно не будет изменять силу сокращения приложении усилия > 0, 5 г в течение всего времени присутствия галотана в газовой смеси При снижении концентрации галотана в окружающей мышечное волокно среде на 3% точка разрыва волокна падает с > 0, 7 до > 0, 5 г

Действия в случае развития ригидности жевательных мышц Консервативный подход Прекратить анестезию Получить биопсию мышц для проведения лабораторного теста Перенести анестезию на более поздний срок Либеральный подход Переключится на использование нетриггерных анестезиологических препаратов Тщательный мониторинг O 2 и CO 2 Лечение дантроленом

Дифференциальный диагноз при ригидности жевательных мышц Миотонический синдром Дисфункция височно-нижнечелюстного сустава Недостаточное введение сукцинилхолина

Нейролептический злокачественный синдром Симптомы похожи на злокачественную гипертермию ▫ Лихорадка ▫ Рабдомиолиз ▫ Тахикардия ▫ Гипертензия ▫ Ажитация ▫ Ригидность мускулатуры

Нейролептический злокачественный синдром Приступ возникает после длительного приема: ▫ Фенотиазинов ▫ Галоперидола ▫ Резкой отмены препаратов для лечения болезни Паркинсона Возможно провоцируется истощением запасов дофамина Состояние не наследуется Сукцинилхолин не является триггером Лечение дантроленом эффективно Если синдром развился во время анестезии лечение проводится по протоколу лечения злокачественной гипертермии

Лечение злокачественной гипертермии Летальность при молниеносной форме без использования дантролена составляет 60 - 80% Применение дантролена и рациональной симптоматической терапии позволило сократить летальность в развитых странах до 20% и ниже

Заболевания, связанные с ЗГ ▫ Синдром King-Denborough ▫ Болезнь центрального стержня ▫ Мышечная дистрофия Duschenne ▫ Мышечная дистрофия Fukuyama ▫ Врождённая миотония ▫ Синдром Schwartz-Jampel Высокий риск настороженности по отношению к развитию ЗГ Следует избегать триггерных агентов

Первые действия 1. 2. 3. Позвать на помощь Предупредить хирурга о проблеме (прервать операцию) Следовать протоколу лечения

Протокол лечения 1. Прекратить введение тригерных препаратов (ингаляционный анестетики, сукцинилхолин) Гипервентиляция (МОВ в 2 -3 раза выше нормального) 100% кислородом с высоким потоком (10 л/мин и более), отсоединить испаритель 2. ▫ менять систему циркуляции и адсорбент не нужно (лишняя трата времени) 3. Переключиться на использование нетригерных анестезиологических препаратов (ТВА) 4. Введение дантролена в дозе 2, 5 мг/кг (повторить при отсутствии эффекта, общая доза до 10 мг/кг) 5. Охладить пациента ▫ ▫ Лёд на голову, шею, подмышечные области, область паха Остановить охлаждение при температуре тела

Мониторинг Продолжить рутинный мониторинг (ЭКГ, Sat, Et. CO 2, непрямое АД) Измерить температуру ядра (пищеводный или ректальный температурный датчик) Установить периферические катетеры большого диаметра Обсудить постановку ЦВК, артериальной линии и мочевого катетера Анализ электролитов и газов крови Б/х анализ крови (печеночные, почечные ферменты, коагулограмма, миоглобин)

Дальнейшее лечение Коррекция метаболического ацидоза при p. H

Дантролен Препарат введен в клиническую практику в 1974 г. Мышечный релаксант некурареподобного действия Снижает проницаемость кальциевых каналов саркоплазматического ретикулума Уменьшает выход кальция в цитоплазму Предотвращает возникновение мышечной контрактуры Ограничивает клеточный метаболизм Неспецифический антипиретик

Дантролен Лекарственная форма для внутривенного введения появилась в 1979 г. Флакон 20 мг + 3 г маннитола + Na. OH Начало действия через 6 -20 мин Эффективная плазменная концентрация сохраняется 5 -6 час Метаболизируется в печени, выводится почками Срок хранения 3 года, готовый раствор – 6 часов

Побочные эффекты Мышечная слабость вплоть до необходимости в продленной ИВЛ Снижает сократимость миокарда и сердечный индекс Антиаритмическое действие (удлиняет рефрактерный период) Головокружение Головная боль Тошнота и рвота Выраженная сонливость Тромбофлебиты

Терапия в ОИТР Наблюдение в течение не менее 24 ч. Введение дантролена в дозе 1 мг/кг каждые 6 ч. течение 24 -48 ч. ▫ Для терапии взрослого пациента может потребоваться до 50 ампул дантролена Мониторинг температуры ядра, газов, электролитов крови, КФК, миоглобина в крови и моче и показателей коагулограммы

Очистка наркозного аппарата Замена испарителей Замена всех деталей контура аппарата Замена абсорбера на новый Замена анестезиологических масок Вентиляция аппарата чистым кислородом с потоком 10 л/мин в течение 10 мин.

Анестезия у пациентов с предрасположенностью к ЗГ Адекватный мониторинг: ▫ Пульсоксиметр ▫ Капнограф ▫ Инвазивное АД ▫ ЦВД ▫ Мониторинг центральной температуры

Анестезия у пациентов с предрасположенностью к ЗГ Дантролен 2, 5 мг/кг в/в за 1, 5 ч до анестезии (в настоящее время признано необоснованным) Общая анестезия ▫ Барбитураты, закись азота, опиоиды, бензодиазепины, пропофол ▫ Использование недеполяризующих мышечных релаксантов Регионарная анестезия Местная анестезия на фоне медикаментозной седации Послеоперационное наблюдение в течение 4 -6 ч.

В.В. Лихванцев

Современные ингаляционные анестетики гораздо менее ток­сичны (и это будет показано ниже), чем их предшественники, и в то же время гораздо более эффективны и управляемы. Кроме того, современная наркозно-дыхательная аппаратура позволяет значительно сократить их интраоперационный расход за счет использования так называемой низкопоточной техники анесте­зии - «LOW FLOW ANAESTHESIA».

Когда мы говорим о современных ингаляционных анестетиках, то имеем в виду в первую очередь энфлюран и изофлю­ран, хотя в настоящее время успешно заканчиваются испытания последнего поколения парообразующих анестетиков - севофлюрана и десфлюрана.

Таблица 12.1

Сравнительная характеристика некоторых современных парообразующих анестетиков (J. Davison et al., 1993)

Примечание. МАК - минимально альвеолярная концен­трация - чрезвычайно важная величина для характеристики любо­го парообразующего анестетика и показывает концентрацию парообразующего анестетика, при которой 50% пациентов не проявляют двигательной активности в ответ на кожный разрез.

МЕХАНИЗМ ДЕЙСТВИЯ

Предполагается, что ингаляционные анестетики действуют через клеточные мембраны в ЦНС, однако точный механизм не известен. Относятся к группе полисинаптических ингибиторов.

ФАРМАКОКИНЕТИКА

Скорость, с которой ингаляционные анестетики абсорби­руются и выводятся (изофлюран >энфлюран >галотан), опре­деляется коэффициентом распределения газ/кровь (см. табл. 12.1); чем меньше растворимость, тем быстрее поглощение и выделение.

Основной путь выделения всех парообразующих анестети­ков - в неизменном виде через легкие. Однако любой из опи­сываемых препаратов частично метаболизируется в печени, но - и в этом одно из больших преимуществ современных анестетиков - в печени метаболизируется 15% галотана, 2% энфлюрана и только 0,2 % изофлюрана.

ФАРМАКОДИНАМИКА

Центральная нервная система

В низких концентрациях ингаляционные анестетики вызыва­ют амнезию (25% МАК). С увеличением дозы прямо пропор­ционально растет угнетение ЦНС. Они увеличивают внутримозговой кровоток (галотан >энфлюран >изофлюран) и снижают интенсивность метаболизма мозга (изофлюран >энфлюран >галотан).

Сердечно-сосудистая система

Ингаляционные анестетики вызывают дозазависимое угне­тение сократимости миокарда (галотан >энфлюран >изофлюран) и уменьшение общего периферического сопротивления (изофлю­ран >энфлюран >галотан), за счет периферической вазодилата-ции. Они не влияют на ЧСС, может быть, за исключением изо­флюрана, вызьшающего легкую тахикардию.

Кроме того, все ингаляционные анестетики повышают чувствительность миокарда к действию аригмогенных агентов (ад­реналин, атропин и т.д.), что следует учитывать при их совме­стном применении.

Система дыхания

Все ингаляционные анестетики вызывают дозазависимую депрессию дыхания с уменьшением частоты дыхания, приходя­щим увеличением объема дыхания и увеличением парциально­го давления углекислого газа в артерии. По степени угнетения дыхания в эквимолярных концентрациях они располагаются в порядке убывания: галотан - изофлюран - энфлюран, та­ким образом, энфлюран является препаратом выбора при ане­стезии с сохраненным спонтанным дыханием.

Они также обладают и бронходилатационной активностью (галотан >энфлюран >изофлюран), что можно использовать в соответствующей ситуации.

Ингаляционные анестетики вызывают тенденцию к уменьше­нию органного кровотока в печени. Это угнетение особенно вы­ражено при анестезии галотаном, менее - энфлюраном и прак­тически отсутствует при применении изофлюрана. Как редкое осложнение наркоза галотаном, описано развитие гепатитов, что послужило основанием к ограничению использования данных препаратов у больных с заболеванием печени. Однако в послед­нее время вероятность развития гепатитов под влиянием энфлюрана, и особенно изофлюрана, подвергается серьезным сомнениям.

Мочевыделительная система

Ингаляционные анестетики снижают почечный кровоток дву­мя путями: за счет снижения системного давления и увеличе­ния ОПС в почках. Флуорид-ион - продукт распада энфлюрана - обладает нефротоксическим действием, однако его дей­ствительная роль при длительной анестезии энфлюраном остается недостаточно изученной.

Исследования последних лет показали, что комбинированная общая анестезия на основе энфлюрана/изофлюрана/фентанила зна­чительно эффективнее традиционно используемых в нашей стра­не НЛА и других вариантов внутривенной анестезии (J. Kenneth Davison et al., 1993, В.В. Лихванцев с соавт., 1993, 1994), возмо­жно, за исключением анестезии на основе дипривана (пропофола) и фентанила. Это становится особенно очевидным при анесте­зиологическом обеспечении длительных и травматичных операций на органах брюшной полости, легких, магистральных сосудах, сердце. Снижение суммарной дозы наркотических аналгетиков и быстрая элиминация парообразующего анестетика способствуют быстрому пробуждению и ранней активизации больного, что является весьма ценным фактором, заставляющим предпочесть именно данный вариант инграоперационной защиты.

МЕТОДИКИ АНЕСТЕЗИИ

Обычно метод анестезии парообразующими анестетиками предполагает стандартную премедикацию, вводный наркоз барбитуратами или пропофолом (у детей - парообразующим анестетиком). Далее возможны два варианта поддержания ане­стезии:

1. Использование паров анестетика в минимальной концен­трации (0,6-0,8 МАК) на фоне стандартной НЛА для стабили­зации основных показателей гомеостаза пациента. Клиника такой анестезии мало отличается от типичной для НЛА, хотя заметно менее выраженными становятся колебания основных показате­лей гомеостаза при изменении хирургической ситуации.

2. Использование существенных концентраций (1,0-1,5 МАК) парообразующего анестетика с добавлением значительно меньших доз фентанила. В данном случае сказьшаются все преимущества ингаляционной анестезии с постоянством констант гомеостаза и более ранним пробуждением.

Конечно, чисто технически ингаляционная анестезия несколько сложнее, чем ТВА, так как требует возможно лучшего испа­рителя и, желательно, хорошего герметичного наркозно-дыхательного аппарата, позволяющего эффективно работать по полузакры­тому контуру. Все это повышает стоимость анестезиологического пособия.

В этой связи заслуживает внимания недавно предложенная методика низкопоточной анестезии. Она заключается в работе по полузакрытому контуру с минимальной подачей в него «свежей» газонаркотической смеси, до 3 л/мин и менее (менее 1 л/мин - Minimum Flow Anaesthesia). Естественно, что чем меньше поток газа через испаритель, тем меньше захват анестетика и, следова­тельно, - расход. Учитывая, что современные ингаляционные анестетики практически не метаболизируются и выводятся через легкие в неизменном виде (см. выше), они способны долго циркулировать в контуре пациента, поддерживая состояние анестезии. Используя данный метод, удается снизить расход ингаляционного анестетика в 3-4 раза, по сравнению с традиционной методикой.

ЗАКИСЬ АЗОТА

Закись азота - газ без цвета и запаха, поступает в сжатом виде, в баллонах.

Механизм действия считается общим для всех газовых анестетиков (см. предыдущий раздел).

Основным путем элиминации является выведение в неиз­менном виде с выдыхаемой смесью. Наличие биотрансформа­ции в организме не показано.

Закись азота вызывает дозазависимую аналгезию. При концен­трации во вдыхаемом газе свыше 60% возникает амнезия. Боль­шинство наркозных аппаратов не позволяет увеличивать FiN 2 O более 70% из-за опасности создания гипоксической смеси.

Закись азота обладает минимальным влиянием на сердечно­-сосудистую систему и систему дыхания.

Тем не менее в последние годы пересмотрено отношение к закиси азота как к «совершенно безопасному» анестетику. Это связано с обнаруженными фактами проявления кардиодепрессивного эффекта препарата, особенно у больных со скомпрометиро­ванной сердечно-сосудистой системой (Н. А. Трекова, 1994). Кро­ме того, показано, что N 2 O инактивирует метионин - сингетазу, В 12 -зависимый фермент, необходимый для синтеза ДНК, и, таким образом, должна с осторожностью использоваться во время бе­ременности и у пациентов с дефицитом витамина В 12 .

Davison J.K., Eckhardt III W.F., Perese D.A. Clinical Anesthesia Procedures of the Massachusetts General Hospital, 4-th Edition.-1993.- 711р.

Лихванцев В.В., Смирнова В.И., Ситников А.В., Субботин В.В., Смицкая О.И. Применение методики регистрации вызванных потен­циалов головного мозга для оценки эффективности обезболивания во время общей анестезии//Конф.: «Патофизиология и фармаколо­гия боли», 19-21 окт. 1993г.: Тез. докл.-С. 70.

Лихванцев В.В., Смирнова В.И., Ситников А.В., Субботин В.В. Сравнительная оценка эффективности различных вариантов общей анестезии при травматичных операциях на органах грудной и брюш­ной полости//Материалы IV Всероссийского съезда анестезиологов и реаниматологов.-М., 1994.-С. 196-197.

Трекова Н.А. Материалы IV Всероссийского съезда анестезио­логов и реаниматологов.-М., 1994.-С. 297.


ЭФИР (диэтил эфир)

Очень дешевый негалогенизированный анестетик, производственный цикл простой, поэтому может производиться в любой стране. Мортон в 1846 году продемонстрировал эффекты эфира и с тех пор этот препарат считается «первым анестетиком».

Физические свойства: низкая точка кипения (35С), высокое ДНП при 20С (425 mm Hg), коэффициент кровь/газ 12 (высокий), МАК 1,92% (низкая мощность). Стоимость от $10/л. Пары эфира крайне летучие и негорючи. В смеси с кислородом взрывоопасен. Имеет сильный характерный запах.

Преимущества: стимулирует дыхание и сердечный выброс, поддерживает артериальное давление и вызывает бронходилятацию. Это объясняется симпатомиметическим эффектом, связанным с выбросом адреналина. Является хорошим анестетиком благодаря выраженному анальгетическому эффекту. Не расслабляет матку как галотан, но обеспечивает хорошее расслабление мышц брюшной стенки. Безопасный препарат.

Недостатки: горюч в жидком состоянии, медленное начало действия, медленное восстановление, резко выраженная секреция (требуется атропин). Раздражает бронхи, поэтому из-за кашля затруднена масочная индукция в наркоз. Послеоперационные тошнота и рвота (ПОТР) в Африке встречаются сравнительно редко в отличие от европейских стран, где рвота у больных отмечается очень часто.

Показания: любая общая анестезия, особенно хорошо при кесаревом сечении (не угнетается плод, матка хорошо сокращается). Малые дозы являются жизнеспасительными в особо тяжелых случаях. Эфирный накроз показан при отсутствии снабжения кислородом.

Противопоказания: для эфира нет абсолютных противопоказаний.

Необходимо по возможности обеспечить активное выведение паров из операционной для предотвращения контакта между тяжелыми негорючими парами эфира и электрокоагулятором или другими электрическими аппаратами, что может вызвать взрыв, и предотвращения контакта персонала операционной с выдыхаемым анестетиком.

Практические рекомендации: прежде, чем дать большую концентрацию анестетика, лучше больного заинтубировать. После введения атропина, тиопентала, суксаметония и интубации больного проводится искусственная вентиляция легких с 15-20% эфира, а затем по потребностям больного через 5 минут доза может быть уменьшена до 6-8%. Помните, что производительность испарителя может меняться. Пациенты с высоким риском, в частности, септические или шоковые могут требовать только 2%. Отключайте испаритель до конца операции, чтобы предотвратить длительный выход из анестезии. Со временем вы научитесь будить пациентов так, чтобы они сами уходили с операционного стола. Если вам предстоит анестезия у крепкого и молодого человека по поводу паховой грыжи, поберегите себя и сделайте лучше спинальную анестезию.

В большинстве случаев, где выгодна эфирная анестезия (лапаротомия, кесарево сечение), диатермия не требуется. Там же, где диатермия обязательна (педиатрическая хирургия), лучше использовать галотан.

Закись азота

Физические свойства : закись азота (N 2 O, "веселящий газ") - единствен­ное неорганическое соединение из применяющихся в клинический практике ингаляционных анестетиков. Закись азота бесцветна, фактически не имеет запаха, не воспламеняется и не взрывается, но поддерживает горение подобно кислороду.

Влияние на организм

А. Сердечно-сосудистая система. Закись азота стимулирует симпатическую нервную систему, что и объясняет ее влияние на кровообращение. Хотя in vitroанестетик вызывает депрессию миокарда, на практике артериальное давление, сердечный выброс и ЧСС не изменяются или немного увеличиваются вследствие повышения концентрации катехоламинов. Депрессия миокарда может иметь клиническое значение при ИБС и гиповолемии: возникающая артериальная гипотония повышает риск развития ишемии миокарда. Закись азота вызывает сужение легочной артерии, что увеличивает легочное сосудистое сопротивление (ЛСС) и приводит к повышению давления в правом предсердии. Несмотря на сужение сосудов кожи, общее периферическое сосудистое сопротивление (ОПСС) изменяется незначительно. Так как закись азота повышает концентрацию эндогенных катехоламинов, ее использование увеличивает риск возникновения аритмий.

Б. Система дыхания. Закись азота увеличивает частоту дыхания (т. е. вызывает тахипноэ) и снижает дыхательный объем в результате стимуляции ЦНС и, возможно, активации легочных рецепторов растяжения. Суммарный эффект - незначительное изменение минутного объема дыхания и РаСО 2 в покое. Гипоксический драйв, т. е. увеличение вентиляции в ответ на артериальную гипоксемию, опосредованное периферическими хеморецепторами в каротидных тельцах, значительно угнетается при использовании закиси азота даже в невысокой концентрации.

В. Центральная нервная система. Закись азота увеличивает мозговой кровоток, вызывая некоторое повышение внутричерепного давления. Закись азота также увеличивает потребление кислорода головным мозгом (CMRO 2). Закись азота в концентрации, меньшей 1 МАК, обеспечивает адекватное обезболивание в стоматологии и при выполнении малых хирургических вмешательств.

Г. Нервно-мышечная проводимость. В отличие от других ингаляционных анестетиков закись азота не вызывает заметной миорелаксации. Наоборот, в высокой концентрации (при использовании в гипербарических камерах) она вызывает ригидность скелетной мускулатуры.

Д. Почки. Закись азота уменьшает почечный кровоток вследствие повышения почечного сосудистого сопротивления. Это снижает скорость клубочковой фильтрации и диурез.

Е. Печень. Закись азота снижает кровоток в печени, но в меньшей степени, чем другие ингаляционные анестетики.

Ж. Желудочно-кишечный тракт. В некоторых работах доказано, что закись азота вызывает тошноту и рвоту в послеоперационном периоде в результате активации хеморецепторной триггерной зоны и рвотного центра в продолговатом мозге. В исследованиях других ученых, наоборот, не обнаружено никакой связи между закисью азота и рвотой.

Биотрансформация и токсичность

Во время пробуждения практически вся закись азота удаляется через легкие. Небольшое количество диффундирует через кожу. Менее 0,01 % поступившего в организм анестетика подвергается биотрансформации, которая происходит в ЖКТ и состоит в восстановлении вещества под действием анаэробных бактерий.

Необратимо окисляя атом кобальта в витамине В 12 , закись азота ингибирует активность В-зависимых ферментов. К этим ферментам относятся метионинсинтетаза, необходимая для образования миелина, и тимидилатсинтетаза, участвующая в синтезе ДНК. Длительная экспозиция к анестетическим концентрациям закиси азота вызывает депрессию костного мозга (мегалобластную анемию) и даже неврологический дефицит (периферическую нейропатию и фуникулярный миелоз).Во избежание тератогенного эффекта закись азота не применяют у беременных. Закись азота ослабляет иммунологическую резистентность организма к инфекциям, угнетая хемотаксис и подвижность полиморфно-ядерных лейкоцитов.

Противопоказания

Хотя закись азота считается слаборастворимой по сравнению с другими ингаляционными анестетиками, ее растворимость в крови в 35 раз выше, чем у азота. Таким образом, закись азота диффундиру­ет в воздухсодержащие полости быстрее, чем азот поступает в кровоток. Если стенки воздухсодержащей полости ригидны, то возрастает не объем, а внутриполостное давление. К состояниям, при которых опасно применять закись азота, относят воздушную эмболию, пневмоторакс, острую кишечную непроходимость, пневмоцефалию (после ушивания твердой мозговой оболочки по завершении нейрохирургической операции или после пневмоэнцефалографии), воздушные легочные кисты, внутриглазные пузырьки воздуха и пластические операции на барабанной перепонке. Закись азота может диффундировать в манжетку эндотрахеальной трубки, вызывая сдавление и ишемию слизистой оболочки трахеи. Так как закись азота повышает ЛСС, ее использование противопоказано при легочной гипертензии. Очевидно, что применение закиси азота ограничено при необходимости создания высокой фракционной концентрации кислорода во вдыхаемой смеси.