Основы теории функциональной системы анохина. Теория функциональных систем П.К

Теория функциональной системы П.К.(Анохин). Функциональная система поведения.

Теория функциональной системы Петра Кузьмича Анохина разрабатывалась на протяжении второй половины XX века. Она возникла как закономерный этап развития рефлекторной теории.

Теория функциональных систем описывает организацию процессов жизнедеятельности в целостном организме, взаимодействующем со средой.

Эта теория была разработана при изучении механизмов компенсации нарушенных функций организма. Как было показано П.К.Анохиным, компенсация мобилизует значительное число различных физиологических компонентов – центральных и периферических образований, функционально объединенных между собой для получения полезного, приспособительного эффекта, необходимого живому организму в данный конкретный момент времени. Такое широкое функциональное объединение различно локализованных структур и процессов для получения конечного приспособительного результата было названо “функциональной системой”. Функциональная система (ФС) – единица интегративной деятельности целого организма, включающая элементы различной анатомической принадлежности, активно взаимодействующие между собой и с внешней средой в направлении достижения полезного, приспособительного результата.

Приспособительный результат – определенное соотношение организма и внешней среды, которое прекращает действие, направленное на его достижение, и делает возможным реализацию следующего поведенческого акта. Достичь результата – значит изменить соотношение между организмом и средой в полезном для организма направлении.

Главным постулатом рефлекторной теории явился постулат о ведущем значении стимула, вызывающего через возбуждение соответствующей рефлекторной дуги рефлекторное действие. Наивысший расцвет рефлекторной теории – учение И.П. Павлова о высшей нервной деятельности. Однако в рамках рефлекторной теории трудно судить о механизмах целенаправленной деятельности организма, о поведении животных. И.П. Павлов успел ввести принцип системности в представления о регуляции функций нервной системой. Его ученик П.К.Анохин, а затем ученик П.К.Анохина академик Константин Викторович Судаков разработали современную теорию функциональной системы.

Изложение основных положений теории дается по К.В.Судакову.

1.Определяющим моментом деятельности различных функциональных систем, обеспечивающих гомеостазис и различные формы поведения животных и человека является не само действие (и тем более не стимул к этому действию – раздражитель), а полезный для системы и всего организма в целом результат этого действия.

2.Инициативная роль в формировании целенаправленного поведения принадлежит исходным потребностям, организующим специальные функциональные системы, включающие механизмы мотивациии на их основе мобилизующие генетически детерминированные или индивидуально приобретенные программы поведения.

3.Каждая функциональная система строится по принципу саморегуляции, в соответствии с которым всякое отключение результата деятельности функциональной системы от уровня, обеспечивающего нормальный метаболизм, само (отклонение) является стимулом к мобилизации соответствующих системных механизмов, направленных на достижение результата, удовлетворяющего соответствующие потребности.

4.Функциональные системы избирательно объединяют различные органы и ткани для обеспечения результативной деятельности организма.

5.В функциональных системах осуществляется постоянная оценка результата деятельности с помощью обратной афферентации.

6.Архитектоника функциональной системы гораздо сложнее, чем рефлекторная дуга. Рефлекторная дуга – только часть функциональной системы.

7.В центральной структуре функциональных систем наряду с линейным принципом распространения возбуждения складывается специальная интеграция опережающих возбуждений, программирующих свойства конечного результата деятельности.

По П.К.Анохину системой можно назвать только такой комплекс избирательно вовлеченных в нее компонентов, у которых взаимодействие и взаимоотношения принимают характер взаимо содействия компонентов, нацеленного на получение фокусированного полезного результата. Результат является неотъемлимым и решающим компонентом системы, инструментом, создающим упорядоченное содействие между всеми компонентами.

С точки зрения академика Анохина функциональные системы (пищеварения, выделения, кровообращения) – это динамические саморегулирующиеся организации всех составляющих элементов, деятельность которых подчинена получению жизненно важных для организма приспособительных результатов.

Условно К.В.Судаков выделяет три группы приспособительных результатов.

Ведущие показатели внутренней среды, определяющие нормальный метаболизм тканей (сохранение констант внутренней среды, гомеостазис);

Результаты поведенческой деятельности, удовлетворяющие основные биологические потребности (взаимодействие особи со средой обитания, поиск пищи);

Результаты стадной деятельности животных, удовлетворяющие потребности сообщества (сохранение вида);

Для человека характерна и четвертая группа результатов:

Результаты социальной деятельности человека, удовлетворяющие его социальные потребности, обусловленные его положением в определенной общественно-экономической формации.

Поскольку в целом организме существует множество полезных приспособительных результатов, обеспечивающих различные стороны его обмена веществ, организм существует благодаря совокупной деятельности многих функциональных систем. Существует понятие об иерархии функциональных систем, из-за существовании иерархии результатов.

Наиболее совершенная модель структуры поведения изложена в концепции функциональных систем Петра Кузьмича Анохина (1898-1974).

Изучая физиологическую структуру поведенческого акта, П.К. Анохин пришел к выводу о необходимости различать частные механизмы интеграции, когда эти частные механизмы вступают между собой в сложное координированное взаимодействие. Они объединяются, интегрируются в систему более высокого порядка, в целостную архитектуру приспособительного, поведенческого акта. Этот принцип интегрирования частных механизмов был им назван принципом «функциональной системы ».

Определяя функциональную систему как динамическую, саморегулирующуюся организацию, избирательно объединяющую структуры и процессы на основе нервных и гуморальных механизмов регуляции для достижения полезных системе и организму в целом приспособительных результатов, П.К. Анохин распространил содержание этого понятия на структуру любого целенаправленного поведения. С этих позиций может быть рассмотрена и структура отдельного двигательного акта.

Функциональная система имеет разветвленный морфофизиологический аппарат, обеспечивающий за счет присущих ей закономерностей как эффект гомеостаза, так и саморегуляции. Выделяют два типа функциональных систем. 1. Функциональные системы первого типа обеспечивают постоянство определенных констант внутренней среды за счет системы саморегуляции, звенья которой не выходят за пределы самого организма. Примером может служить функциональная система поддержания постоянства кровяного давления, температуры тела и т.п. Такая система с помощью разнообразных механизмов автоматически компенсирует возникающие сдвиги во внутренней среде. 2. Функциональные системы второго типа используют внешнее звено саморегуляции. Они обеспечивают приспособительный эффект благодаря выходу за пределы организма через связь с внешним миром, через изменения поведения. Именно функциональные системы второго типа лежат в основе различных поведенческих актов, различных типов поведения.

Центральная архитектоника функциональных систем , определяющих целенаправленные поведенческие акты различной степени сложности, складывается из следующих последовательно сменяющих друг друга стадий: -> афферентный синтез, -> принятие решения, -> акцептор результатов действия, -> эфферентный синтез, -> формирование действия, и, наконец, -> оценка достигнутого результата/

АФФЕРЕНТНЫЙ (от лат. afferens - приносящий), несущий к органу или в него (напр., афферентная артерия); передающий импульсы от рабочих органов (желез, мышц) к нервному центру (афферентные, или центростремительные, нервные волокна). ЭФФЕРЕНТНЫЙ (от лат. efferens - выносящий), выносящий, выводящий, передающий импульсы от нервных центров к рабочим органам, напр. эфферентные, или центробежные, нервные волокна. АКЦЕПТОР (от лат. acceptor - принимающий).

Поведенческий акт любой степени сложности начинается со стадии афферентного синтеза. Возбуждение, вызванное внешним стимулом, действует не изолированно. Оно непременно вступает во взаимодействие с другими афферентными возбуждениями, имеющими иной функциональный смысл. Головной мозг непрерывно обрабатывает все сигналы, поступающие по многочисленным сенсорным каналам. И только в результате синтеза этих афферентных возбуждений создаются условия для реализации определенного целенаправленного поведения. Содержание афферентного синтеза определяется влиянием нескольких факторов: мотивационного возбуждения, памяти, обстановочной и пусковой афферентации.

Мотивационное возбуждение появляется в центральной нервной системе в следствии той или другой витальной, социальной или идеальной потребности. Специфика мотивационного возбуждения определяется особенностями, типом вызвавшей его потребности. Оно – необходимый компонент любого поведения. Важность мотивационного возбуждения для афферентного синтеза вытекает уже из того, что условный сигнал теряет способность вызывать ранее выработанное пищедобывательное поведение (например, побежку собаки к кормушке для получения пищи), если животное уже хорошо накормлено и, следовательно, у него отсутствует мотивационное пищевое возбуждение.

Роль мотивационного возбуждения в формировании афферентного синтеза определяется тем, что любая поступающая информация соотносится с доминирующим в данный момент мотивационным возбуждением, которое действует как фильтр, отбирающий наиболее нужное для данной мотивационной установки. Доминирующая мотивация как первичный системообразующий фактор определяет все последующие этапы мозговой деятельности по формированию поведенческих программ. Специфика мотиваций определяет характер и «химический статус» внутрицентральной интеграции и набор вовлекаемых мозговых аппаратов. В качестве полезного результата определенного поведенческого акта выступает удовлетворение потребности, т.е. снижение уровня мотивации.

Нейрофизиологической основой мотивационного возбуждения является избирательная активация различных нервных структур, создаваемая прежде всего лимбической и ретикулярной системами мозга. На уровне коры мотивационное возбуждение представлено специфическим паттерном возбуждения.

Условные и безусловные раздражители, ключевые стимулы (вид ястреба – хищника для птиц, вызывающего поведение бегства, и др.) служат толчком к развертыванию определенного поведения или отдельного поведенческого акта. Этим стимулам присуща пусковая функция. Картина возбуждения, создаваемая биологически значимыми стимулами в сенсорных системах, и есть пусковая афферентация. Однако способность пусковых стимулов инициировать поведение не является абсолютной. Она зависит от той обстановки и условий, в которых они действуют.

Влияние обстановочной афферентации на условный рефлекс наиболее отчетливо выступило при изучении явления динамического стереотипа. В этих опытах животное тренировали для выполнения в определенном порядке серии различных условных рефлексов. После длительной тренировки оказалось, что любой случайный условный раздражитель может воспроизвести все специфические эффекты, характерные для каждого раздражителя в системе двигательного стереотипа. Для этого лишь необходимо, чтобы он следовал в заученной временной последовательности. Таким образом, решающее значение при вызове условных рефлексов в системе динамического стереотипа приобретает порядок их выполнения. Следовательно, обстановочная афферентация включает не только возбуждение от стационарной обстановки, но и ту последовательность афферентных возбуждений, которая ассоциируется с этой обстановкой. Обстановочная афферентация создает скрытое возбуждение, которое может быть выявлено, как только подействует пусковой раздражитель. Физиологический смысл пусковой афферентации состоит в том, что, выявляя скрытое возбуждение, создаваемое обстановочной афферентацией, она приурочивает его к определенным моментам времени, наиболее целесообразным с точки зрения самого поведения.

Решающее влияние обстановочной афферентации на условнорефлекторный ответ было показано в опытах И.И. Лаптева – сотрудника П.К. Анохина. В его экспериментах звонок утром подкреплялся едой, и тот же звонок вечером сопровождался ударом электрического тока. В результате было выработано два разных условных рефлекса: утром – слюноотделительная реакция, вечером - оборонительный рефлекс. Животное научилось дифференцировать два комплекса раздражителей, различающихся только временным компонентом.

Афферентный синтез включает также использование аппарата памяти. Очевидно, что функциональная роль пусковых и обстановочных раздражений в известной мере уже обусловлена прошлым опытом животного. Это и видовая память, и индивидуальная, приобретенная в результате обучения. На стадии афферентного синтеза из памяти извлекаются и используются именно те фрагменты прошлого опыта, которые полезны, нужны для будущего поведения.

Таким образом, на основе взаимодействия мотивационного, обстановочного возбуждения и механизмов памяти формируется так называемая интеграция или готовность к определенному поведению. Но, чтобы она трансформировалась в целенаправленное поведение, необходимо воздействие со стороны пусковых раздражителей. Пусковая афферентация – последний компонент афферентного синтеза.

Процессы афферентного синтеза, охватывающие мотивационное возбуждение, пусковую и обстановочную афферентацию, аппарат памяти, реализуются с помощью специального модуляционного механизма, обеспечивающего необходимый для этого тонус коры больших полушарий и других структур мозга. Этот механизм регулирует и распределяет активирующие и инактивирующие влияния, исходящие из лимбической и ретикулярной систем мозга. Поведенческим выражением роста уровня активации в центральной нервной системе, создаваемым этим механизмом, является появление ориентировочно-исследовательских реакций и поисковой активности животного.

Завершение стадии афферентного синтеза сопровождается переходом в стадию принятия решения, которая и определяет тип и направленность поведения. Стадия принятия решения реализуется через специальную и очень важную стадию поведенческого акта – формирование аппарата акцептора результатов действия. Это аппарат, программирующий результаты будущих событий. В нем актуализирована врожденная и индивидуальная память животного и человека в отношении свойств внешних объектов, способных удовлетворить возникшую потребность, а также способов действия, направленных на достижение или избегание целевого объекта. Нередко в этом аппарате запрограммирован весь путь поиска во внешней среде соответствующих раздражителей.

Предполагается, что акцептор результатов действия представлен сетью вставочных нейронов, охваченных кольцевым взаимодействием. Возбуждение, попав в эту сеть, длительное время продолжает в ней циркулировать. Благодаря этому механизму и достигается продолжительное удержание цели как основного регулятора поведения.

До того как целенаправленное поведение начнет осуществляться, развивается еще одна стадия поведенческого акта – стадия программы действия или эфферентного синтеза . На этой стадии осуществляется интеграция соматических и вегетативных возбуждений в целостный поведенческий акт. Эта стадия характеризуется тем, что действие уже сформировано, но внешне оно еще не реализуется.

Следующая стадия – это само выполнение программы поведения . Эфферентное возбуждение достигает исполнительных механизмов, и действие осуществляется.

Благодаря аппарату акцептора результатов действия, в котором программируется цель и способы поведения, организм имеет возможность сравнивать их с поступающей афферентной информацией о результатах и параметрах совершаемого действия, т.е. с обратной афферентацией. Именно результаты сравнения определяют последующее построение поведения, либо оно корректируется, либо оно прекращается как в случае достижения конечного результата.

Следовательно, если сигнализация о совершенном действии полностью соответствует заготовленной информации, содержащейся в акцепторе действия, то поисковое поведение завершается. Соответствующая потребность удовлетворяется. И животное успокаивается. В случае, когда результаты действия не совпадают с акцептором действия и возникает их рассогласование, появляется ориентировочно-исследовательская деятельность. В результате этого заново перестраивается афферентный синтез, принимается новое решение, создается новый акцептор результатов действия и строится новая программа действий. Это происходит до тех пор, пока результаты поведения не станут соответствовать свойствам нового акцептора действия. И тогда поведенческий акт завершается последней санкционирующей стадией – удовлетворением потребности.

Таким образом, в концепции функциональной системы наиболее важным ключевым этапом, определяющим развитие поведения, является выделение цели поведения . Она представлена аппаратом акцептора результатов действия, который содержит два типа образов, регулирующих поведение, - сами цели и способы их достижения. Выделение цели связывается с операцией принятия решения как заключительного этапа афферентного синтеза.

Множество исследований в области искусственного интеллекта сталкиваются с проблемой отсутствия на сегодняшний момент какой-либо мощной теории сознания и мозговой активности. Фактически мы обладаем достаточно скудными знаниями о том каким образом мозг обучается и достигает адаптивного результата. Однако, на данный момент происходит заметное увеличение взаимовлияния области искусственного интеллекта и нейробиологии. По результатам математического моделирования мозговой активности ставятся новые цели для экспериментов в области нейробиологии и психофизиологии, а экспериментальные данные биологов в свою очередь во многом влияют на вектор развития ИИ.

Исходя из вышесказанного становится ясно, что для будущего успешного развития бионического ИИ необходимо плотное сотрудничество математиков и нейробиологов, которое в итоге будет плодотворным для обеих областей. Для этого в частности необходимо изучение современных успехов теоретической нейробиологии.

На данный момент существуют три наиболее проработанных и отчасти экспериментально проверенных теории строения сознания в области теоретической нейробиологии: теория функциональных систем П.К. Анохина, теория селекции нейрональных групп (нейродарвинизм) Джеральда Эдельмана и теория глобальных информационных пространств Жана-Пьера Шанже (изначально сформулирована Бернардом Баарсом). Остальные теории либо являются модификациями названных, либо не подтверждены никакими экспериментальными данными. В данной статье речь пойдет о первой из этих теорий - Теории функциональных систем П.К. Анохина .

Парадигмы реактивности и активности

В первую очередь необходимо сказать о том, что при всем многообразии теорий и подходов, используемых в психологии, психофизиологии и нейронауках, их можно условно разделить на две группы. В первой группе в качестве основного методологического принципа, определяющего подход к исследованию закономерностей мозговой организации поведения и деятельности, рассматривается реактивность, во второй - активность (рис. 1).

Рис. 1. Две парадигмы нейрофизиологии - реактивность и активность

В соответствии с парадигмой реактивности за стимулом следует реакция – поведенческая у индивида, импульсная у нейрона. В последнем случае в качестве стимула рассматривается импульсация пресинаптического нейрона.

В соответствии с парадигмой активности действие завершается достижением результата и его оценкой. В схему включается модель будущего результата: для человека, например, контакт с объектом-целью .

Согласно реактивностному подходу, агент не должен проявлять активность в отсутствии стимулов. Напротив, при использовании парадигмы активности мы можем допустить случай, когда агенту не поступило никакого стимула из внешней среды, однако, согласно ожиданиям агента он должен был поступить. В этом случае агент будет действовать и обучаться для устранения рассогласования, чего не может бы быть в случае простейшего безусловного ответа агента на стимул из внешней среды.

Теория функциональных систем

В теории функциональных систем в качестве детерминанты поведения рассматривается не прошлое по отношению к поведению событие - стимул, а будущее – результат . Функциональная система есть динамически складывающаяся широкая распределенная система из разнородных физиологических образований, все части которой содействуют получению определенного полезного результата . Именно опережающее значение результата и модель будущего, создаваемая мозгом, позволяет говорить не о реакции на стимулы из внешней среды, а о полноценном целеполагании.


Рис. 2. Общая архитектура функциональной системы
(ОА – обстановочная афферентация, ПА – пусковая афферентация)

Архитектура функциональной системы приведена на рис. 2. На схеме представлена последовательность действий при реализации одной функциональной системы. Вначале происходит афферентный синтез, который аккумулирует сигналы из внешней среды, память и мотивацию субъекта. На основе афферентного синтеза принимается решение, на основе которого формируется программа действий и акцептор результата действия – прогноз результативности совершаемого действия. После чего непосредственно совершается действие и снимаются физические параметры результата. Одной из самых важных частей данной архитектуры является обратная афферентация – обратная связь, которая позволяет судить об успешности того или много действия. Это непосредственно позволяет субъекту обучаться, так как сравнивая физические параметры полученного результата и предсказанного результата, можно оценивать результативность целенаправленного поведения. Причем небходимо отметить, что на выбор того или иного действия влияет очень много факторов, совокупность которых обрабатывается в процессе афферентного синтеза.

Такие функциональные системы вырабатываются в процессе эволюции и обучения в течение жизни . Если обобщать, то вся цель эволюции – это выработка функциональных систем, которые будут давать наилучший приспособительный эффект. Функциональные системы, вырабатываемые эволюцией, развиваются еще до рождения, когда нету прямого соприкосновения со средой, и обеспечивают первичный репертуар. Именно этот факт указывает на эволюционную природу этих явлений. Такие процессы получили общее название – первичный системогенез .

Системно-эволюционная теория, разработанная Швырковым В.Б. на основе теории функциональных систем, отвергала даже понятие «пускового стимула» и рассматривала поведенческий акт не изолировано, а как компоненту поведенческого континуума: последовательности поведенческих актов, совершаемых индивидом на протяжении его жизни (рис. 3) . Следующий акт в континууме реализуется после достижения и оценки результата предыдущего акта. Такая оценка – необходимая часть процессов организации следующего акта, которые, таким образом, могут быть рассмотрены как трансформационные или процессы перехода от одного акта к другому .


Рис. 3. Поведенчески-временной континуум

Из всего вышесказанного следует, что индивид, и даже отдельный нейрон, должны обладать способностью вырабатывать образ результата действия и возможностью оценивать результативность своего поведения. При выполнении этих условий поведение можно с уверенностью называть целенаправленным.

Однако, процессы системогенеза происходят в мозге не только в развитии (первичный системогенез), но и в течение жизни субъекта. Системогенез – это образование новых систем в процессе обучения. В рамках системно-селекционной концепции научения - формирование новой системы - рассматривается как формирование нового элемента индивидуального опыта в процессе научения. В основе формирования новых функциональных систем при научении лежит селекция нейронов из «резерва» (предположительно низко активных или «молчащих» клеток). Эти нейроны могут быть обозначены как преспециализированные клетки .

Селекция нейронов зависит от их индивидуальных свойств, т.е. от особенностей их метаболических «потребностей». Отобранные клетки становятся специализированными относительно вновь формируемой системы – системно-специализированными. Эта специализация нейронов относительно вновь формируемых систем постоянна. Таким образом, новая система оказывается «добавкой» к ранее сформированным, «наслаиваясь» на них. Этот процесс называется вторичным системогенезом .

Следующие положения системно-эволюционной теории:
о наличии в мозге животных разных видов большого числа «молчащих» клеток;
об увеличении количества активных клеток при обучении;
о том, что вновь сформированные специализации нейронов остаются постоянными
что при научении происходит скорее вовлечение новых нейронов, чем переобучение старых,
согласуются с данными, полученными в работах ряда лабораторий .

Отдельно хотелось бы отметить, что согласно современным представлениям психофизиологии и системно-эволюционной теории количество и состав функциональных систем индивида определяется как процессами эволюционной адаптации, которые отражаются в геноме, так и индивидуальным прижизненным обучением.

Теория функциональных систем успешно исследуется путем имитационного моделирования и на ее основе строятся различные модели управления адаптивным поведением .

Вместо заключения

Теория функциональных систем в свое время первой ввела понятие целенаправленности поведения за счет сравнения предсказания результата с фактическими его параметрами, а также обучение как способ устранения рассогласования организма со средой. Многие положения данной теории уже сейчас нуждаются в существенном пересмотре и адаптации с учетом новых экспериментальных данных. Однако на сегодняшний момент данная теория входит в число наиболее проработанных и биологически адекватных.

Хотелось бы еще раз отметить, что с моей точки зрения дальнейшее развития области ИИ невозможно без тесного сотрудничества с нейробиологами, без построения новых моделей на основе мощных теорий.

Список литературы

. Александров Ю.И. «Введение в системную психофизиологию». // Психология XXI века. М.: Пер Се, стр. 39-85 (2003).
. Александров Ю.И., Анохин К.В. и др. Нейрон. Обработка сигналов. Пластичность. Моделирование: Фундаментальное руководство. Тюмень: Издательство Тюменского Государственного Университета (2008).
. Анохин П.К. Очерки по физиологии функциональных систем. М.: Медицина (1975).
. Анохин П.К. «Идеи и факты в разработке теории функциональных систем». // Психологический журнал. Т.5, стр. 107-118 (1984).
. Анохин П.К. «Системогенез как общая закономерность эволюционного процесса». // Бюллетень экпериментальной биологии и медицины. № 8, т. 26 (1948).
. Швырков В.Б. Введение в объективную психологию. Нейрональные основы психики. М.: Институт психологии РАН (1995).
. Александров Ю.И. Психофизиология: Учебник для вузов. 2-е изд. Спб.: Питер (2003).
. Александров Ю.И. «Научение и память: системная перспектива». // Вторые симоновские чтения. М.: Изд. РАН, стр. 3-51 (2004).
. Теория системогенеза. Под. ред. К.В.Судакова. М.: Горизонт (1997).
. Jog M.S., Kubota K, Connolly C.I., Hillegaart V., Graybiel A.M. «Bulding neural representations of habits». // Science. Vol. 286, pp. 1745-1749 (1999).
. Red"ko V.G., Anokhin K.V., Burtsev M.S., Manolov A.I., Mosalov O.P., Nepomnyashchikh V.A., Prokhorov D.V. «Project «Animat Brain»: Designing the Animat Control System on the Basis of the Functional Systems Theory» // Anticipatory Behavior in Adaptive Learning Systems. LNAI 4520, pp. 94-107 (2007).
. Red"ko V.G., Prokhorov D.V., Burtsev M.S. «Theory of Functional Systems, Adaptive Critics and Neural Networks» // Proceedings of IJCNN 2004. Pp. 1787-1792 (2004).

Функциональная система П.К. Анохина - это схематичная модель основных блоков мозга, обеспечивающих целенаправленное поведение, т.е. поведение, направленное на достижение определённой цели. Она отражает более сложный нервный механизм, обеспечивающий поведение, по сравнению с рефлекторными дугами.

Функциональная система П.К. Анохина

Для того чтобы легче было запомнить эту схему, я её несколько модифицировал по сравнению с той схемой, которая даётся в учебниках по физиологии.

Итак, запоминаем функциональную систему П.К. Анохина:

  • три входа
  • три блока
  • три этажа в каждом блоки
  • три явления на выходе
  • три нововведения (АРД, обратная афферентация, параметры результата).

Внутренняя афферентация

Потребность, т.е. недостаток чего-то в организме, порождает внутреннюю афферентацию.

Внутренняя афферентация - это сенсорный (афферентный) поток импульсов от интерорецепторов, расположенных во внутренних органах, мышцах, кровеносных сосудах. Интерорецепторы (или интероцепторы) реагируют на изменения во внутренней среде организма.

В блоке мотивации во главе с миндалиной мозга из множества текущих потребностей выбирается только одна наиболее биологически значимая потребность. На её основе формируется поток мотивационного возбуждения.

Добавим к схеме П.К. Анохина представления Ю. Конорского о драйв-рефлексах. Тогда получится, что поток мотивационного возбуждения передается в систему драйв-рефлексов. Драйв - это подготовительное поведение для повышения вероятности исполнительного рефлекса.
В результате драйва организм оказывается в таком месте, или создаёт такую ситуацию, где повышена вероятность нахождения пускового раздражителя и реализации исполнительного поведения, которое даёт желаемый результат и удовлетворяет потребность.

Акцептор результата действия (АРД) = планировщик, активатор, компаратор (сравнитель) и завершатель.

  • Планирует ожидаемый результат, точнее - его воспринимаемые параметры.
  • Активирует программу действий для достижения этого результата.
  • Сравнивает полученные параметры с ожидаемыми.
  • Завершает деятельность функциональной системы при совпадении полученных параметров результата с ожидаемыми.

» Функциональная система Анохина

© В.А. Роменець, И.П. Маноха

Теория функциональных систем П.К. Анохина (1898-1974)

Идею функционализма (как единства интегративной активности мозга и организма) П.К. Анохин предложил в 1939 году. Она касалась основоположных проблем физиологии, психологии и кибернетики.

Принципы выдвинутой Анохиным теории функциональных систем были изложены следующим образом: можно констатировать наличие системоорганизующего фактора, определяющего образование кооперативных отношений между компонентами системы, которые содержат функционально полезный результат.

Такая кооперация становится возможной, если система перманентно выбирает «степени свободы» каждого системного компонента (речь может идти, например, о синаптической формации нейрона). Таким образом, обратная афферентация в результате производит реорганизованный эффект кооперативных отношений между системой компонентов, определенный специфический ключ механизмов (внутренняя архитектоника) не может построить для исследователя концептуальный мост от уровня интеграции до уровня тончайших механизмов мозговой систематической активности с молекулярным уровнем включительно.

Эти основополагающие механизмы функциональной системы обеспечивают непрерывную самоорганизацию и пластичную адаптацию в отношении к изменениям внешней среды. Были определены ключевые механизмы функциональной системы:

  • афферентный синтез
  • принятие решения;
  • акцептор результатов действия;
  • программа действия,
  • результат действия;
  • обратная афферентация, которая содержит все параметры результата;
  • сравнение реальных результатов с теми, которые предвиделись заранее в акцепторе результатов действия.

Теория Анохина дает нам возможность изучать и оценивать сложные процессы в жизнедеятельности всего организма.

Таким образом, функциональная система состоит из определенного количества узловых механизмов, каждый из которых занимает свое место и имеет определенное специфическое назначение. Первый из них - афферентный синтез , в котором выделяют четыре обязательных компонента: доминирующую мотивацию, ситуационную и пусковую афферентацию, а также память. Взаимодействие этих компонентов приводит к процессу принятия решения.

Любое целенаправленное действие животного или человека происходит лишь при наличии соответствующей мотивации, формируется на основе потребности (физиологической, социальной и т.д.). Если нет такой мотивации, поведение не реализуется. Поэтому у сытого животного невозможно выработать пищеварительный условный рефлекс, поскольку нет мотивации голода. Соответственно, для формирования целенаправленного поведения необходима соответствующая актуализация (возбуждение) определенных нервных центров с одновременным подавлением других центров. То есть мотивация действия или поведения должна быть доминирующей.

Поведенческий акт в зависимости от окружающих условий может осуществляться по-разному, то есть ситуационная афферентация определяет характер действия.

Третий компонент афферентного синтеза - пусковая афферентация, то есть возбуждение, которое непосредственно вызывает поведенческую реакцию. Внешнее проявление условного рефлекса начинает разворачиваться только в момент включения соответствующего сигнала, выполняет роль пускового стимула. Именно поэтому возбуждение, возникающее при воздействии такого конкретного раздражителя, называется пусковой афферентацией .

Четвертым компонентом афферентного синтеза является память, то есть прошлый опыт человека или животного. Достичь одной и той же цели можно различными способами, поэтому память подсказывает характер реакции либо необходимую линию поведения индивида.

Но перед тем как будет принято решение, должна осуществиться обработка всех четырех компонентов афферентного синтеза, то есть их сравнение, взаимодействие. В основе афферентного синтеза лежит явление конвергенции (взаимодействия) возбуждений разной модальности на полимодальных нейронах мозга, которые способны отвечать возбуждением на несколько раздражителей, причем не только сенсорных (звуковых, зрительных, тактильных и др), но и биологически (и не только!) значимых (пищеварительных, болевых и т.д.).

Эти нейродинамические процессы обуславливают дифференцирование и оценку возможных результатов деятельности определенной функциональной системы до того, как будет принято решение о получении вполне определенного результата, то есть результата, который наиболее соответствует данной доминирующей мотивации в данной обстановке (ситуации).

Как утверждает Анохин, все эти разномодальные возбуждения происходят на одном нейроне, где и проходит обработка информации, то есть конвергенция возбуждений на нейроне является универсальным рабочим фактором его интегративной деятельности. В этом нейроне происходит сложная переработка и перекодирование информационной значимости всех многочисленных возмущений, поступивших в него, в одно-единственное аксонное возбуждение. Соответственно, это возбуждение, выходящее из нейрона, должно иметь очень сложное кодовое значение, то есть по своему информационному смыслу должно соответствовать интегративному состоянию целого нейрона.

Афферентный синтез и принятие решения предопределяют построение программы действий, то есть формируется специфический набор эфферентных импульсов, которые должны обеспечить периферийное действие, а затем и сообщение составляющих соответствующего результата, что является основной задачей поведенческого акта.

Одновременно с программой действий возникает еще один важный механизм функциональной системы - акцептор результата действия . Он представляет собой модель будущего результата действия, полученного в результате выполнения определенной поведенческой реакции, копию того эфферентного набора импульсов, который создан на основе принятого решения. Соответственно, одновременно с прохождением этого эфферентного образа импульсов к исполняющим органам копии должны формировать в мозгу модель (копию) будущего результата действия.

Если поведенческий акт выполнен неправильно или только частично, мозг получает эту информацию. От исполнительных органов к нему поступает обратная афферентация в виде разрядов афферентных импульсов, и эта обратная связь является необходимым компонентом любой функциональной системы.

Если параметры результата действия не отличаются от намеченных, то образец обратной афферентации совпадает с образцом акцептора результата действия, и действие завершается. Когда такого совпадения нет, возникает рассогласование акцептора результата действия с обратной афферентацией, что приводит к усилению ориентировочной реакции животного или человека, в результате чего снова запускается вся функциональная система и цикл повторяется до получения ожидаемых по программе результатов.

Теория опережающего отражения действительности - научный итог, осуществленный Анохиным с целью раскрытия характера жизненной активности организма. Внешние воздействия на организм (А, Б, В, Г, Д и т.д.), систематически повторяясь в течение определенного времени, вызывают в протоплазме живого существа определенный ряд химических реакций (а, б, в, г, д). Протоплазма получает возможность отражать в микроинтервалах времени своих химических реакций последовательность событий внешнего мира, которые по самой своей природе развертываются в макроинтервалах времени. Достаточно появления первого фактора (А), чтобы привести в активное состояние всю последовательность цепи химических реакций. Скорость химических реакций протоплазмы обеспечивает опережение организмом развертывания последовательных, многократно повторяющихся внешних воздействий. Это свойство Анохин расценивал как живой универсальный и единственно возможный путь приспособления организма к внешнему миру. Вся история животного мира показывает усовершенствование этой древнейшей закономерности, которую П.К. Анохин называет опережающим отражением действительности. Ряд воздействий среды приобретают при этом сигнальное значение, а цепи последовательных химических реакций, которые образовались на этой основе, предстают как временные связки.

Центральная нервная система рассматривается как субстрат высокой специализации, который развивался в виде аппарата максимального и скорейшего опережения последовательных и повторяющихся явлений внешнего мира. Безусловно то, что условный рефлекс в его сигнальной функции истолковывается как частный случай высокоспециализированных форм опережающего отражения действительности.

В целом теория функциональных систем является достаточно эффективной попыткой разносторонне и целостно представить поведенческий акт в совокупности физиологических механизмов, обеспечивающих поэтапное его развертывание от начального к конечному моменту.

Роменець В.А., Маноха И.П. История психологии XX века. - Киев, Лыбидь, 2003 .