Мониторинг показателей системной гемодинамики.

Контроль газового состава артериальной крови - это “золотой стандарт” интенсивной терапии, позволяющий точно оценивать состояние легочного газообмена, адекватность вентиляции и оксигенотерапии.

Артериальная кровь может быть получена различными способами, наиболее удобным является катетеризация периферических артерий. Для динамической оценки газообмена допустимо использование периодических пункций артерий или проведение анализа артериализированной капиллярной крови. Достоинства и недостатки различных способов контроля газов крови представлены в таблице 6.4.

Таблица 6.4. Способы инвазивного мониторинга газов крови
Методика Преимущества Недостатки
Катетеризация периферических артерий Периодические пункции артерий Артериализированная капиллярная кровь · Взятие крови не вызывает беспокойства больного · Возможность постоянного мониторинга АД · Возможность получения проб при отсутствии катетера · Легкость выполнения · Малая вероятность осложнений · Приемлемые результаты при оценке рН и рСО 2 · Катетеризация не удается у 25% маленьких детей · Катетер нельзя использовать для инфузионной терапии · Высокий риск осложнений · Болезненность процедуры · Высокий риск осложнений · Болезненность процедуры · Недостоверность при оценке рО 2 , особенно при плохой перфузии

Учитывая, что катетеризация периферических артерий, особенно у детей младшего возраста, является непростой и потенциально опасной манипуляцией, в повседневной работе врачи отделений интенсивной терапии обычно довольствуются данными анализа артериализированной капиллярной крови.

Показаниями к катетеризации артерий у детей возникают при необходимости использования гипероксических дыхательных смесей (FiO 2 > 0,8) свыше 6 - 12 часов, несмотря на проводимую интенсивную дыхательную терапию.

У детей чаще всего катетеризируют лучевую артерию. Перед катетеризацией необходимо удостовериться в адекватности коллатерального кровотока по локтевой артерии. Оптимальное положение для пункции достигают разгибанием и супинацией кисти. После пальпаторного уточнения места расположения лучевой артерии (латеральнее сухожилия поверхностного сгибателя кисти) кожу обрабатывают антисептическим раствором и производят пункцию под углом 30 о против направления кровотока. При появлении крови в павильоне иглы канюлю вводят в артерию, а иглу извлекают. После фиксации канюлю подключают к системе постоянного промывания гепаринизированным физиологическим раствором со скоростью 1,0-1,5 мл/час.

Контроль центрального венозного давления (ЦВД) проводят с помощью катетера введенного в подключичную или внутреннюю яремную вену, конец которого должен быть расположен у места впадения верхней полой вены в правое предсердие. Расположение катетера в сосудистом русле в обязательном порядке контролируется при рентгенографическом исследовании. ЦВД обычно измеряют с помощью градуированной трубки, подключенной к катетеру (аппарат Вальдмана). Величина ЦВД примерно соответствует давлению в правом предсердии и поэтому позволяет судить о конечно-диастолическом объеме (преднагрузке) правого желудочка. В наибольшей степени ЦВД зависит от объема циркулирующей крови и сократительной способности правых отделов сердца. Поэтому динамический мониторинг величины ЦВД, особенно в сопоставлении с другими показателями гемодинамики, позволяет оценивать как степень волемии, так и сократительную способность миокарда.

Другие методы мониторинга.

Мониторинг температуры показан при проведении анестезии, лечении лихорадочных состояний и выхаживании новорожденных. Для контроля температуры в анестезиологии и интенсивной терапии используют электронные термометры с цифровыми дисплеями. Датчиками у этих приборов являются термисторы различной формы, приспособленные для наклеивания на кожу или введения в полый орган. Наиболее полную информацию можно получить при одновременном мониторировании периферической температуры (накожные датчики) и центральной температуры (ректальные, пищеводные, внутрисосудистые датчики). В этом случае не только контролируется отклонения от нормальной температуры (гипер- или гипотермия), но и косвенно оценивается состояние гемодинамики, поскольку градиент центральной и периферической температур коррелирует с величиной сердечного индекса. Так, например, при гиповолемии и шоке, на фоне снижения сердечного выброса и перфузии тканей, происходит значительное увеличение температурного градиента.

ИНТЕНСИВНАЯ ТЕРАПИЯ ДЫХАТЕЛЬНОЙ НЕДОСТАТОЧНОСТИ

Острая дыхательная недостаточность – это неспособность системы внешнего дыхания обеспечить нормальный газовый состав артериальной крови или он поддерживается за счет включения компенсаторных механизмов.

Классификация. Существует большое количество классификаций ДН, построенных по этиологическому, патогенетическому и другим принципам. Как правило, они чрезмерно громоздки и трудны для использования в повседневной практике. Нам представляется, что с позиций анестезиолога-реаниматолога целесообразно выделить всего два типа ДН:

1. Вентиляционную , которая связана преимущественно с повреждением механического аппарата вентиляции и проявляется гиповентиляцией, гиперкапнией (PaCO 2 > 45 мм рт.ст., pH < 7,3) и увеличенной работой дыхания.

2. Гипоксемическую , связанную с паренхиматозным повреждением легких и нарушением газообмена, главным образом, в зоне альвеолярно-артериального перехода. Этот тип ДН проявляется гипоксемией (PaO 2 < 80 мм рт.ст, при FiO 2 ³0,21).

Несмотря на максимальное упрощение, предложенная классификация не только учитывает главные патогенетические механизмы обоих типов ДН, но и ориентирует врача в выборе методов интенсивной дыхательной терапии. Так, если при лечении вентиляционной ДН на первый план выходят такие методы, как восстановление и поддержание свободной проходимости дыхательных путей, бронхолитическая терапия, ИВЛ, то при гипоксемической ДН патогенетически обоснованными будут методы заместительной оксигенотерапии, применение повышенного давления в конце выдоха, назначение экзогенных сурфактантов или методы нормализации кровотока в малом круге кровообращения.

Этиология и патогенез. Наиболее частыми причинами развития вентиляционной дыхательной недостаточности являются (а) обструктивные, (б) рестриктивные и (в) нейрорегуляторные нарушения.

Обструкция дыхательных путей происходит в результате аспирации околоплодных вод, мекония, содержимого желудка и кишечника. Чаще всего это наблюдается у новорожденных, перенесших тяжелую перинатальную гипоксию и у детей с пороками развития желудочно-кишечного тракта. Обструкция может быть связана с муковисцидозом, бронхоэктатической болезнью, отеком подсвязочного пространства инфекционного или травматического происхождения. У старших детей причиной тяжелой бронхообстукции является бронхиальная астма.

Снижение растяжимости легких (рестриктивные нарушения) наблюдается при пневмонии, респираторном дистресс-синдроме, пневмофиброзе, интерстициальной эмфиземе и отеке. Ухудшение податливости грудной клетки может происходить при пневмо- или гемотораксе, диафрагмальной грыже, высоком стоянии купола диафрагмы при кишечной непроходимости, перитоните или язвенно-некротическом энтероколите.

Нейрорегуляторные нарушения дыхания могут быть связаны с поражением как центральных отделов нервной системы, так и периферических нервов. Центральные нарушения регуляции дыхания возникают при травме или опухолях мозга, кровоизлияниях в мозг, при интоксикациях или действии анестетиков. Поражение периферических нервов и мышц развивается при полиневритах, полиомиелите, миастении.

Основными причинами возникновения гипоксемической ДН являются: (а) нарушение вентиляционно-перфузионных отношений в легких, (б) внутрилегочное шунтирование крови и (в) снижение диффузионной способности легких.

Неравномерность вентиляции наиболее выражена при заболеваниях легких, сопровождающихся уменьшением просвета дыхательных путей, например при бронхиальной астме, бронхитах и бронхиолитах, бронхоэктатической болезни, пневмонии, опухолях легкого. Перфузия легких нарушается при системной гипотензии и шоке, пороках сердца, острой сердечной недостаточности, легочной гипертензии. Длительное неподвижное положение больного, особенно во время операции и анестезии, неизбежно приводит к вентиляционно-перфузионным нарушениям, так как в результате действия гравитационного фактора перфузия смещается в нижележащие отделы легких, а вентиляция - в вышележащие.

Внутрилегочное шунтирование крови справа-налево является крайней степенью нарушения вентиляционно-перфузионных отношений. Это происходит при продолжающейся перфузии невентилируемых участков легкого (например, при ателектазах), что приводит к сбросу неоксигенированной крови в артериальное русло.

Снижение диффузионной способности легких может быть связано как с уменьшением газообменной поверхности легких, так и с “утолщением” альвеолярно-капиллярной мембраны. Газообменная поверхность бывает существенно снижена при гипоплазии легких, ателектазах, у больных, перенесших резекцию легкого. Затруднение диффузии газа через альвелярно-капиллярную мембрану у детей чаще всего наблюдается при интерстициальном отеке или фиброзе легкого.

Понятно, что в клинической практике чаще всего встречается сочетание различных типов нарушений газообмена, но чтобы правильно выбрать тактику интенсивной терапии, врач должен определить ведущие механизмы патогенеза ДН.

Диагностика. Все клинические методы диагностики в полном объеме используются и при обследовании больных в отделениях интенсивной терапии. Однако, в связи с тяжестью состояния пациентов и необходимостью применения более агрессивных методов терапии, врачу-реаниматологу требуется дополнительная информация, позволяющая уточнить характер и выраженность патологических процессов. Без этого невозможно оптимизировать терапию и минимизировать вероятность развития осложнений.

Эту дополнительную информацию получают в результате использования инвазивных методов исследования и анализа данных мониторного наблюдения (См. главу «Мониторинг» ). В данном разделе приведены лишь некоторые формулы для расчета наиболее важных функциональных показателей, характеризующих вентиляционно-перфузионные отношения в легких.

Функциональное мертвое пространство. В клинической практике обычно определяют не объем мертвого пространства – величину, зависимую от возраста и массы тела, а отношение функционального мертвого пространства (V D) к дыхательному объему (V T), которое в норме равняется 0,3. Расчет производится по формуле Бора:

V D /V T = (P a CO 2 - P E CO 2)/ P a CO 2 ;

Для определения величины P E CO 2 выдыхаемый газ собирают в мешок и анализируют с помощью капнографа. Увеличение фракции мертвого пространства происходит как нарушениях вентиляции (перерастяжение альвеол, эмфизема легких), так и перфузии легких (эмболия легочной артерии, острая сердечная недостаточность).

Альвеолярно-артериальный артериальный градиент кислорода (D A - a O 2) является одним из важнейших показателей характеризующих вентиляционно-перфузионные отношения в легких. Так, если в норме D A - a O 2 не превышает 25 мм рт. ст., его повышение до 250 мм рт. ст. говорит о неадекватности проводимой респираторной терапии, а значения выше 600 мм рт. ст. служат критерием для применения методов экстракорпоральной мембранной оксигенации. Расчет производится по формуле:

D A - a O 2 = P A O 2 – P a O 2 ;

P a O 2 определяется прямым измерением, а парциальное давление кислорода в альвеолярном газе может быть рассчитано по следующей упрощенной формуле:

P A O 2 = FiO 2 (P B – P H 2 O) – P a CO 2 , где

FiO 2 – фракционная концентрация кислорода во вдыхаемом газе, P B – барометрическое давление, P H 2 O – парциальное давление водяных паров, которое при нормальной температуре тела составляет 47 мм рт. ст.

Некоторые исследователи для оценки вентиляционно-перфузионных отношений предпочитают пользоваться артериально-альвеолярным коэффициентом (P a O 2 /P A O 2), который отражает примерно такую же информацию, но меньше зависит от значения FiO 2 .

Величина вено-артериального шунта (Q S /Q t) показывает какой процент неоксигенированной венозной крови сбрасывается в артериальное русло. В норме величина вено-артериального шунта не превышает 5%, а при тяжелых заболеваниях легких может возрастать до 50-60%. Шунт рассчитывают по следующей формуле:

Q S /Q t = (С c O 2 – C a O 2 / С c O 2 – C v O 2) ´ 100, где

Поскольку величину С c O 2 непосредственно измерить невозможно, то перед исследованием больного переводят на дыхание чистым кислородом, считая, что при этом гемоглобин в легочных капиллярах насыщается на 100%.

Эффективность легочной вентиляции в процессе ИВЛ легко оценивать по индексу оксигенации (IO). Расчет IO производится по следующей формуле:

IO = (MAP ´ FiO 2 ´ 100)/ P a O 2 , где

MAP – величина среднего давления в дыхательных путях, которую считывают с монитора респиратора или рассчитывают по формулам.

Величина IO > 15 свидетельствует о тяжелой дыхательной недостаточности, значения более 30 указывают на неэффективность респираторной терапии. У новорожденных детей, имеющих IO > 40, смертность составляет около 80%.

7.1. МЕТОДЫ ИНТЕНСИВНОЙ ТЕРАПИИ ДЫХАТЕЛЬНОЙ НЕДОСТАТОЧНОСТИ

Все методы дыхательной терапии у детей можно условно разделить на несколько групп: восстановление и поддержание свободной проходимости дыхательных путей, методы оксигенотерапии и респираторной поддержки.

Обеспечение и поддержание свободной проходимости дыхательных путей. Наиболее простой способ восстановления свободной проходимости дыхательных путей – максимальное разгибание головы ребенка в атлантоокципитальном сочленении с одновременным выдвижением вперед нижней челюсти. В результате натяжения тканей между гортанью и нижней челюстью корень языка отходит от задней стенки глотки. Для облегчения разгибания головы под плечи ребенка подкладывают валик. Этот способ обычно используют во время реанимации, при проведении прямой ларингоскопии и интубации трахеи.

Для предупреждения западения корня языка используют также ротовые воздуховоды . Воздуховодами пользуются при реанимации или проведении наркоза с сохранением спонтанного дыхания. Анестезиолог должен помнить, что воздуховоды могут провоцировать возникновение рвоты.

Большое значение для предупреждения обструкции дыхательных путей имеет положение ребенка в кроватке или кювезе. После операции или наркоза ребенка обычно укладывают горизонтально на бок или живот (Рис. 8.1.). Новорожденных, склонных к срыгиванию, обычно укладывают в кровати с приподнятым головным концом.

При пневмониях, бронхитах, ателектазах, когда в трахеобронхиальном дереве большое количество мокроты, полезно периодически укладывать ребенка в дренажное положение (постуральный дренаж). Схемы дренажных положений при различной локализации патологического процесса представлены на рис.8.2. Даже при отсутствии мокроты не следует допускать, чтобы дети длительно находились в каком-либо одном положении, так как это ухудшает вентиляционно-перфузионные отношения в легких и способствует развитию инфекционных осложнений. Перевод ребенка в дренажное положение обычно сочетают с такими процедурами, как вибрационный или перкуссионный массаж, стимулирование кашлевого рефлекса.

При вибрационном массаже мокрота перемещается из самых мелких бронхов в более крупные. Массаж осуществляется с помощью вибромассажера по направлению от подмышечных впадин к подмышечной линии.

Перкуссионный массаж выполняют путем надавливания или постукивания ребром ладони по участкам грудной клетки, соответствующим дренируемым отделам легкого.

Катетеризацию дыхательных путей проводят для отсасывания густой мокроты или аспирационных масс (Рис 8.3.). Катетеризацию рото- и носоглотки обычно выполняют вслепую, а введение катетера в гортань, трахею и бронхи – под контролем ларингоскопа. Аспирацию мокроты выполняют катетером, который присоединяется к отсосу с помощью тройника, закрывая пальцем открытый конец только в момент отсасывания. В противном случае возможно присасывание катетера к слизистой оболочке и ее травмирование. Для аспирации может быть использован любой электрический или инжекционный отсос, создающий максимальное разряжение порядка 50-60 мм рт. ст. Чтобы предотвратить развитие у ребенка гипоксемии необходимо за 2-3 минуты до начала процедуры увеличить концентрацию кислорода в дыхательной смеси на 20-30%. Продолжительность манипуляции не должна превышать 10-15 секунд.

Прямая ларингоскопия с катетеризацией трахеи и бронхов у детей обычно выполняется под наркозом. Смещая трахею вправо, катетер проводят в левый бронх, смещая в лево - в правый. Вся процедура аспирации мокроты из трахеобронхиального дерева должна проводиться в асептических условиях. Катетеры и растворы, применяемые для промывания бронхов, должны быть стерильными. Катетер выбирарается в соответствии с возрастом ребенка, важно, чтобы его наружный диаметр составлял не более 2/3 от диаметра главного бронха.

У детей находящихся на ИВЛ или продленной назотрахеальной интубации периодически проводят поверхностный или глубокий туалет эндотрахеальной трубки . В первом случае мокрота удаляется только из эндотрахеальной трубки, во втором - из трахеи и главных бронхов. Если мокрота очень густая, то перед отсасыванием в эндотрахеальную трубку вводят небольшое количество стерильного физиологического раствора или 4% соду, разведенную физиологическим раствором в соотношении 1:4.

Лаваж легких , т.е. промывание трахеобронхиального дерева большим количеством жидкости применяется в таких ситуациях как астматический статус или аспирация желудочного содержимого.

Продленная назотрахеальная интубация является одним из самых распространенных методов длительного поддержания свободной проходимости дыхательных путей. Применение современных интубационных трубок позволяет проводить эту методику в течение многих дней и даже недель.

Для продленной назотрахеальной интубации у детей обычно используют трубки без манжетки. Интубацию выполняют под наркозом с использованием мышечных релаксантов. Трубку проводят вслепую через один из носовых ходов, а затем под контролем ларингоскопа щипцами Магила направляют в трахею. Удостоверившись, что дыхание одинаково хорошо проводится над всей поверхностью легких, трубку надежно фиксируют полосками лейкопластыря. Успешное ведение больных, находящихся на назотрахеальной интубации, возможно только при самом строгом соблюдении правил асептики, хорошем кондиционировании дыхательной смеси и постоянном контроле проходимости дыхательных путей. Аспирацию мокроты из трубки проводят только по мере необходимости.

Необходимо все время помнить, что у ребенка, находящегося на назотрахеальной интубации в любой момент может произойти перегиб трубки или полная ее обтурация, экстубация или соскальзывание трубки в правый бронх. Поэтому кроме постоянного врачебного и сестринского наблюдения необходимо наладить мониторный контроль функции дыхания и сердечной деятельности. Предпочтение следует отдать газоанализаторам, поскольку импедансные датчики могут регистрировать как дыхательные движения судорожные сокращения мыщц грудной клетки при обструкции дыхательных путей.

Согревание и увлажнение дыхательной смеси происходит преимущественно в верхних дыхательных путях.Понятно, что у ребенка, который дышит через интубационную трубку или трахеостомическую канюлю, естественные механизмы кондиционирования дыхательных газов резко нарушаются. Поэтому обязательным условием при лечении таких больных является использование специальных устройств (увлажнителей), согревающих и увлажняющих воздушно-кислородную смесь еще до поступления ее в эндотрахеальную трубку. Температура газовой смеси, поступающей в трахею должна составлять 36,5-37,0 С о, а относительная влажность – приближаться к 100%. Ингаляция сухих и охлажденных газов резко повышает вязкость мокроты, увеличивает риск обтурации эндотрахеальной трубки, может вызвать бронхоспазм, а также привести к общему охлаждению ребенка. Напротив, перегревание смеси вызывает повреждение эпителия дыхательных путей и дисфункцию сурфактантной системы легких.

Аэрозольная терапия применяется главным образом для разжижения мокроты введения в дыхательную смесь лекарственных препаратов. Чаще всего применяются вещества, обладающие муколитическими (растворяющими мокроту), бронхолитическими, противовоспалительными и антибактериальными свойствами.

Показанием к применению аэрозольной терапии являются острые и хронические заболевания бронхов и легких, сопровождающиеся накоплением вязкой мокроты. Проводятся аэрозольные ингаляции с помощью пневматических или ультразвуковых распылителей.

Муколитические вещества улучшают реологические свойства мокроты и облегчают ее эвакуацию. В настоящее время для этих целей чаще всего применяют растворы гидрокарбоната натрия и ацетилцистеин.

Из препаратов, обладающих бронхолитическим или противовоспалительным действием обычно используют селективные бета 2 -адреномиметики (сальбутамол,тербуталин), производные пуринов (теофиллин) и глюкокортикоидные гормоны.

Недостатки, связанные с ингаляционным способом введения лекарственных препаратов, определяются прежде всего неравномерностью распределения аэрозолей в легких – большая часть попадает в области, где лучше вентиляция и меньше обструкция. Кроме того, практически невозможно определить какое количество препаратов осело в легких и сколько затем попало в системный кровоток.

Ультразвуковые ингаляции у детей младшего возраста должны применяться с осторожностью в связи с опасностью развития гипергидратации. Отмечено также, что использование этих ингаляторов в ряде случаев может способствовать распространению инфекции.

Оксигенотерапия

Артериальная гипоксемия – наиболее частое проявление дыхательной недостаточности и поэтому ингаляции кислорода являются практически непременным компонентом респираторной терапии. Однако, кислород, как и любое другое лекарственное средство, должен вводиться в соответствующих дозах. Положительные эффекты оксигенотерапии, связанные с устранением гипоксемии, хорошо изучены и легко отмечаются при наблюдении за больным (исчезновение цианоза, уменьшение одышки, тахикардии и т.д.). Напротив, отрицательное влияние гипероксических дыхательных смесей и избыточного напряжения кислорода на функционирование различных систем организма, как правило, не имеет отчетливых клинических проявлений, отсрочено по времени и диагностируется либо с помощью специальных исследований, либо когда это негативное воздействие уже приобретает угрожающий характер.

Гипероксические дыхательные смеси (концентрация О 2 > 40% при лечении новорожденных и выше 50% - у более старших детей) приводят к вымыванию азота (денитрогенизации) сначала из дыхательных путей, а затем и из тканей организма. При этом возникает полнокровие и отечность слизистых оболочек, нарушается нормальное функционирование реснитчатого эпителия дыхательных путей, увеличивается скорость разрушения сурфактанта. Денитрогенизация альвеол ведет к развитию адсорбционных микроателектазов, ухудшаются вентиляционно-перфузионные отношения в легких, возрастает величина внутрилегочного шунтирования.

Еще более опасные последствия имеет гипероксемия (РаО 2 > 100 мм рт.ст.). При назначении кислорода врачу необходимо четко представлять величину парциального давления О 2 в альвеолярном газе (Р А О 2) и, соответственно, вероятный уровень гипероксемии. В упрощенном варианте формула для расчета Р A О 2 может быть представлена в следующем виде:

Р А О 2 = РiO 2 – PaCO 2 ,

где РiO 2 – парциальное давление кислорода во вдыхаемом газе. При этом допустимо считать, что Р А О 2 » РаО 2 , а РiO 2 в 7 раз выше концентрации кислорода во вдыхаемом воздухе. Например, если ребенок дышит 50% -ной кислородно-воздушной смесью, а PaCO 2 равно 40 мм рт. ст., то Р А О 2 будет (50 ´ 7 – 40) = 310 мм рт. ст. При улучшении легочной функции артериальное рО 2 будет приближаться к этой величине, т.е. разовьется опасная гипероксемия.

Чрезмерно высокий уровень РаО 2 неизбежно приводит к системным и органным нарушениям, степень выраженности которых зависит от метода и продолжительности оксигенотерапии, возраста и степени зрелости пациента, характера патологии и многих других факторов.

Повышение содержания кислорода в крови нарушает нормальное течение окислительно-восстановительных реакций, происходит образование большого количества свободных радикалов, обладающих агрессивными свойствами. Естественной защитной реакцией организма на гипероксемию является сосудистый спазм, степень выраженности которого не одинакова в различных органах и тканях. В частности, спазм сосудов проявляется нарушением терморегуляции, судорожным синдромом или даже развитием коматозного состояния.

Особенно опасна избыточная оксигенация у недоношенных и незрелых детей. Известны, по меньшей мере, два тяжелых заболевания (ретинопатия и хроническое заболевание легких новорожденных ), этиопатогенез которых напрямую связан с агрессивной кислородотерапией.

Поэтому анестезиолог-реаниматолог, назначая кислород, должен постоянно помнить о возможных осложнениях, контролировать параметры оксигенации (FiO 2 , PaO 2 , SaO 2) и своевременно корректировать терапию.

Способы ингаляционной кислородной терапии . В педиатрической практике для ингаляций кислорода наиболее часто используются носовые канюли и катетеры, лицевые маски, палатки, кювезы (Рис. 8.4.).

Носовые катетеры бывают спаренные, которые вводят в оба наружных носовых хода, или одиночные, которые обычно проводят назофарингеально. Глубину введения одиночного катетера можно определить, измерив расстояние от крыла носа до козелка ушной раковины. Носовые катетеры мало беспокоят больного и позволяют поддерживать невысокие (до 35-40%) концентрации кислорода в дыхательной смеси. Недостатками этих способов является то, что они затрудняют носовое дыхание и не дают возможности контролировать концентрацию кислорода.

Применение лицевых масок позволяет стабильно поддерживать различные, в том числе и высокие, концентрации кислорода в дыхательной смеси. Наиболее удобны легкие прозрачные пластиковые маски, которые имеют калиброванные отверстия для газообмена с окружающим воздухом (маски Вентури). На таких масках обычно указывают, при каких величинах газотока в подмасочном пространстве устанавливается определенная концентрация кислорода (от 25 до 50%). При необходимости использовать более высокие концентрации кислорода (до 80-90%) потребуется применение герметично фиксируемых масок, имеющих дополнительный дыхательный мешок. Приток свежего газа должен быть достаточно большой, минимум в 2,5-3 раза больше объема минутной вентиляции легких, что предотвратит повторное вдыхание выдохнутого газа.

Наиболее распространенным способом ингаляции кислорода у маленьких детей остаются кислородные палатки . Они не беспокоят ребенка, позволяют контролировать концентрацию кислорода во вдыхаемом воздухе и поддерживать ее на постоянном уровне. Однако в связи с негерметичностью эти устройства требуют высоких скоростей подачи кислорода (порядка 8-12 л\мин) и даже при этом редко удается поднять его концентрацию до 50-60%.

Новорожденным детям кислородотерапия проводится непосредственно в кювезе . Современные кювезы позволяют в автоматическом режиме с высокой точностью поддерживать установленную концентрацию кислорода, температуру и влажность дыхательной смеси. Однако необходимо помнить, что при нарушениях герметичность, например, при открывании окошек, мгновенно изменяются параметры микроклимата.

Метод постоянного положительного давления в дыхательных путях (ППД). Метод ППД занимает промежуточное положение между ингаляциями кислорода и ИВЛ. Поддержание повышенного давления в воздухоносных путях при спонтанной вентиляции позволяет реализовать компенсаторные возможности дыхательной системы. И хотя совершенствование респираторной техники несколько сузило область применения ППД, он и сегодня широко используется в клинической практике, прочно занимая свою нишу среди других методов интенсивной дыхательной терапии.

Механизмы действия метода ППД. Повышенное давление в дыхательных путях препятствует раннему экспираторному закрытию дыхательных путей. Расправление гиповентилируемых, а возможно, и спавшихся альвеол приводит к увеличению остаточного объема легких и улучшению вентиляционно-перфузионных отношений. Уменьшается внутрилегочное вено-артериальное шунтирование. Результатирующий эффект проявляется заметным повышением парциального напряжения кислорода в артериальной крови, причем уровень прироста PaO 2 зависит от характера и тяжести патологии. Считается, что чем ниже исходное значение функциональной остаточной емкости, тем эффективнее действие ППД. Естественно, что имеется и определенная зависимость между величиной положительного давления и уровнем PaO 2 , однако, пропорциональность наблюдается лишь в довольно узком диапазоне и также зависит от исходного состояния легких. Альвеолярная вентиляция при проведении ППД, как правило, улучшается, поскольку несмотря на увеличение дыхательного мертвого пространства, уровень PaCO 2 остается неизменным или даже уменьшается.

ППД влияет и на соотношение фаз дыхательного цикла, усиливает вдох и удлиняет время выдоха. В этом плане повышенное давление может рассматриваться как один из факторов регуляции дыхания и становится понятнее эффективность метода при лечении новорожденных с транзиторным тахипноэ или приступами апноэ.

При проведении ППД нередко отмечается и улучшение показателей гемодинамики: увеличивается ударный объем и сердечный выброс, снижается тахикардия. Объясняется это тем, что повышение PaO 2 устраняет легочную вазоконстрикцию, падает легочное сосудистое сопротивление, увеличивается кровоток. Кроме того, улучшение оксигенации способствует повышению сократительной способности миокарда и нормализации фазовой структуры сердца.

Показания к ППД. Показанием к применению ППД является артериальная гипоксемия (PaO 2 ниже 60 мм рт. ст., при дыхании 50% кислородно-воздушной смесью), связанная с нарушением вентиляционно-перфузионных отношений, высоким внутрилегочным шунтированием и сниженной растяжимостью легких. Такие нарушения обычно наблюдаются при респираторном дистресс-синдроме новорожденных, аспирационном синдроме, после продолжительных и травматичных операций на органах грудной клетки и брюшной полости. Кроме того, метод ППД успешно используется при лечении транзиторного тахипноэ и приступов апноэ у новорожденных и при переводе больных с ИВЛ на самостоятельное дыхание.

Способы проведения ППД. Методика ППД может проводиться различными способами: подключением клапанных устройств к интубационной трубке, использованием пластикового мешка, одетого на голову ребенку, применением лицевых и носовых масок, интраназальных канюль, а также камер, создающих отрицательное давление над грудной клеткой.

В настоящее время методика ППД чаще всего проводится с помощью носовых канюль, лицевой маски или через интубационную трубку (Рис. 8.5.).

Использование двойных носовых канюль требует довольно большого потока газа для поддержания необходимого уровня положительного давления. Величина давления вариабельна, она падает, когда ребенок плачет и повышается, когда рот закрыт. При проведении этого способа необходимо оставлять открытым желудочный зонд, чтобы предотвратить скопление воздуха в желудке. Главным недостатком этого способа является травмирование слизистой носовых ходов.

Использование маски - один из наиболее простых способов проведения ППД. Лицевая маска подходящего размера фиксируется с помощью эластичных завязок или сетчатого бинта. Давление поддерживается достаточно стабильно, как правило не требуется дополнительного увлажнения дыхательной смеси. К недостаткам способа относят возможность развития пролежней и повышенный риск возникновения синдромов утечки воздуха из легких.

При дыхании через интубационную трубку поддержание избыточного давления лучше осуществлять с помощью респиратора. Это позволит легко контролировать температуру, влажность и газовый состав дыхательной смеси. Для профилактики развития ателектазов желательно использовать режим перемежающейся принудительной вентиляции с частотой 2-5 вдохов в минуту.

Методика проведения ППД. Успешное проведение методики ППД невозможно без соблюдения целого ряда условий. В первую очередь это относится к кондиционированию дыхательной смеси. Недостаточно подогретый и увлажненный газ нарушает нормальное функционирование бронхиального эпителия и создает предпосылки для развития инфекционных осложнений. Если ребенок дышит через интубационную трубку, то газ должен быть нагрет до температуры 36.5-37.0C о и иметь 95-100% относительную влажность. При использовании носовых канюль или лицевой маски температура газовой смеси поддерживается на уровне 32-34C о, а относительная влажность 70-80%.

Проведение методики обычно начинают с давления 4-6 см вод. ст., при концентрации кислорода 50-60%. Через 30 минут необходимо определить газовый состав крови. Если сохраняется гипоксемия, при удовлетворительной вентиляции, то следует увеличить давление в дыхательных путях на 2-3 см вод. ст. В качестве временной меры можно также повысить концентрацию кислорода в смеси до 70-80%. Не рекомендуется поднимать давление выше 7-8 см вод. ст., так как это обычно не дает ощутимого прироста PaO 2 , но может привести к значительному падению сердечного выброса. Таким образом, если при давлении 7-8 см вод. ст. и концентрации кислорода равной 80% PaO 2 остается ниже 50 мм рт. ст., а также если нарастает гиповентиляция и ацидоз, необходимо перевести ребенка на ИВЛ.

При благоприятном эффекте ППД в первую очередь стремятся уйти от высокой концентрации кислорода, постепенно уменьшая ее до нетоксического уровня (40%). Затем также медленно (по 1-2 см вод.ст.), под контролем газов крови, снижают давление в дыхательных путях. Когда удастся довести давление до +2-3 см вод.ст. проведение методики прекращают. Оксигенацию продолжают под палаткой, устанавливая концентрацию кислорода на 5-10% выше, чем при ППД.

Опасности и осложнения.

Применение методики ППД бесспорно увеличивает риск возникновения синдромов утечки воздуха из легких. Вероятность подобных осложнений сокращается при постоянном мониторном контроле за уровнем оксигенации и своевременном снижении давления в дыхательных путях.

Мониторинг артериального давления (инвазивные методы)

Показания

Показания к инвазивному мониторингу артериального давления путем катетеризации: управляемая гипотония; высокий риск значительных сдвигов артериального давления во время операции; заболевания, требующие точной и непрерывной информации об артериальном давлении для эффективного управления гемодинамикой; необходимость частого исследования газов артериальной крови.

Противопоказания

Следует по возможности воздерживаться от катетеризации, если отсутствует документальное подтверждение сохранности коллатерального кровотока, а также при подозрении на сосудистую недостаточность (например, синдром Рейно).

Методика и осложнения

А. Выбор артерии для катетеризации. Для чрескожной катетеризации доступен ряд артерий.

1. Лучевую артерию катетеризируют чаще всего, так как она располагается поверхностно и имеет
коллатерали. Тем не менее у 5 % людей артериальные ладонные дуги оказываются незамкнутыми, что делает коллатеральный кровоток неадекватным.

Проба Аллена - простой, хотя и не вполне достоверный способ определения адекватности коллатерального кровообращения по локтевой артерии при тромбозах лучевой артерии.

Вначале больной несколько раз энергично сжимает и разжимает кулак, пока кисть не побледнеет; кулак остается сжатым. Анестезиолог пережимает лучевую и локтевую артерии, после чего больной разжимает кулак. Коллатеральный кровоток через артериальные ладонные дуги считается полноценным, если большой палец кисти приобретает первоначальную окраску не позже чем через 5 с после прекращения давления на локтевую артерию. Если восстановление первоначального цвета занимает 5-10 с, то результаты теста нельзя трактовать однозначно (иначе говоря, коллатеральный кровоток «сомнителен»), если больше 10 с - то существует недостаточность коллатерального кровотока. Альтернативными методами определения артериального кровотока дистальнее места окклюзии лучевой артерии могут быть пальпация, допплеровское исследование, плетизмография или пульсоксиметрия. В отличие от пробы Аллена, для этих способов оценки коллатерального кровотока не требуется содействие самого больного.

2. Катетеризацию локтевой артерии технически сложнее проводить, так как она залегает глубже и более извита, чем лучевая. Изза риска нарушения кровотока в кисти не следует катетеризировать локтевую артерию, если ипсилатеральная лучевая артерия была пунктирована, но катетеризация не состоялась.

3. Плечевая артерия крупная и достаточно легко идентифицируется в локтевой ямке. Так как по ходу артериального дерева она расположена недалеко от аорты, то конфигурация волны искажается лишь незначительно (по сравнению с формой пульсовой волны в аорте). Близость локтевого сгиба способствует перегибанию катетера.

4. При катетеризации бедренной артерии высок риск формирования псевдоаневризм и атером, но часто только эта артерия остается доступной при обширных ожогах и тяжелой травме. Асептический некроз головки бедренной кости - редкое, но трагическое осложнение при катетеризации бедренной артерии у детей.

5. Тыльная артерия стопы и задняя большеберцовая артерия находятся на значительном удалении от аорты по ходу артериального дерева, поэтому форма пульсовой волны существенно искажается. Модифицированная проба Аллена позволяет оценить адекватность коллатерального кровотока перед катетеризацией этих артерий.

6. Подмышечная артерия окружена подмышечным сплетением, поэтому существует риск повреждения нервов иглой или в результате сдавления гематомой. При промывании катетера, установленного в левой подмышечной артерии, воздух и тромбы будут быстро попадать в сосуды головного мозга.

Б. Методика катетеризации лучевой артерии.

Одна из методик катетеризации лучевой артерии приведена на рисунке ниже. Супинация и разгибание кисти обеспечивают оптимальный доступ к лучевой артерии. Предварительно следует собрать систему катетер-магистраль-преобразователь и заполнить ее гепаринизированным раствором (примерно 0,5-1 ЕД гепарина на каждый мл раствора), т. е. подготовить систему для быстрого подключения после катетеризации артерии.

Рисунок.
А. Решающим моментом является правильная укладка конечности и пальпация артерии. Кожу обрабатывают антисептиком и через иглу 25-го размера инфильтрируют местным анестетиком в проекции артерии,
Б. Катетером на игле 20-22-го размера прокалывают кожу под углом 45°.
В. Появление крови в павильоне свидетельствует о попадании в артерию. Угол вкола уменьшают до 30°, и катетер на игле продвигают еще на 2 мм в глубь артерии.
Г. Катетер вводят в артерию по игле, которую затем удаляют.
Д. Пережимая артерию средним и безымянным пальцами проксимальнее катетера, предотвращают выброс крови во время подсоединения магистрали через коннектор типа Люера

Путем поверхностной пальпации кончиками указательного и среднего пальцев недоминантной руки анестезиолог определяет пульс на лучевой артерии и ее расположение, ориентируясь на ощущение максимальной пульсации. Кожу обрабатывают йодоформом и раствором спирта и через иглу 25-27-го размера инфильтрируют 0,5 мл лидокаина в проекции артерии. Тефлоновым катетером на игле 20-22-го размера прокалывают кожу под углом 45°, после чего продвигают его по направлению к точке пульсации. При появлении крови в павильоне угол вкола иглы уменьшают до 30° и для надежности продвигают вперед еще на 2 мм в просвет артерии. Катетер вводят в артерию по игле, которую затем удаляют. Во время подсоединения магистрали артерию пережимают средним и безымянным пальцами проксимальнее катетера, чтобы предотвратить выброс крови. Катетер фиксируют к коже водоустойчивым лейкопластырем или швами.

В. Осложнения. К осложнениям интраартериального мониторинга относятся гематома, спазм артерии, тромбоз артерии, воздушная эмболия и тромбоэмболия, некроз кожи над катетером, повреждение нервов, инфекция, потеря пальцев (вследствие ишемического некроза), непреднамеренное внутриартериальное введение препаратов. Факторами риска являются длительная катетеризация, гиперлипидемия, многократные попытки катетеризации, принадлежность к женскому полу, применение экстракорпорального кровообращения, использование вазопрессоров. Риск развития осложнений снижают такие меры, как уменьшение диаметра катетера по отношению к просвету артерии, постоянная поддерживающая инфузия раствора гепарина со скоростью 2-3 мл/ч, уменьшение частоты струйных промываний катетера и тщательная асептика. Адекватность перфузии при катетеризации лучевой артерии можно непрерывно контролировать путем пульсоксиметрии, размещая датчик на указательном пальце ипсилатеральной кисти.

Клинические особенности

Поскольку внутриартериальная катетеризация обеспечивает длительное и непрерывное измерение давления в просвете артерии, эта методика считается «золотым стандартом» мониторинга артериального давления. Вместе с тем качество преобразования пульсовой волны зависит от динамических характеристик системы катетер-магистраль-преобразователь (см. рисунок). Ошибка в результатах измерения артериального давления чревата назначением неправильного лечения.

Рисунок.

Пульсовая волна в математическом отношении является сложной, ее можно представить как сумму простых синусоидных и косинусоидных волн. Методика преобразования сложной волны в несколько простых называется анализом Фурье. Чтобы результаты преобразования были достоверными, система катетер-магистраль-преобразователь должна адекватно реагировать на самые высокочастотные колебания артериальной пульсовой волны (см. рисунок). Иными словами, естественная частота колебаний измеряющей системы должна превышать частоту колебаний артериального пульса (приблизительно 16-24 Гц).

Рисунок. На этих иллюстрациях представлено совмещение исходной пульсовой волны с реконструкциями, получен­ными с помощью анализа Фурье: слева реконструкция воспроизведена по четырем гармоникам, справа - по восьми. Следует отметить, что чем больше число гармоник, тем точнее реконструкция соответствует исходной волне.

Кроме того, система катетер-магистраль-преобразователь должна предотвращатьгиперрезонансный эффект, возникающий в результате реверберации волн в просвете трубок системы. Оптимальный демпинговый коэффициент составляет 0,6-0,7. Демпинговый коэффициент и естественную частоту колебаний системы катетер-магистраль-преобразователь можно рассчитать при анализе кривых осцилляции, полученных при промывании системы под высоким давлением.

Уменьшение длины и растяжимости трубок, удаление лишних запорных кранов, предотвращение появления воздушных пузырьков - все эти мероприятия улучшают динамические свойства системы. Хотя внутрисосудистые катетеры малого диаметра снижают естественную частоту колебаний, они позволяют улучшить функционирование системы с низким демпинговым коэффициентом и уменьшают риск возникновения сосудистых осложнений. Если катетер большого диаметра окклюзирует артерию полностью, то отражение волн приводит к ошибкам в измерении артериального давления.

Преобразователи давления эволюционировали от громоздких приспособлений многократного использования к миниатюрным одноразовым датчикам. Преобразователь превращает механическую энергию волн давления в электрический сигнал. Большинство преобразователей основано на принципе измерения напряжения: растяжение проволоки или силиконового кристалла изменяет их электрическое сопротивление. Чувствительные элементы расположены как контур мостика сопротивления, поэтому вольтаж на выходе пропорционален давлению, воздействующему на диафрагму.

От правильной калибровки и процедуры установки нулевого значения зависит точность измерения артериального давления. Преобразователь устанавливают на желаемом уровне - обычно это среднеподмышечная линия, открывают запорный кран, и на включенном мониторе высвечивается нулевое значение артериального давления. Если во время операции положение больного изменяют (при изменении высоты операционного стола), то преобразователь необходимо переместить одновременно с больным или переустановить нулевое значение на новом уровне среднеподмышечной линии.

N.B. В положении сидя артериальное давление в сосудах головного мозга существенно отличается от давления в левом желудочке сердца. Поэтому в положении сидя артериальное давление в сосудах мозга определяют, установив нулевое значение на уровне наружного слухового прохода, что приблизительно соответствует уровню виллизиева круга (артериального круга большого мозга).

Преобразователь следует регулярно проверять на предмет «дрейфа» нуля - отклонения, обусловленного изменением температуры.

Наружное калибрование заключается в сравнении значений давления преобразователя с данными ртутного манометра. Ошибка измерения должна находиться в пределах 5 %; если ошибка больше, то следует отрегулировать усилитель монитора. Современные преобразователи редко нуждаются в наружном калибровании.

Цифровые значения АДсист. и АДдиаст. являются средними значениями соответственно наиболее высоких и наиболее низких показателей артериального давления за определенный период времени. Так как случайное движение или работа электрокаутера могут искажать значения артериального давления, то необходим мониторинг конфигурации пульсовой волны. Конфигурация пульсовой волны предоставляет ценную информацию о гемодинамике.

N.B. Так, крутизна подъема восходящего колена пульсовой волны характеризует сократимость миокарда, крутизна спуска нисходящего колена пульсовой волны определяется общим периферическим сосудистым сопротивлением, значительная вариабельность размеров пульсовой волны в зависимости от фазы дыхания указывает на гиповолемию.

Значение АДср. рассчитывают с помощью интегрирования площади под кривой.
Внутриартериальные катетеры обеспечивают возможность частого анализа газов артериальной крови.

В последнее время появилась новая разработка - волоконно-оптический датчик, вводимый в артерию через катетер 20-го размера и предназначенный для длительного непрерывного мониторинга газов крови. Через оптический датчик, кончик которого имеет флюоресцентное покрытие, передается свет высокой энергии. В результате флюоресцентный краситель испускает свет, волновые характеристики которого (длина и интенсивность волны) зависят от рН, PCO 2 и PO 2 (оптическая флюоресценция). Монитор определяет изменения флюоресценции и отражает на дисплее соответствующие значения газового состава крови. К сожалению, стоимость этих датчиков высока.

Рутинная оценка состояния гемодина­мики. К сожалению, до настоящего вре­мени в клинике отсутствуют методы про­стого, быстрого и точного определения гемодинамического статуса. Вследствие это­го первым этапом, позволяющим получить ориентировочную информацию о состоя­нии кровообращения, является физикальное обследование больного. Для косвен­ной клинической оценки гемодинамического статуса должен приниматься во вни­мание комплекс различных признаков, каждый из которых сам по себе не имеет точного диагностического значения. К чис­лу наиболее важных из них относятся: уровень сознания, окраска, температура и туprop кожных покровов и слизистых, состояние подкожной сосудистой сети, ха­рактер дыхания, наличие периферических отеков, частота и свойства пульса, аускультативные феномены и др. Важнейшим критерием состояния системной гемодина­мики является артериальное давление.

К факторам, определяющим величину АД, относятся объемная скорость крово­тока и общее периферическое сопротив­ление сосудов (ОПСС). Объемная ско­рость кровотока для сосудистой системы большого круга кровообращения опреде­ляется минутным объемом крови (МОК), нагнетаемым сердцем в аорту. ОПСС яв­ляется расчетной величиной, зависящей от тонуса сосудов (в основном артериол), определяющего их радиус, длины сосуда и вязкости протекающей крови.

Определение артериального давления. Во время каждой систолы порция крови поступает в артерии и увеличивает их эла­стическое растяжение, при этом давление в них повышается. Во время диастолы поступление крови из желудочков в ар­териальную систему прекращается и про­исходит отток крови из крупных артерий, растяжение их стенок уменьшается и дав­ление снижается. Наибольшая величина давления в артериях наблюдается во вре­мя прохождения вершины пульсовой вол­ны (систолическое давление), а наимень­шая - во время прохождения основания пульсовой волны (диастолическое давле­ние). Разность между систолическим и диастолическим давлением называется пульсовым давлением. При прочих рав­ных условиях оно пропорционально ко­личеству крови, выбрасываемому сердцем при каждой систоле.

Кроме систолического, диастолическо­го и пульсового давления, определяют так называемое среднее артериальное давле­ние (САД) - равнодействующую всех изменений давления в сосудах. При инва-зивной регистрации системного АД сред­нее артериальное давление рассчитывают путем измерения площади, ограниченной кривой АД, и ее деления на длительность кардиоцикла. При расчетном определении используют формулу

САД= АД диаст. + 1/3 (АД сист. – АД диаст.)

Точность измерения САД при помощи автоматической инвазивной регистрации значительно выше, чем при использовании расчетного способа.


У взрослого человека систолическое давление в аорте равно 110-125 мм рт. ст. По мере прохождения по сосудам оно рез­ко уменьшается и на артериальном конце капилляра составляет 20 - 30 мм рт. ст. С возрастом максимальное давление по­вышается, у 60-летних оно равно 135 - 140 мм рт. ст. У новорожденных систоли­ческое АД составляет около 50 мм рт. ст., а к концу 1-го месяца возрастает до 80 мм рт. ст. Минимальное диастолическое АД у взрослых людей среднего возраста в среднем равно 60 - 80 мм рт. ст., пуль­совое - 35 - 40, среднее - 90 - 95 мм рт. ст.

Особенности измерения и интерпрета­ции АД. В условиях операционной и отде­ления интенсивной терапии наиболее час­тым исследованием, влияющим на такти­ческие и стратегические решения, являет­ся измерение АД. При этом лишь в редких случаях врач сомневается в достоверно­сти получаемых результатов. Ниже при­веден ряд позиций, которые необходимо учитывать для приближения имеющихся показателей к клинической реальности.

1. Сама процедура измерения АД при помощи манжеты может привести к ошиб­кам (увеличение объема крови и давле­ния в области плеча). Ложное завышение систолического АД наиболее часто отме­чается у пациентов старческого возраста и у страдающих артериальной гипертензией. У больных с ожирением, а также при неплотном наложении манжеты могут за­вышаться показатели диастолического АД. Занижение АД свойственно чрезмер­но плотному наложению манжеты и про­цедуре, проводимой у астеников и исто­щенных больных.

2. Ложное занижение систолического и завышение диастолического АД часто про­исходит при его измерении у больных с брадиаритмиями и при выраженной брадикардии.

3. В связи с тем, что тоны Короткова возникают благодаря кровотоку, у боль­ных с нестабильной гемодинамикой при любом варианте снижения системного кровотока наблюдается занижение пока­зателей АД. Так, у больных с сердечной недостаточностью разница между получен­ным и истинным значениями АД может превышать 60 мм рт. ст.

4. Систолическое и диастолическое АД в периферических артериях не всегда со­ответствует таковому в аорте, а САД прак­тически не изменяется. Поэтому динами­ка САД является наиболее адекватным способом оценки системной гемодинами­ки при ее нестабильности.

При всей важности АД как критерия состояния системной гемодинамики не следует забывать о том, что давление яв­ляется не абсолютным показателем состо­яния сердца и сосудов, а зависимой вели­чиной, которая определяется взаимоотно­шением между сердечным выбросом и ОПСС. Двойственный характер природы АД не позволяет точно оценивать ни про­изводительность сердца, ни сосудистый тонус. При одной и той же величине АД кровоток может быть различным.

Инвазивный мониторинг системной гемодинамики. Парадокс использования неинвазивных методов оценки гемодина­мики состоит в том, что вероятность и ве­личина погрешности измерений значитель­но возрастают именно в тех ситуациях, когда точное знание гемодинамических параметров наиболее актуально (крити­ческие состояния, нестабильность гемо­динамики). Необходимость повышения точности измерений способствовала раз­работке и внедрению методов инвазивного контроля.

Для инвазивного мониторинга наиболее актуальных гемодинамических показате­лей необходима и достаточна катетериза­ция двух артерий: периферической (лу­чевой или бедренной) - для определе­ния АД и легочной - для определения других параметров гемодинамического статуса.

Хотя наиболее точные результаты при измерении АД достигаются при использо­вании инвазивного мониторинга, этот спо­соб также не лишен недостатков. Арте­факты, обусловленные демпфирующими свойствами измерительных контуров, мо­гут приводить к погрешности измерения порядка 25 - 30 мм рт. ст. Кроме того, вопреки распространенному мнению о сни­жении АД по мере продвижения крови в сосудистом русле отмечается повышение систолического АД по мере продвижения пульсовой волны дистально от аорты. Диастолическое АД при этом постепенно снижается, САД остается относительно постоянным (речь идет о крупных сосу­дах; по мере приближения к зоне микро­циркуляции все виды АД начинают посте­пенно снижаться).

С целью полноты оценки функциональ­ного состояния сердечно-сосудистой сис­темы помимо катетеризации лучевой или бедренной артерии для регистрации АД в настоящее время наиболее часто исследу­ют легочную артерию плавающим катете­ром. Использование этой методики пре­дусматривает прямое измерение: ЦВД, ДЗЛК, сердечного выброса и насыщения кислородом смешанной венозной крови. Ранее указывалось, что ЦВД и ДЗЛК, как правило, равняются КДД в соответствующих желудочках, а КДД, в свою очередь, при неизмененной растяжимости миокар­да адекватно отражает К ДО.

На основании результатов прямых из­мерений рассчитывают производные па­раметры - индексы: сердечный, ударный, ударной работы правого и левого желу­дочков, ОПСС, сопротивления легочных сосудов, а также наиболее значимые пара­метры транспорта кислорода (индекс до­ставки и потребления, коэффициент экс­тракции).

Принцип данной методики состоит в следующем. Плавающий катетер, предна­значенный для проведения в легочную ар­терию, снабжен у дистального конца раз­дувающимся баллончиком объемом око­ло 1,5 мл. По стандартной методике кате­тер вводится в подключичную или внут­реннюю яремную вену. После попадания дистального конца катетера в просвет вены баллончик раздувают и катетер медлен­но продвигают по току крови. Катетер с баллончиком последовательно проходит верхнюю полую вену, правое предсердие, правый желудочек и попадает в легочную артерию. В рентгенологическом контроле нет необходимости. О положении катете­ра в каждый момент времени судят по ха­рактерной форме постоянно регистрируе­мой кривой давления, специфичной для каждого отдела сердечно-сосудистой систе­мы. Например, кривая давления в верхней полой вене и в предсердии имеет веноз­ный профиль и регистрируемое давление равно ЦВД. После прохождения катете­ром трехстворчатого клапана и попадания в правый желудочек регистрируется ха­рактерная волна систолического давления. За клапаном легочной артерии (при по­падании в просвет легочного ствола) на кривой давления появляется диастоличес-кая волна. При дальнейшем продвижении катетера в дистальные отделы легочной артерии наступает момент, когда раздутый баллончик обтурирует просвет сосуда и легочный кровоток прекращается. При этом пропадает систолический компонент пульсовой волны, а регистрируемое в этот момент «конечное» давление получило на­звание давления заклинивания в легочных капиллярах. После регистрации ДЗЛК баллончик сразу же сдувают до следую­щего измерения.

Таким образом, последовательное пере­мещение катетера по сосудам и камерам сердца дает возможность прямо измерять два клинически значимых вида давления: ЦВД и ДЗЛК. Данная методика позволяет исследовать не только давление, но и сокра­тительную активность миокарда. У дистального конца катетера расположен термистор, регистрирующий температуру ок­ружающей крови. Это позволяет непо­средственно измерять сердечный выброс методом термодилюции. Двух- или трех-просветный катетер имеет также прокси­мальное отверстие, расположенное на рас­стоянии 30 см от дистального конца. В то время как дистальное отверстие катетера попадает в легочную артерию, проксималь­ное находится в правых отделах сердца. Термоиндикатор (изотонический раствор натрия хлорида или глюкозы комнатной температуры) в объеме 5-10 мл быстро (не более 4 с) вводится в катетер и через проксимальное отверстие поступает в ве­нозную кровь. В правом отделе сердца этот раствор смешивается с кровью и темпера­тура последней понижается. Охлажденная кровь выбрасывается в легочную артерию, где термистор регистрирует изменение тем­пературы. Разница температур фиксиру­ется на экране в виде термодилюционной кривой (время -температура), площадь которой обратно пропорциональна объем­ной скорости кровотока в легочной арте­рии. При отсутствии внутрисердечных шунтов справа налево объемную скорость кровотока в легочной артерии считают рав­ной сердечному выбросу.

Кроме того, в порции крови, взятой из дистального отверстия катетера, опреде­ляют насыщение гемоглобина кислородом для оценки экстракции кислорода тканя­ми как одного из компонентов системного транспорта кислорода.

Ниже приведены нормальные значения величин, получаемых в результате прямых измерений.

1. Группа показателей давления, наибо­лее важными из которых являются ЦВД и ДЗЛК (мм рт. ст.): правое предсердие (ЦВД) - 0 - 4; правый желудочек - 15 - 30/0 - 4; легочная артерия - 15- 30/6-12; среднее давление в легочной ар­терии - 10-18; ДЗЛК - 6-12.

2. Сердечный выброс (ударный объем) - 70-80 мл.

3. Насыщение кислородом венозной кро­ви - 68-77%.

Прямая регистрация описанных пока­зателей, дополненная измерением АД, по­зволяет рассчитать ряд производных па­раметров, дающих в комплексе детальную информацию о состоянии гемодинамики и кислородного транспорта. Все производ­ные показатели представляют в виде ин­дексов - отношение показателя к площа­ди поверхности тела (ППТ) - для ни­велирования индивидуальных антропомет­рических отличий. Наиболее важные из производных параметров и их нормаль­ные значения приведены ниже.

1. Сердечный индекс (СИ) - отноше­ние сердечного выброса (минутного объе­ма кровообращения, равного произведению УО на частоту сердечных сокращений (ЧСС), определенного методом термоди­люции, к ППТ - 2 -4 л/(мин м 2).

2. Ударный индекс = (36-48) мл/м 2 .

3. Индекс ударной работы левого же­лудочка (ИУРЛЖ) характеризует работу желудочка за одно сокращение: ИУРЛЖ = (САД - ДЗЛК) УИ 0,0136 = (44-56) г м/м 2 .

4. Индекс ударной работы правого же­лудочка: ИУРПЖ = (ДЛА - ЦВД) УИ х 0,0136 = (7-10) г м/м 2 .

5. Индекс общего периферического со­противления: ИОПСС = (САД - ЦВД) : СИ 80 = (1200-2500) дин/(с х см 5 м 2).

6. Индекс сопротивления легочных со­судов: ИСЛС = (ДЛА - ДЗЛЮ/СИ х 80 = (80-240) дин/(с см 5 м 2).

7. Группа показателей системного транс­порта кислорода: индекс доставки, индекс потребления, коэффициент утилизации.

Такая подробная информация о функ­ции сердечно-сосудистой системы значи­тельно расширяет как диагностические возможности врача, так и эффективность проводимой терапии. Однако не следует

абсолютизировать данные, полученные при катетеризации легочной артерии. Это свя­зано как с техническими особенностями самого метода, так и с его интерпретацией.

ДЗЛК само по себе не представляет диагностической ценности, его значение заключается в том, что этот показатель счи­тают равным конечному диастолическому давлению в левом желудочке (аналог ЦВД для правых отделов). Метод измерения ДЗЛК следующий: баллончик на дистальном конце катетера, введенного в легочную артерию, раздувают до тех пор, пока не наступит обструкция кровотока. Это вы­зывает образование столба крови между баллончиком и левым предсердием, и дав­ление с двух концов столба уравнове­шивается. При этом давление в конце кате­тера становится равным давлению в ле­вом предсердии или конечному диастоли­ческому давлению в левом желудочке (КДДЛЖ). В большинстве случаев ДЗЛК действительно соответствует КДДЛЖ, однако эта корреляция может нарушаться при аортальной недостаточности, жесткой стенке желудочка, легочной патологии, ПДКВ - т. е. в ситуациях, не столь уж редких в клинике, что уменьшает диагно­стическую ценность данного показателя.

Кроме того, ДЗЛК часто применяют в ка­честве критерия гидростатического давле­ния в легочных капиллярах, что позволяет оценить возможность развития гидроста­тического отека легких. Однако проблема заключается в том, что ДЗЛК измеряют в условиях полной окклюзии легочной арте­рии, т. е. в условиях отсутствия кровотока. При сдувании баллончика кровоток восста­навливается, и давление в капиллярах пре­вышает ДЗЛК. Капиллярное давление, в отличие от ДЗЛК, растет при повышении среднего давления в легочной артерии и росте сопротивления легочных вен (напри­мер, при остром респираторном дистресс-синдроме) и может превышать ДЗЛК в два раза и более. Если принимать ДЗЛК всег­да равным капиллярному гидростатическо­му давлению, то в некоторых случаях не­корректная интерпретация может приводить к серьезным терапевтическим ошибкам.

Тем не менее, учитывая описанные огра­ничения, результаты, полученные при катетеризации легочной артерии, по праву считают «золотым стандартом» исследо­вания функционального состояния кро­вообращения. Вместе с тем переоценка значимости инвазивного мониторинга не­редко приводит к увеличению частоты ос­ложнений (гемодинамических, септичес­ких). Следует помнить, что катетеризация легочной артерии является все же диагнос­тическим, а не терапевтическим мероприя­тием и далеко не всегда ассоциируется со снижением летальности в соответствую­щих группах больных.

Таким образом, «эталонная» точность получаемых результатов обеспечивается высокой инвазивностью процедуры, всегда представляющей определенный риск для пациента. В последние годы это побудило даже энтузиастов инвазивного мониторин­га - американских специалистов - об­ратиться к более безопасным альтернати­вам. Это прежде всего биологическая импедансография (реография) в различ­ных ее вариантах и большой набор вер­сий ультразвукового метода, включая и самую современную - чреспищеводную допплерографию. Выбор метода исследо­вания гемодинамики диктуется не только соответствующим оборудованием и квали­фикацией персонала, но и такими крите­риями, как инвазивность, точность, слож­ность, стоимость, возможность и удобство мониторинга и др. Следует четко представ­лять, какие гемодинамические параметры обладают наибольшей диагностической значимостью в конкретной ситуации. Так, катетеризация легочной артерии по-преж­нему незаменима для точной селективной оценки преднагрузки левого желудочка. В то же время одним из преимуществ ис­пользования эхосонографии оказалась воз­можность исследования локальной кине­тики стенки сердца. Необходимо помнить, что при всех своих преимуществах ни один из перечисленных методов не решает ко­нечных диагностических проблем. Это свя­зано с тем, что конечной целью кровооб­ращения является адекватный тканевый кровоток, а возможности использования прямого мониторинга кровоснабжения наи­более важных органов в условиях клиники в настоящее время отсутствуют.


Основная цель мониторинга гемодинамики - получить информацию, характеризующую доставку и потребление кислорода в тканях. Мониторинг позволяет создать оптимальные условия для поддержания адекватной органной перфузии, а также как можно раньше выявить и предупредить осложнения агрессивных методов терапии. Современные тенденции развития мониторинга включают снижение его инвазивности, комплексный подход к оценке гемодинамики на базе выделения блоков гемодинамических показателей, дискретно характеризующих преднагрузку, сократительную функцию миокарда, постнагрузку и чувствитель-ность к инфузионной нагрузке, а также выработку алгоритмов «целенаправлен-ной» терапии.
Следует отметить, что гемодинамические параметры составляют практически половину всех компонентов Гарвардского стандарта мониторинга, который служит регламентирующей основой для проведения анестезиологического пособия (табл. 5-1). При проведении интенсивной терапии решение о применении того или иного вида мониторинга кровообращения основано на сбалансированной оценке ряда факторов, включая быстроту получения и ожидаемую ценность данных, сложность представляемых для интерпретации показателей, подготовку персонала, специфический риск мониторинга и т.д. Основные принципы современного мониторинга - точность, надёжность, возможность динамической (непрерывной) оценки основных характеристик кровообращения, комплексность, минимальный риск специфичных осложнений, практичность и дешевизна.
556ИНТЕНСИВНАЯ ТЕРАПИЯ
Таблица 5-1. Гарвардский стандарт мониторинга
Постоянная ЭКГ
АД и пульс (каждые 5 мин)
Вентиляция (минимум один из параметров):
пальпация или наблюдение за дыхательным мешком;
аускультация дыхательных шумов;
капнометрия или капнография;
мониторинг газов крови;
мониторинг выдыхаемого потока газов
Кровообращение (минимум один из параметров): пальпация пульса; аускультация сердечных тонов; кривая АД; пульсоксиметрия
Дыхание (аудиосигнал тревоги для контроля дисконнекции дыхательного контура)
Кислород (аудиосигнал тревоги для контроля нижнего предела концентрации на вдохе)
С определённой долей условности можно выделить инвазивные (требующие катетеризации сосудистого русла) и неинвазивные методы мониторинга кровообращения. Обе группы методов, в свою очередь, могут быть направлены преимущественно на измерение показателей системной и/или лёгочной гемодинамики. Мониторинг может быть перемежающимся (статическим) или постоянным (динамическим). Возможно непосредственное измерение гемодинамических параметров или их опосредованное вычисление путём математической обработки сигнала.
ЭЛЕКТРОКАРДИОГРАФИЯ
ЭКГ - самостоятельный метод диагностики нарушений сердечного ритма и проводимости. Обеспечивая непрерывное измерение частоты и ритма сокращения сердца/желудочков, метод, однако, имеет лишь вспомогательное значение в диагностике ишемии миокарда и эффектов назначаемых препаратов. Для оценки ритма наиболее часто используют II стандартное отведение. Сочетание II отведе-ния с левыми грудными отведениями (отведение У5) повышает чувствительность диагностики ишемических изменений сегмента 5Т до 96%. Многие современные мониторы автоматически измеряют динамику сегмента 5Т и выводят тренды, характеризующие выраженность ЭКГ-признаков ишемии. Инвазивный (внутри- сердечный) мониторинг ЭКГ можно использовать, чтобы подтверждать правиль-ность положения центральных венозных катетеров (ЦВК), проводить кардиости-муляцию и ангиохирургические вмешательства, направленные на лечение стойких нарушений сердечного ритма.
НАСЫЩЕНИЕ (САТУРАЦИЯ) ГЕМОГЛОБИНА КИСЛОРОДОМ
Измерение насыщения (сатурация, 502 или ЗаЮ2) крови кислородом основано на том, что оценивается степень поглощения проходящего или отражённого света определённой длины волны. Сатурация артериальной крови ($02), как правило, измеряется неинвазивным путём (пульсоксиметрия) и в большей степени характеризует вклад внешнего дыхания в доставку кислорода (002). Инвазивное измерение За02 возможно при заборе образца артериальной крови или путём установки артериального фиброоптического катетера (артериальная оксиметрия). В основе пульсоксиметрии лежат принципы оксиметрии и плетизмографии. За счёт различной способности оксигемоглобина и дезоксигемоглобина абсорбировать лучи красного и инфракрасного спектра пульсоксиметрия изолированно оценивает поглощение света пульсирующим (артериальным) компонентом кро-вотока. Пульсоксиметры позволяют осуществлять постоянное измерение ЧСС и демонстрируют на дисплее плетизмограмму, отражающую наполнение капилляров и состояние микроциркуляторного русла. Информативность пульс-оксиметрии значительно снижается при расстройствах периферической циркуляции (шок) и неконтролируемых движениях пациента. Уменьшение сатурации не следует однозначно рассматривать как признак нарушения оксигенации: для уточнения диагноза необходимо выполнить анализ газового состава артериальной крови.
Измерение сатурации кислородом смешанной (в лёгочной артерии, Зу02) и центральной (как правило, в бассейне верхней полой вены, Зсу02) венозной крови позволяет оценить баланс между доставкой и потреблением 02. Для измерения сатурации смешанной венозной крови необходимо установить катетер в лёгочную артерию или верхнюю полую вену. При комплексной интерпретации результатов венозной оксиметрии вместе с прочими гемодинамическими параметрами дифференцированное и направленное применение методов терапии, включающих инотропную/вазопрессорную поддержку, инфузионную терапию и/или повышение уровня гемоглобина, может улучшить исход заболевания. Нормальное значение сатурации артериальной крови составляет 95-100%, значение венозной - 65-80%.
Неинвазивная оксиметрия головного мозга даёт возможность определить регионарное насыщение гемоглобина кислородом в мозге (г302, в норме приблизительно 70%). Доказано, что при остановке кровообращения, эмболии сосудов головного мозга, гипоксии и гипотермии происходит выраженное снижение г302. Определение Зу02 крови, полученной при пункции верхней луковицы яремной вены, позволяет оценить потребление кислорода головным мозгом.
СТАТИЧЕСКОЕ ГЕМОДИНАМИЧЕСКОЕ ДАВЛЕНИЕ Измерение системного артериального давитмш
Выбор методики и частоты измерения АД определяется состоянием больного и тяжестью хирургического вмешательства. При стабильной гемодинамике, как правило, достаточно неинвазивного измерения АД, предпочтительно аппаратным способом. Неинвазивное измерение АД основано на аускультативном (тоны Короткова) и осциллометрическом (колебания давления в манжете) методах. Инвазивное измерение АД рекомендуют в следующих случаях:
быстрое изменение клинической ситуации у пациентов ОРИТ (шок, острое повреждение лёгких, СЛР и прочие критические состояния);
® применение вазоактивных препаратов (инотропы, вазопрессоры, вазодилата- торы, анестетики, антиаритмики и др.);
высокотравматичные хирургические вмешательства (кардиохирургия, нейрохирургия, торакальная хирургия и др.);
необходимость в частом заборе артериальной крови (определение газового состава и другие лабораторные исследования).
Инвазивный мониторинг АД осуществляют с помощью катетеризации магистральной артерии: чаще лучевой или бедренной, реже плечевой, подмышечной или артерии тыла стопы (рис. 5-10).
Основная цель лечебных мероприятий на основе мониторинга АД - под-держать среднее АД, отражающее перфузионное давление в различных органах. В соответствии с последними рекомендациями, среднее АД при шоковых состоя-ниях должно поддерживаться на уровне выше 65 мм рт.ст., за исключением слу-чаев травматического кровотечения (40 мм рт.ст. до тех пор, пока не выполнен хирургический гемостаз) и черепно-мозговой травмы (90 мм рт.ст.).
Кроме статического анализа давлений при инвазивном мониторинге АД возможен также опосредованный анализ сократимости миокарда, основанный на построении касательной к отрезку артериальной кривой при максимальной скорости роста давления - ёР/сК или АРтах (см. рис. 5-10).
СЛ
сл
00
Все системы прямого измерения АД создают артефакты, которые обусловлены неадекватными соединениями в системе или положением катетера, избыточным или недостаточным демпфирующим эффектом системы, попаданием в неё пузырьков воздуха, дрейфом нуля и прочими факторами (см. рис. 5-10).
Центральное венозное давление/давление в правое предсердии
ЦВД - «суррогатный» маркёр преднагрузки на правый желудочек. Ключевые показания к мониторингу ЦВД - острая сердечная недостаточность и шок. Катетеризацию верхней полой вены проводят практически всем пациентам ОРИТ. Нормальные значения ЦВД составляют 4-9 мм рт.ст. (5-12 см вод.ст.), что приблизительно соответствует давлению в правом предсердии (ДПП) и лишь приблизительно отражает КДО правого желудочка (преднагрузка) и преднагрузку на правые отделы сердца. У здоровых людей, как правило, работа правого и левого желудочков изменяется параллельно, поэтому ЦВД также косвенно отражает заполнение левого желудочка.
ЦВД и ДПП определяются тонусом венозного русла, ОЦК, внутриплевраль- ным давлением, комплайнсом правых отделов сердца, давлением в лёгочной артерии, функцией трикуспидального клапана и др. Существует ряд физиологических и патологических факторов, повышающих ЦВД вне прямой связи с ростом преднагрузки на сердце. Определённую информацию можно получить и при оценке формы кривой ЦВД, соответствующей процессу сердечного сокращения (рис. 5-11). В условиях шока и острого повреждения лёгких ЦВД и ДПП не коррелируют с внутригрудным объёмом крови и степенью ОЛ.
Согласительная конференция, посвящённая гемодинамическому мониторингу при шоке (Париж, 2006), не рекомендует оценивать ответ на инфузионную нагрузку на основании только лишь маркёров преднагрузки (ЦВД/ДПП) и ДЗЛК, тем не менее при шоке и низких значениях статических маркёров преднагрузки (ЦВД/ ДПП Давление в лёгочной артерии и давление заклинивания лёгочной артерии
Измерение ДЛА и ДЗЛК обычно осуществляют инвазивно, устанавливая баллонный флотационный катетер Сван-Ганца в лёгочную артерию (рис. 5-12).
Можно проводить неинвазивное опосредованное определение ДЛА, измеряя скорость кровотока в лёгочной артерии с помощью допплерографии. Катетер Сван-Ганца устанавливают через магистральный (чаще яремная или подключичная вена) или периферический венозный доступ с использованием специального венозного интродьюсера. Находящийся на кончике катетера баллончик раздувают воздухом или С02, и он, следуя направлению кровотока, увлекает за собой катетер, который устанавливают в лёгочную артерию под контролем давления в различных отделах малого круга кровообращения (см. рис. 5-12).
Катетеризация лёгочной артерии открывает путь к регистрации ряда важных гемодинамических параметров: ЦВД, ДПП, систолического, диастолического и среднего ДЛА, ДЗЛА, О ДЛА, ДЗЛК, Зу02, а также (во многих моделях катетера Сван-Ганца) - СВ (табл. 5-2).
При определённой модификации (подогреваемый элемент и фиброоптический источник/проводник света и др.) СВ и Зу02 можно регистрировать непрерывно. Раздутие баллона на кончике катетера ведёт к «заклиниванию» лёгочной артерии, при этом результирующее давление, регистрируемое дистальнее баллона, отражает конечно-дистолическое давление в лёгочных венах, которое лишь приблизительно характеризует давление в левом предсердии и преднагрузку на левый желудочек.

Повышение ЦВД/ДПП
Правожелудочковая
недостаточность
Пороки сердца
Г иперволемия
Тромбоэмболия легочной артерии
Легочная гипертензия
Тампонада сердца
Увеличение внутри грудного давления при ИВЛ (ПДКВ), гемо- и пневмотораксе, ХОБЛ
Повышение внутри брюшного давления при парезе ЖКТ, беременности, асците
Повышение сосудистого тонуса при симпатической стимуляции, введении вазопрессорных или инотропных препаратов

Таблица 5-2. Основные гемодинамические показатели и расчётные величины Показатель Расчёт/комментарии Нормальные значения Статическое давление АД Систолическое АД (АДмит) 90-140 мм рт.ст. Диастолическое АД (АДшмгт) 60-90 мм рт.ст. Среднее АД (АДгп) (АД, + 2ХАД_т)/3 70-105 мм рт.ст. ЦВД - 4-9 мм рт.ст. Давление в лёгочной артерии (ДЛА) Систолическое ДЛА (ДЛАигт) 15-25 мм рт.ст. Диастолическое ДЛА (ДЛАпияг7) 8-15 мм рт.ст. Среднее ДЛА (ДЛАг,) (ДЛА_ + 2 х ДЛА ]иагт)/3 10-20 мм рт.ст. Давление заклинивания легочных капилляров - 6-12 мм рт.ст.
Динамические параметры (чувствительность к инфузионной нагрузке) Вариабельность систолического давления АД максимальное-АД мини-
""СИС1 ^СИСТ...1.МКП МИН.7" Г Сердечный выброс и производные показатели Сердечный выброс (СВ) ЧСС х УО/ЮОО 4,0-8,0 л/мин Сердечный индекс (СИ) СВ/3 тела 2,5-4,0 л/(минхм2) Ударный объем (УО) СВ/ЧССх 1000 60-100 мл Ударный индекс (УИ) СИ/ЧСС х 1000 35-60 мл/м2 ОПСС 79,9 х (АДгп - ДПП)/СВ 80-1200 динхс/см5 Индекс ОПСС 79,9х(АДгп - ДПП)/СИ 80-1200 динхс/(см5хм2) Легочное сосудистое сопротивление 79,9 х (ДЛА п - ДЗЛК)/СВ Волюметрические показатели Индекс глобального конечнодиастолического объёма (ИГКДО) ИВГТО - ИЛОК = (СИ х МТ1) - (СИ х 031) 680-800 мл/м2 Индекс внутригрудного объема крови 1,25 х ИГКДО 800-1000 мл/м2 (ИВГОК) Индекс внесосудистой воды лёгких (ВГТО - ВГОК)/М тела 3-7 мл/кг (ИВСВЛ) Примечания. 5 тела - площадь тела, М тела - масса тела, ЧСС - частота сердечных сокращений, ИВГТО - индекс внутригрудного термального объёма (СИ х МТ1), ИЛОК - индекс лёгочного объёма крови.
Следует помнить, что истинный маркёр преднагрузки - КДО левого предсердия, связь которого с давлением варьирует в зависимости от ряда условий. Как и при регистрации ЦВД, здесь действует правило «давление - это ещё не объём». Кроме того, ОДЛА адекватно отражает конечно-диастолическое давление в левом предсердии лишь тогда, когда катетер находится в сосудах третьей перфузионной зоны Веста (рис. 5-13). Следует различать давление заклинивания лёгочной артерии
(ДЗЛА), окклюзионное давление лёгочной артерии (ОДЛА) и давление заклинивания лёгочных капилляров (ДЗЛК). О ДЛА измеряют при раздутом баллоне, оно соответствует давлению в левом предсердии. ДЗЛА измеряют при окклюзии лёгочной артерии катетером Сван-Ганца с нераздутым баллоном. ДЗЛА в большей степени характеризует давление в лёгочных венах. ДЗЛК рассчитывают математически на основании ОДЛА и ДЗЛА. Оно соответствует давлению в лёгочных капиллярах.
В последние годы катетер Сван-Ганца утратил прежнюю популярность, поскольку ряд исследований продемонстрировал, что его использование не только не оказывает положительного влияния на клинический исход, но даже может увеличивать частоту осложнений и повышать летальность. Выяснилось, что применение катетера Сван-Ганца у пациентов с застойной сердечной недостаточностью при крайне рискованных вмешательствах и остром повреждении лёгких не даёт ощутимых преимуществ.
На сегодняшний день катетеризация лёгочной артерии уже не используется в качестве основного метода измерения СВ, и её всё активнее вытесняют менее инвазивные исследования, в частности транспульмональная термодилюция. Нельзя рекомендовать изолированное измерение ОДЛА для прогнозирования ответа на инфузионную нагрузку при шоке.
Установку катетера Сван-Ганца сопровождает рост частоты аритмий, тромбоэмболических, а иногда и инфекционных осложнений. Наиболее опасные осложнения - узлообразование катетера, сепсис, полная блокада и перфорация сердца, разрыв лёгочной артерии. Использование катетера Сван-Ганца абсолютно противопоказано при полной блокаде правой ножки пучка Гиса (может развиться полная блокада сердца), а также при непереносимости латекса, если последний входит в состав баллона.
Несмотря на то что в современных обзорах катетеризацию лёгочной артерии нередко характеризуют как «высокоинвазивный» метод мониторинга, он сохраняет своё значение при кардиохирургических вмешательствах, у пациентов ОРИТ с выраженной лёгочной гипертензией и, несомненно, в современных научных исследованиях.
СЕРДЕЧНЫЙ ВЫБРОС
СВ - результирующая величина, определяемая пред-, постнагрузкой, миокардиальной сократимостью, ЧСС и функцией клапанного аппарата сердца. Ряд показателей, лишь относительно характеризующих преднагрузку (ЦВД, ОДЛА), частично утрачивает своё значение при непосредственном и особенно при непрерывном измерении СВ. Наряду с концентрацией гемоглобина и 5а02 СВ - один из основных показателей, определяющих доставку кислорода к органам. В то время как первые две переменные относительно стабильны и легко могут быть скорри- гированы, измерение СВ может давать значимые преимущества в поддержании системной доставки кислорода. В наши дни для измерения СВ доступен широкий спектр инвазивных и неинвазивных методов (рис. 5-14).
Инвазивные методы (дискретное и непрерывное измерение)
Препульмональная термодилюция подразумевает использование термистор- ного катетера Сван-Ганца. Для расчёта СВ используют метод Стюарта-Гамильтона, основанный на определении площади термодилюционной кривой (рис. 5-15).

Методы измерения сердечного выброса

Рис. 5-14. Методы измерения сердечного выброса. СВ - сердечный выброс.

Болюсное введение в правое предсердие раствора, охлаждённого (При одновременном использовании препульмональной и транспульмональной термодилюции кроме статических давлений возможно измерение объёма правого и левого отдела сердца, а также ФВ правого желудочка. Наряду с этим катетеризация лёгочной артерии позволяет рассчитать индексы, отражающие работу правого и левого желудочка, а также содержание, транспорт и потребление кислорода.
Траеспульмоеальеая дилюция индикатора также основана на методе Стюарта-Гамильтона, но с определением температуры крови (концентрации индикатора) в магистральной системной артерии. Индикатор проходит через все отделы сердца, лёгочное сосудистое русло и аорту, а не только через правые отделы сердца, как при катетеризации лёгочной артерии. Преимущество этой методики перед препульмональной термодилюцией состоит в измерении ряда дополнительных объёмных (волемических) параметров на основании углублённого анализа дилюционной кривой. В последние годы изолированная транспульмональная тер- модилюция практически заместила метод транспульмональной термохромодилю- ции, основанный на одновременном введении индикатора-красителя, и активно конкурирует с препульмональной термодилюцией.
Непрерывное измерение СВ («с каждым ударом сердца», «ЪеаМо-Ьеа1») основано на анализе изменений формы и площади пульсовой волны, комплайнса артериального русла/аорты, ЧСС, АД и других факторов (рис. 5-16). Метод реализован в ряде современных технологий.
® Технология Р1ССО (Р1ССОр1ш). Повторная калибровка путём транспульмональной термодилюции необходима каждые 4-6 ч. Катетер устанавливают в магистральную (например, в бедренную) артерию.
Технология Ри1$еСО (1ЛЙСО). Калибровка путём транспульмональной термодилюции хлорида лития (ЫС1) необходима каждые 8 ч. Катетер можно устанавливать в периферическую (лучевую) артерию.
Технология ССО (У1%Иапсе 1-11). Используется специальный КСГ с нагре-ваемым элементом (филамент). Также возможно непрерывное измерение КДО сердца и Зу02.

Вариабельность систолического давления (ВСД / ЗР\/) = АДСИСТ макс - АД0ИСТ мин (за 1 дыхательный цикл) Вариабельность пульсового давления (ВПД / РРУ) = (АДпульс макс + АДпульс мин) / АДпульс сред Вариабельность ударного объёма (ВУО / 3\А/) = (УОмакс + У0МИН) / УОсред
Непрерывный расчет сердечного выброса (принцип Кети-Шмидта)

Технология РКАМ (ргеззиге гесогйгщ апа1уЫса1 теХкос!). Предварительной калибровки не требуется.
Технология СОШАУЕР1о\уТгаск™ (Уг#г7ео). Предварительной калибровки не требуется. Возможно значимое занижение СВ по сравнению с эталонным измерением при помощи препульмональной термодилюции.
Ультразвуковая допплерография за счёт измерения линейной скорости кровотока в аорте позволяет определить УО, СВ и постнагрузку. Наиболее распространена чреспищеводная допплерография с помощью технологии ОеНех. Метод характеризуется неинвазивностью и быстротой в получении параметров, однако его результаты во многом приблизительны и зависят от положения датчика в пищеводе.
Неинеазивные методы измерения сердечного выброса
По точности и эффективности все неинвазивные методы уступают термодилю- ционным. В настоящее время существует два основных метода для непрерывного и дискретного неинвазивного определения СВ.
Модифицированный анализ содержания С02 в конце выдоха (N100, «рагНаI С02 геЪгеаШ炙) - неинвазивная модификация метода Фика. Метод недостаточно точен и зависит от показателей вентиляции и газообмена.
Импедансная кардиография (1СС, Вю2, ЫАЗА, США) грудной клетки с помощью специальных электродов в точке сердечного цикла, соответствующей деполяризации желудочков, также даёт возможность оценить СВ, УО и общее периферическое сопротивление. Метод чувствителен к электрической интерференции и правильности наложения электродов. Точность биоимпе- дансометрии сомнительна в критических состояниях (ОЛ, шок, объёмная перегрузка и др.).
Косвенно об адекватности измеренного СВ потребностям тканей в 02 можно судить по градиенту между центральной и периферической температурой (в норме 1 мл/(кгхч)], концентрации лактата, данным желудочной тонометрии, сублингвальной капнографии, ортогональной поляризационной спектральной визуализации кровотока, а также по Зх02 или Зсу02. Однако, за исключением определения лактата, вопрос о необходимости рутинного использо-вания этих методов при шоковых состояниях остаётся открытым.
ДИНАМИЧЕСКИЙ МОНИТОРИНГ И ОЦЕНКА ОТВЕТА НА ИНФУЗИОННУЮ ТЕРАПИЮ
Методы так называемого динамического мониторинга используются для оценки волемического статуса пациента, в частности для выявления гиповолемии, прогнозирования эффекта инфузионной терапии на преднагрузку и СВ фиШ гезропФепезз), а также для контроля за проводимой терапией. В рамках динамического мониторинга описаны разнообразные тесты, позволяющие оценить ряд параметров (см. рис. 5-16, см. табл. 5-2).
Вариабельность систолического давления - разность между максимальным (достигается сразу после начала аппаратного вдоха) и минимальным (к окон-чанию вдоха) систолическим АД в течение одной респираторной фазы.
Вариабельность пульсового давления - изменения пульсового давления (в %), средняя разность между наивысшим и наименьшим его значением за последние 30 с.
Вариабельность ударного объёма - изменения УО (в %), среднее значение разности между наивысшим и наименьшим его показателем за последние 30 с.
К прочим показателям относят также пульс-оксиметрию с оценкой формы плетизмографической волны, изменение диаметра полых вен, динамику скорости аортального кровотока и длительность периода, предшествующего изгнанию.
Применяют такие пробы, как респираторный тест на вариабельность систолического давления (КЗУТ-тест) и тест с подниманием ног. Вышеперечисленные показатели и тесты информативны только в тех случаях, когда сохраняется синусовый ритм и полностью отсутствуют попытки спонтанного дыхания (ИВЛ).
Динамические изменения ЦВД также более информативны, чем статические повторные измерения, как и при измерении АД, существуют тесты, позволяющие по вариабельности ЦВД прогнозировать реакцию СВ на инфузионную нагрузку и потребность в ней. Описана динамическая реакция ЦВД на спонтанный вдох пациента или на принудительное создание положительного давления в дыхательных путях.
ВОЛЮМЕТРИЧЕСКИЙ (ОБЪЁМНЫЙ) МОНИТОРИНГ Инвазивные методы
В настоящее время инвазивный волюметрический мониторинг основан на рассмотренных выше методах препульмональной и транспульмональной термо- дилюции. Следует отметить, что последний подход завоёвывает всё большую популярность, что связано с работами, говорящими о нецелесообразности рутинного применения катетера Сван-Ганца. Основные волюметрические параметры - производные величины, расчёт которых основан на анализе кривой разведения индикатора. Один из наиболее точных методов волюметрического мониторинга - термохромодилюция (метод «парного индикатора»), основанный на дилюции диффундирующего (выходящего за пределы сосудистого русла - охлаждённый раствор) и недиффундирующего (не покидающего сосудистого русла - раствор красителя) индикаторов. Хотя этот метод стал основой для разработки упрощённой изолированной транспульмональной термодилюции, его применение в настоящее время крайне ограничено. Углублённый анализ термодилюционной кривой основан на расчёте среднего времени прохождения индикатора (МТ1;) и времени нисходящей части кривой (Б51:). Одновременный расчёт СВ, МТг и В51; позволяет определить волюметрические показатели (рис. 5-17).
Наиболее важные волюметрические показатели (см. табл. 5-2) - глобальная фракция изгнания (ГФИ, СЕР), глобальный конечно-диастолический объём (ГКДО, СЕБУ), внутригрудной объём крови (ВГОК, ГГВУ) и внесосудистая вода лёгких (ВСВЛ, ЕУЬШ). В настоящее время ГКДО и ВГОК считают наиболее точ-
1п с(1) е 1 У У * А* 051: МТ1
А*, время появления дилюционной кривой (Арреагапсе йте]
МП, среднее время прохождения кривой (Меап ТгапзИ: йте)
034, время экспоненциально убывающей части кривой (0о\д/п-81оре Ите)
Термохромодилюция ОсНОВНЫв ВОЛЮМвТрИЧеСКИв Изолированная ГОШ) показатели термодилюция (ИТД)
ВГТО = СВ х МТ1 КДОЛП КДОПЖКДОЛП кдолж ВГТО = СВ хМТ1
ными и воспроизводимыми из доступных маркёров преднагрузки. Основанная на ГКДО оптимизация терапии кардиохирургических пациентов сопровождается уменьшением потребности в вазопрессорной и инотропной терапии, меньшей продолжительностью ИВЛ и сокращением сроков пребывания в ОРИТ.
Измерение внесосудистой воды лёгких
Количественная оценка содержания жидкости в лёгких признана клинически важным методом мониторинга. Показатель ВСВЛ отражает проницаемость лёгочного сосудистого русла, что косвенно характеризует глобальную прони-цаемость эндотелия на фоне «синдрома капиллярной утечки». Одновременная оценка жидкостного баланса лёгких и преднагрузки на сердце служит основой для сбалансированного проведения инфузионной и респираторной терапии, а также для назначения препаратов катехоламинового ряда или диуретиков паци-ентам ОРИТ.
В наши дни для измерения ВСВЛ наиболее широко используют метод транспульмональной термодилюции (см. рис. 5-17). В сравнении с катетером Сван- Ганца, динамическое измерение ВСВЛ с надлежащей коррекцией терапии позволяет сократить продолжительность респираторной поддержки, время пребывания пациента в ОРИТ и, возможно, улучшает исход заболевания. В ряде исследований показано, что значения ВСВЛ (в отличие от ЦВД и ДЗЛК) коррелируют с составляющими шкалы повреждения лёгких: комплайнсом, индексом оксигенации и степенью рентгенологических изменений, а также обладают чётким прогностическим значением.
Неинвазивные методы
Неинвазивные методы определения волюметрических гемодинамических показателей включают эхокардиографию и томографическую плетизмографию.
Трансторакальная и чреспищеводная эхокардиография позволяет оценить анатомию сердца в динамике. С помощью метода можно измерить заполнение левого желудочка (конечно-диастолический и конечно-систолический объём), фракцию изгнания, оценить функцию клапанов, глобальную и местную сократимость миокарда, выявить зоны гипо-, дис- и акинезии. Кроме того, эхокардиография даёт возможность обнаружить выпот в полости перикарда и диагностировать тампонаду сердца. Ценность метода зависит от навыков и опыта оператора в получении и интерпретации ультразвуковой картины.
Ряд неинвазивных методов: метод смешанных инертных газов (МЮЕТ), УЗИ, КТ и МРТ - позволяет количественно или полуколичественно оценить степень ОЛ. Последние два метода (без контрастирования) не позволяют дифференцировать ВСВЛ, кровь лёгочных сосудов и элементы лёгочной паренхимы. Ультразвуковая оценка («феномен хвоста кометы») ограничена случаями кардиогенного ОЛ и не может быть использована при остром повреждении лёгких в связи со схожей акустической картиной фиброзных изменений.
ЗАКЛЮЧЕНИЕ
Показатели, получаемые с помощью современного мониторинга гемодинамики, служат ценным ориентиром в ходе анестезии и интенсивной терапии критических состояний. Мониторинг гемодинамики обладает важным прогностическим значением, может улучшить клинический исход и уменьшить частоту осложнений при использовании современных диагностических и лечебных методов. Несмотря на непрерывное развитие и совершенствование, пока не существует универсального метода мониторинга кровообращения, улучшающего исход заболевания и снижающего летальность реанимационных больных. Для того чтобы оценить новые методы мониторинга гемодинамики, требуются широкомасштабные клинические исследования.
СПИСОК ЛИТЕРАТУРЫ
Бунятян А.А., Рябов Г.А., Маневич А.З. Анестезиология и реаниматология. - М.: Медицина, 1984.
Интенсивная терапия / Под общ. ред. П. Марино. - М.: ГЭОТАР-Мед, 1998.
Ап1:опеШ М., Ьеуу М., Апс1ге\У5 Р.]. е! а1. Нетойупагтс топйопп^ т $Ьоск апс! трНса- Иоп8 1ог тапа§етеп1;: 1п1:егпа1:юпа1 Сопзепзш СопГегепсе. Раш, Ргапсе, 2006, Арп1 27 -28 // Шегшуе Саге Мес1. - 2007, РеЬ.
Вегпагс! С.К., Зорко С., Сегга Р. е{ а1. Ри1топагу аПегу саГЬе^епгаИоп апс! сНтса1 оиГсоте$: 1;Ье ЫаИопа1 НеаП, Ьип§, апс! В1оос1 1п${лШ{;е апс! Еоос! апс! Втщ АсЬшшзГгаИоп ШогкзЬор героП: сопзепзиз зШетеп! //]АМА. - 2000. - Уо1. 283 - Р. 2568-2572.
СоерГеП М.5.С., Кеи1ег Б.А., Акуо1 В.е1 а1. Соа1-сНгес{;ес1 Яшс1 тапа§етеп1; гейисез уа$орге$- зог апс! са!;есЬо1атте и$е т сагсИас $иг§егу ра^етз // 1п1;еп51уе Саге Мес!. - 2007. - Уо1. 33. - Р. 96-103.
Клгоу М.У., Кигкоу УУ., Е^егШаез I,.].Ех1;гауа$си1аг 1ип§ \уа!ег т 8ер815 // УеагЬоок о!" Мегшуе Саге апс! Етег^епсу МесНсте, 2005 / Ес!. ].Ь. Утсеп!. - ВегНп; НеЫеШег^; Ы.У.: 5рпп§ег-Уег1а§, 2005. - Р. 449-461.
Ма1Ьгат М., Бе Роиег Т., Эеегеп Э. Соз^-е^есИуепезз оГ гшттаПу туа$1уе Ьето^упапж тот!;опп§ // УеагЬоок оГ Мегшуе Саге апс! Етег^епсу МесНсте, 2005 / Ес!. Утсеп!: - ВегНп; Не1с1е1Ьег§; Ы.У.: 5рпп§ег-Уег1а§, 2005. - Р. 603-631.
Магк].В., 51аи§Ь1;ег Т.Р. СагсНоуа$си1аг шопИопп^ // Апез{;Ье$1а. - 6гЬ ес] / Ес!. К.Э. МШег - Е1$еУ1ег СЬигсЬШ иут§5{;опе, 2005. - Р. 1265-1362.
Ошск СиМе 10 СагсНори1топагу Саге / Ес!. Р.К. 1лсЬ|;еп1:Ьа1 - Ес!\уагс15 Шезаепсез, 2002. - Р. 1-112.
Шуегз Е., Ы^иуеп В., Нау51ас! 5. е! а1. Еаг1у Соа1-01гес1;ес! ТЬегару СоНаЬогаИуе Сгоир: Еаг1у еоа1-сНгес1;ес1 гЬегару т 1;Ье Ггеа1;теп1 о!" зеуеге 5ер$1$ апс! $ер!лс $Ьоск // N. Егш1. Т. Мес!. - 2001. - Уо1. 345 - Р. 1368-1377.
Ко^егз Р. 1пуа51уе Ьето^упагшс тотШпп^ // АррПес! СагсНоуа$си1аг РЬу$ю1о§у / Ес!. М.К. Ртзку - ВегНп; Не1с1е1Ьег§; Ы.У.: 5рпп§ег-Уег1а§, 1997. - Р. 113-128.
ТЬе Е5САРЕ 1пуе$и§а1;ог$ апс! Е5САРЕ 5Шс1у СоогсНпаШгз. Еуа1иа1;юп §Шс!у оГ соп§е$1пуе ЬеаП ГаНиге апс! ри1топагу аПегу сагЬеГепгаиоп е^ес^уепезз: 1:Ье Е5САРЕ 1па1 // ]АМА - 2005. - Уо1. 294. - Р. 1625-1633.
ТЬе 1п1:еп51Уе Саге ШИ Мапиа1 / Ес!. Р.Ы. Ьапкеп. - Ш.В. Заипйегз, 2001.
МЬее1ег А.Р., Вегпагс! С.К., ТЬотрзоп В.Т. е* а1. Ри1шопагу-аг1;егу уегзиз сепГга1 уепош сагЬе!;ег 1о §шс1е 1хеа{;теп1 оГ аси1;е 1ип§ т;щгу // N. Еп§1. ]. Мес!. - 2006. - Уо1. 25, N 354 - Р. 2213-2224.


Инвазивный гемодинамический мониторинг занимает одно из ведущих мест в методологии современной ИТ. Такой мониторинг превращает общие, зачастую неоднозначные представления о сути и течении патологического процесса в конкретную диагностическую концепцию. Только под контролем показателей ЦВД инфузионная и/или кардиотропная терапия становится по настоящему управляемой и высокоэффективной [Рябов Г.А., 1998].
Катетеризация различных отделов сердечно-сосудистой системы давно уже вошла в практику, доступную едва ли не любому лечебному учреждению (при техническом обеспечении). При этом «золотым» стандартом исследования ЦВД признан метод катетеризации легочной артерии по Свану-Ганцу . Суть его сводится к продвижению катетера специальной конструкции через полую вену, правое предсердие и правый желудочек в одну из центральных ветвей легочного ствола.
16.1. Катетеризация легочной артерии
Показания. Мониторинг ЦВД прямым, «кровавым» способом имеет несомненную диагностическую пользу при ряде критических состояний. Эта польза перевешивает опасность, связанную с собственно инвазивным характером подобной манипуляции. И хотя некоторые специалисты считают неоправданным ее широкое применение, инвазивный гемодинамический мониторинг позволяет иногда улучшить результаты лечения.
Катетеризацию проводят при:
тяжелой артериальной гипотензии, особенно при неэффективности пробной нагрузки жидкостью;
септическом шоке;
подозрении на тампонаду сердца;
остром инфаркте миокарда с нестабильной гемодинамикой;
хронической (застойной) сердечной недостаточности, когда утрачена чувствительность организма к диуретикам;
респираторном дистресс-синдроме;
подозрении на некардиогенный характер отека легких (передозировка героина, ацетилсалициловой кислоты и др.);
операции на открытом сердце;
торакоабдоминальном, высоко-травматичном хирургическом вмешательстве (субтотальная резекция пищевода, мультиорганные резекции в онкологии, прочее);
обострении хронических неспецифических заболеваний легких
(ХНЗЛ), при которых потребовалось проведение ИBJl (подозрение на скрытую диастолическую дисфункцию сердца).
Катетеризация легочной артерии показана в тех ситуациях, когда данные инвазивных измерений помогают в выборе рационального, наиболее эффективного метода лечения. Каков механизм критического состояния (гипотензии, шока, отека легких, прочего)? Как лучше обеспечить адекватное кровообращение - продолжить введение жидкостей, перейти к инотропной поддержке, ввести диуретики или воспользоваться вазодилататорами? Принципиальный характер подобных вопросов должен оправдать выбор дорогостоящей и достаточно опасной процедуры катетеризации легочной артерии.
Противопоказания. Риск фатальных осложнений катетеризации легочной артерии превышает возможную пользу гемодинамического мониторинга при:
тяжелой неконтролируемой коагулопатии. Процедура канюляции центральной вены достаточно травматична и сопровождается преднамеренным расширением ее входного отверстия до 3 мм в диаметре. При подключичном доступе компрессия вены затруднена, и коагулопатическое кровотечение может угрожать жизни;
выраженной гипотермии (температура тела воспалении в зоне предполагаемого венозного доступа;
отсутствии необходимого оборудования (дефибриллятора, ЭКГ-монитора, блока измерения прямого внутрисосудистого давления).
Техника. В качестве доступа можно использовать любую крупную вену (общую бедренную, внутреннюю яремную, подключичную или плечеголовную). После пункции вены и введения в ее просвет металлической струны входное венозное отверстие расширяют с помощью специального бужа. Далее, используя буж в качестве направи-теля, в просвет вены вводят короткий катетер диаметром до 3 мм. Буж со струной удаляют, через короткий катетер внутрь вены проталкивают катетер Свана-Ганца. Процедура завершается расправлением чехла, герметично закрывающего свободную часть катетера Свана-Ганца и обеспечивающего стерильность всех последующих с ним манипуляций.
В отличие от селективной катетеризации других отделов сердечнососудистой системы зондирование легочной артерии не требует рентгеноскопического контроля. Текущее месторасположение катетера Свана-Ганца может быть точно определено по форме и амплитуде кривой кровяного давления. Кроме того, необходимая ориентация катетера в кровотоке (в направлении к легочной артерии) поддерживается специальным баллончиком, который фиксирован на дистальной части катетера (рис. 16.1). На время процедуры катетеризации этот баллончик раздувается воздухом и превращается в своеобразный парус. Стандартный катетер Свана-Ганца имеет, по меньшей мере, два сквозных канала. Один из них открывается на самом кончике катетера, а другой - на 30 см проксимальнее. Эти каналы заполняются жидкостью (изотоническим раствором натрия хлорида), посредством которой все колебания кровяного давления передаются на тензометрический датчик. После переработки механического момента электрический сигнал поступает в монитор, на экране которого все изменения давления отображаются графически в режиме реального времени (в виде синусоидальной кривой).

Рис. 16.1. Общий вид инвазивного мониторинга ЦГД.
1 - монитор; 2 - шприц с температурным индикатором; 3 - катетер Свана-Ганца: а - баллончик; б - канал баллончика; в - дистальный температурный датчик; г - проксимальный температурный датчик; д - разъем дистального температурного датчика; е - вход проксималъ-ного канала; ж - вход дистального канала; з - выход проксимального канала; и - выход дистального канала.
Гемодинамика правого предсердия, правого желудочка и легочной артерии принципиально различна. Соответственно для каждого из этих отделов сердечно-сосудистой системы характерна особая кривая кровяного давления.
Правое предсердие. Для полой вены и правого предсердия типична низкоамплитудная кривая давления, которая подвержена существенному влиянию перемен внутригрудного давления на вдохе и выдохе. На такой кривой принято выделять 2 синусоидальные волны (рис. 16.2).
Положительный пик первой такой волны (пик а) обусловлен предсердной систолой. На ЭКГ он проецируется вслед за зубцом P. Далее пик а сменяется углублением Jc, которое возникает при диастоле предсердия. При высокой разрешающей способности монитора в этой фазе можно отметить дополнительный положительный пик с, соответствующий моменту закрытия трикуспидального клапана.
По мере заполнения предсердия кровью давление в нем начинает повышаться. На кривой давления появляется 2-я синусоидальная волна с положительным пиком?, максимум которого приходится на систолу желудочка. Соответственно пик? совпадает с зубцом T. После систолы желудочка и открытия трикуспидального клапана кровь из предсердия устремляется самотеком в полость желудочка (фаза быстрого наполнения). В этот момент на кривой давления возникает углубление у.
С последующей предсердной систолой (фаза диастазиса) вновь появляется пик я, начинается новый цикл колебаний кровяного давления. Размах подобных колебаний в норме составляет 2-10 мм рт.ст. Усредненное их значение и есть собственно ЦВД.
Правый желудочек. После продвижения кончика катетера за трикуспидальный клапан форма кривой давления кардинально меня-

Рис. 16.2. Типичная кривая ЦВД. Пояснение в тексте.
ется. В систолу давление в правом желудочке (ДПЖ) повышается до 15-30 мм рт.ст., в диастолу оно также быстро снижается до значения, равного ЦВД. На экране монитора при этом - высокоамплитудные колебания остроконечной формы (рис. 16.3).
Легочная артерия. Следующий этап - продвижение катетера в ствол легочной артерии. Кривая давления вновь претерпевает изменения. В систолу давление в легочной артерии (ДЛА) повышается до того же уровня, что и в правом желудочке. Однако скорость такого подъема замедляется. Кривая давления приобретает более наклонный и сглаженный контур. На нисходящей части этой кривой появляется отчет-

Рис. 16.3. Типичная кривая ДПЖ.
ливая дикротическая вырезка, соответствующая моменту закрытия клапана легочной артерии и началу диастолы правого желудочка (рис. 16.4). В отличие от миокарда легочная артерия в диастолу не расслабляется, и давление в ней остается относительно высоким (8-15 мм рт.ст.). Одномоментный подъем нижней границы колебаний кровяного давления по мере продвижения катетера Свана-Ганца и служит наиболее убедительным признаком его флотации в ствол легочной артерии.
Положение заклинивания. Дальнейшее продвижение катетера Свана-Ганца приведет к его заклиниванию в одной из центральных ветвей легочной артерии, диаметр которой будет соответствовать диаметру раздутого баллончика (1 - 1,5 см). На экране монитора появится кривая давления, напоминающая по форме таковую в полости правого

Рис. 16.4. Типичная кривая ДЛА. D - дикротическая вырезка.
предсердия (см. рис. 16.2). Аналогичные синусоидальные волны (с тем же буквенным обозначением) будут обусловлены деятельностью левых отделов сердца. Усредненное значение всех указанных колебаний - это ДЗЛА.
При достижении положения заклинивания процедура считается законченной. Баллончик катетера
сдувается, начинается мониторное наблюдение за давлением в легочной артерии (через дистальный канал) и правом предсердии (через проксимальный канал). Все остальные измерения выполняются дискретно, по необходимости. Нормальные показатели кровяного давления в правых отделах сердца приведены в табл. 16.1.
Таблица 16.1. Нормальные показатели давления в малом круге кровообращения, измеренного прямым методом Отдел Давление Интервал нормы, мм рт.ст. Правое предсердие Среднее ЦВД 0-7 Правый Систолическое 15-25 желудочек Диастолическое 0-7 Легочная Систолическое 15-25 артерия Диастолическое 8-15 Среднее 10-20 Заклинивания 6-12 Левое предсердие Среднее 6-12 16.2. Теория и практика заклинивания легочной артерии
Клинический смысл измерения ДЗЛА. Полагают, что при заклинивании одной из центральных ветвей легочной артерии кровоток в ее бассейне полностью пресекается. От кончика катетера до соответствующей одноименной вены через все вставочное микроциркуляторное русло теперь проходит неподвижный столб крови . Соприкосновение этой статичной крови с сохранившимся магистральным кровотоком происходит в так называемой точке «J» (от английского joint - соединение, сочленение). Она располагается на уровне легочных вен, в непосредственной близости от устья левого предсердия (рис. 16.5).
Теоретически давление на кончике катетера в положении заклинивания соответствует давлению в точке «J» (Pj). В свою очередь Pj идентично давлению в полости левого предсердия (Рлп) И, наконец, Рлп в норме не отличается от давления в левом желудочке в самом конце его диастолы (КДДлж):
ДЗЛА -Pj- Рлп ~ КДДЛЖ.
Таким образом, заклинивание проксимального, артериального отдела легочного кровотока позволяет измерить давление в его дистальной, венозной части. С клинической точки зрения на основе этого измерения можно дать оценку:
диастолического наполнения левых отделов сердца;
гидростатического давления в легочных венах.
Диагностическую концепцию можно сформулировать следующим образом. При ДЗЛА менее 6 мм рт.ст. наполнение левого желудочка по опыту клинических наблюдений признается недостаточным. Производительность сердца будет заведомо ограничена столь низкой преднагрузкой. В этой ситуации необходимо интенсифицировать введение жидкости. При ДЗЛА более 12 мм рт.ст. форсированные инфузии считаются нецелесообразными. Повышение давления наполнения сверх этой величины, как правило, не приводит к приросту работы сердца. Более того, усугубляется опасность объемной перегрузки малого круга кровообращения. Таким образом, ДЗЛА в интервале 6- 12 мм рт.ст. считается неким физиологическим оптимумом, на поддержание которого и следует направить свои усилия.
Переоценить клиническую значимость такого алгоритма чрезвычайно трудно. Дозированное введение жидкости в точном соответствии с текущей гемодинамической ситуацией является, пожалуй, самой насущной потребностью современной анестезиологической и реаниматологичес-кой практики. Контролируемая инфузионная терапия означает эффективную сердечную деятельность, эффективную доставку кислорода тканям и в конечном итоге эффективное лечение критических состояний.
Следует, однако, заметить, что практика использования ДЗЛА в качестве критерия волемии сталкива-

Рис. 16.5. ДЗЛА как эквивалент конечно-диасто-лического давления левого желудочка.
Л А - легочная артерия; ЛВ - легочная вена; ЛК - легочные капилляры; ПЖ - правый желудочек; ПП - правое предсердие; точка «J» обозначена стрелкой. Промежутки А и Б - см. пояснение в тексте.
ется в реальной жизни с многочисленными обстоятельствами (как технической, так и физиологической природы), которые отменяют тождественность ДЗЛА и КДДЛЖ. Незнание или игнорирование этих обстоятельств может свести на нет весь смысл исследования .
Проблема зонального расположения катетера. Непрерывность столба покоящейся крови на всем протяжении от кончика катетера до точки «J» - это основное условие тождественности ДЗЛА и КДДлж (см. рис. 16.5, А). Однако даже в норме легочные капилляры отдельных регионов легкого периодически оказываются сдавленными, а измерительная цепь разорванной.
В соответствии с концепцией J.В. West под влиянием силы земно-
го притяжения кровоток в легочной ткани по мере его удаления от уровня левого предсердия постепенно ослабевает (снизу вверх). С уменьшением кровенаполнения легочной ткани увеличивается его воздушность.
В зоне 1 на верхушке легкого (при вертикальном положении) внутри-альвеолярное давление на вдохе (РА) превышает достаточно слабое давление в артериальном и венозном отделе легочной микроциркуляции (P3 и Pv, соответственно). Кровоток в этой зоне, по сути, отсутствует (рис. 16.6). В нижележащей зоне 2 внутриальвеолярное давление уже уступает АД, но все еще преобладает над венозным. Кровоток здесь зависит главным образом от артериоальвеолярного градиента давления. В основании легкого, зоне 3, внутриаль-

Рис. 16.6. Зоны вентиляционно-перфузионного соотношения (1, 2, 3) в легком при вертикальном (а) и горизонтальном (б) положениях [по West J.В., 1979].
веолярное давление относительно мало, и оно уже не оказывает влияния на легочную перфузию.
Очевидно, что необходимые предпосылки для достоверного измерения РЛП и КДДлж соблюдаются только в зоне 3. За ее пределами существование столь необходимого сквозного сосудистого тоннеля представляется сомнительным, и ДЗЛА отражает скорее наполнение альвеол воздухом, чем наполнение левых отделов сердца кровью.
По наблюдениям J.L. Benumof (1987), в 95 % случаев катетер Свана-Ганца самопроизвольно заклинивается в нижней и средней долях правого легкого. Такое его расположение приходится обычно на зону интенсивного и «независимого» от вентиляции легочного кровотока. В определенных клинических ситуациях размеры этой зоны существенно сокращаются, и анатомические ориентиры теряют свою специфичность.
Гиповолемия, ПДКВ более 10 см вод.ст. и высокообъемная ИВЛ способны радикально изменить венти-ляционно-перфузионное отношение в местах типичного расположения кончика катетера Свана-Ганца. Точка заклинивания (при неизменности ее анатомического положения) может оказаться в условиях, более характерных для зоны 1 или 2.
Соответственно доверительность значения ДЗЛА в отношении диастолического наполнения левых отделов сердца станет сомнительной.
Расположение кончика катетера Свана-Ганца в искомой, 3-й зоне определяют по совокупности следующих признаков :
кривая ДЗЛА представлена двумя отчетливыми синусоидальными волнами (пиками а и?), обусловленными передаточной деятельностью левых отделов сердца;
на кривой ДЗЛА определяются дополнительные дыхательные колебания. По мере спокойного вдоха ДЗЛА понижается на 5- 7 мм рт.ст. При выдохе оно возвращается к исходному уровню. Для принудительной вентиляции характерна обратная зависимость;
на боковых рентгенограммах грудной клетки кончик катетера Свана-Ганца располагается ниже уровня левого предсердия;
ДЗЛА меньше диастолического давления в легочной артерии на 1-4 мм рт.ст.;
величина ДЗЛА меняется не более чем на половину преднамеренного изменения величины ПДКВ.
При неправильном зональном расположении кончика катетера необходимо подтянуть его до устья легочной артерии (при раздутом баллончике!) и повторить процедуру заклинивания. Придание больному положения Фовлера или поворот его на бок повышает вероятность флотации катетера в нужное место.
ДЗЛА и патология левых отделов сердца. Препятствие магистральному венозному кровотоку дистальнее точки «J» (см. рис. 16.5, Б) также нарушает тождественность ДЗЛА и кддлж.
При миксоме левого предсердия, стенозе или недостаточности митрального клапана регистрируемая величина ДЗЛА заведомо превышает истинное давление наполнения левого желудочка. Выбор ДЗЛА в качестве критерия волемии приведет в этой ситуации к недооценке истинной потребности в инфузии.
При резком снижении податливости сердечной мышцы (вследствие тяжелой ишемии или гипертрофии миокарда) КДДЛЖ достигает порой 25 мм рт.ст. и более. Из-за рефлекторного повышения тонуса легочных вен ДЗЛА возрастает, как правило, до 15-20 мм рт.ст. Диагностическая ценность такого показателя также сомнительна.
16.3. Измерение сердечного выброса
Возможности современных систем инвазивного гемодинамического мониторинга не исчерпываются одним только отображением колебаний внутрисердечного давления. С помощью катетера Свана-Ганца можно измерить также CB, а на его основе рассчитать показатели сосудистого тонуса и удельной работы сердца. Только в совокупности всех этих данных гемодинамическая картина приобретает цельный характер.
Принцип метода термодилюции. В настоящее время наиболее распространен метод измерения CB, основанный на принципе разведения индикатора в системном крово-

Рис. 16.7. Вид типичной кривой термодилюции.
По оси абсцисс - температура крови в легочной артерии, по оси ординат - время (в секундах); S - площадь под кривой разведения.
токе: 5 или 10 мл инертного раствора, охлажденного до 5-10 0C, вводят через проксимальный канал катетера в полость правого предсердия. Этот болюс смешивается с окружающей кровью и охлаждает ее. По мере разведения холодного раствора температура крови возвращается к исходной. Подобные перемены регистрируются миниатюрным температурным датчиком, который впаян в дистальную часть катетера (см. рис. 16.1). Дискретность измерений такого датчика составляет порядка десятых долей секунды, а чувствительность - порядка сотых долей градуса. Другой датчик, измеряющий температуру холодного болюса, расположен на входе в проксимальный канал катетера.
По результатам измерений датчика монитор автоматически выстраивает так называемую кривую разведения - график изменений температуры легочной артериальной крови в режиме реального времени (рис. 16.7). Сначала эта температура быстро снижается, затем достаточно медленно возвращается к исходному уровню. Средняя продолжительность колебаний температуры крови приблизительно 30 с. Для удобства анализа кривой разведения используют ее зеркальное отображение с положительной волной.
Оказалось, что площадь под кривой разведения обратно пропорциональна CB. Природа этого феномена очевидна. Чем больше крови изгоняется из правого желудочка, тем больше степень разведения холодного индикатора и тем быстрее его пассаж через легочную артерию. Изменения температуры крови будут незначительными и непродолжительными, а кривая разведения - низкоамплитудной и скоротечной.
При малом CB, напротив, скорость вымывания холодного индикатора замедлена. Смешиваемая с индикатором кровь охлаждается больше, и это охлаждение сохраняется дольше. Соответственно кривая разведения приобретает форму относительно высокой и широкой волны.
Более точное описание зависимости CB от площади кривой разведения дает модифицированное уравнение Стьюарда-Гамильтона:
V-AT-K1-K2 СВ= Tk(f)dt " где V - объем холодного индикатора; ?? - разница исходной температуры крови и температуры индикатора; KI - поправочные коэффициенты на плотность и теплопроводность индикатора; K2 - калибровочный коэффициент; Tk(f)dt - изменения температуры крови как функция времени (площадь под кривой разведения).
Методология измерения CB. Точность измерения CB методом термодилюции зависит главным образом от педантичного соблюдения процедуры исследования.
Неправильное положение кончика катетера (его миграция в дистальные ветви легочной артерии, тесное прилегание к сосудистой стенке) или формирование тромба приводит к изоляции температурного датчика от магистрального кровотока. Регистрируемая в этой ситуации величина CB будет заведомо высокой, а вид кривой разведения - атипичным (с дополнительными волнами). Каждое измерение CB должно предваряться оценкой положения катетера.
Температура индикатора не играет принципиальной роли. Разрешающая способность современных мониторов позволяет использовать даже растворы комнатной температуры без какого-либо ущерба для точности измерения. В то же время стандарт объема и скорости введения болюса должен строго выдерживаться. Недостаток 0,1 мл болюса может привести к искажению величины CB на 0,5-1 л-мин"1. Артефакты измерения также возникают в случаях замедленного введения болюса (более 4 с). Принципиальное значение имеет и синхронность всех введений холодного раствора с какой-либо одной фазой дыхательного цикла (например, в конце вдоха).
Конечным результатом измерения должна быть признана среднеарифметическая величина трех значений CB при условии, если разница между ними не превышала 5 % абсолютной величины показателя.
16.4. Гемодинамический профиль
По результатам измерения CB и прямого давления в камерах сердца рассчитывают «гемодинамический профиль». Он представляет собой совокупность показателей, с помощью которых описывают основные стороны деятельности сердца: сосудистый тонус в большом и малом круге кровообращения, удельную производительность сердца и работу отдельных его отделов.
Среднее артериальное давление (АДСр). Это усредненное значение всех колебаний кровяного давления в магистральной (плечевой) артерии на протяжении систолы и диастолы сердца:
АДсист + (АДдиаст-2) ДДср - з
где АДсист - систолическое давление; АДдиаст - диастолическое давление.
Среднее давление в легочной артерии (ДЛАср) рассчитывают аналогичным образом:
ТТПА ДЛАсист + (ДЛАдиаст-2)
ДЛАср- з
где ДЛАсист - систолическое давление в легочной артерии; ДЛАдиаст - диастолическое давление в легочной артерии.
Сердечный индекс (СИ). Он представляет собой производное от величины CB и площади поверхности тела больного (ППТ):
СИ- СВ
^п ~ ППТ
Показатель ППТ вычисляется по формуле:
ППТ = Рост0"725 - Масса тела0"425 - 0,00718,
где рост пациента выражается в сантиметрах, масса тела пациента - в килограммах.
Расчет СИ вызван необходимостью нивелировать влияние конституциональных особенностей пациента и выбрать единый критерий оценки производительности сердца у худощавых и тучных, мужчин и женщин, стариков и детей.
Ударный объем (УО). Это объем крови, изгоняемый из желудочка за одну его систолу. В этом смысле УО служит косвенным показателем сократимости миокарда. Однако по аналогии с CB адекватность объема отдельной систолы сердца лучше оценивать в соотношении с ППТ. Подобный показатель получил название ударного индекса (УИ):
УИ= или УИ=-,
где ЧСС - частота сердечных сокращений.
Индекс общего и легочного сосудистого сопротивления (ИОСС и ИЛCC). Величина этих индексов отражает количественно то сопро-
тивление, которое должен преодолеть миокард, изгоняя кровь в соответствующий круг кровообращения. В функциональном смысле эти показатели соответствуют понятию постнагрузки сердца (но не исчерпывают его полностью):
(АДСР-ЦВД).80.
иисс ~ си
нпгг (ДЛАСР-ДЗЛА)-80 СИ
где 80 - коэффициент перевода единицы сопротивления в единицу силы (дин).
Индекс ударной работы правого и левого желудочков (ИУРЛЖ и ИУРПЖ). С физической точки зрения любая работа есть некое количество энергии, затраченное на перемещение определенного груза на определенное расстояние.
Применительно к физиологии кровообращения термин «работа» может отражать эффективность деятельности сердца: ведь изгнание одного и того же объема крови из желудочка может сопровождаться совершенно разными энергетическими затратами (как умеренными, так и чрезмерными). Функционально выгодно производить минимум работы при максимуме результата:
ИУРЛЖ = УИ-(АДСР - ДЗЛА)-0,0136; ИУРПЖ = УИ-(ДЛАср - ЦВД)-0,0136,
где 0,0136 - коэффициент перевода единицы давления в единицу работы (гм).
Нормальные величины показателей гемодинамического профиля приведены в табл. 16.2. Следует, однако, заметить, что квалифицированная оценка кровообращения должна основываться в большей степени на динамике всей совокупности гемодинамических показателей в процессе болезни и лечения, чем на абсолютной их величине в какой-либо случайный, по сути, момент.
T а б л и ц а 16.2. Нормальные величины показателей гемодинамического профиля Показатель Интервал нормы Единица измерения CB 4-8 " л-мин"1 СИ 2,5-4 л-мин^-м"2 УО 60-100 мл УИ 33-47 мл-м~2 иосс 1200-2400 дин-с-смГ^м"2 илсс Собственно процедура катетеризации легочной артерии и последующий мониторинг инвазивных давлений не представляют особых трудностей даже при отсутствии специальных навыков. В то же время интерпретация полученных данных и принятие правомочных клинических решений на их основе - это своего рода искусство, аккумулирующее в себе знание всего многообразия нюансов патофизиологии кровообращения.
Оценка преднагрузки сердца. Одна из главнейших практических задач инвазивного гемодинамического мониторинга - это определение потребности больного в инфузиях. Выбор ДЗЛА в качестве критерия волемии основывается на допущении, что КДДлж эквипотенциально КДОЛЖ, которое собственно и служит истинной мерой наполнения левого желудочка. Подобное тождество правомочно только при нормальной податливости миокарда. В практике ИТ, однако, чаще всего приходится иметь дело с пациентами, функциональный статус миокарда которых неизвестен или заведомо скомпрометирован (табл. 16.3).
В этих ситуациях - стандартных для интенсивной лечебной практики - зависимость КДД и КДО имеет нелинейный и в большей мере непредсказуемый характер. Соответственно вывод о нормальном диастолическом наполнении желудочка при нормальной (или даже относительно высокой) величине ДЗЛА будет, скорее всего, ошибочным.
Следует отметить, что использование абсолютной величины ЦВД в качестве меры волемии сопряжено с более частыми и более грубыми ошибками. Гемодинамика правых отделов сердца подвержена существенному влиянию указанных выше экстракардиальных факторов. По опыту наблюдений только отрицательное значение ЦВД достоверно указывает на дефицит преднагрузки сердца. На все остальные результаты измерений ЦВД, какими бы нормальными или высокими они не были, полагаться не следует.
Во избежание подобных артефактов полезно пользоваться пробой с объемной нагрузкой. Она заключается в дозированной внутривенной инфузии под пристальным гемоди-намическим мониторингом. Предпочтение отдают кристаллоидам. Как правило, относительно большой их объем (200-500 мл) переливают в течение 15-20 мин. Необходимые гемодинамические измерения (ЦВД, ДЗЛА, ЧСС, CB) проводят до и немедленно после пробы.
Незначительный (менее 3 мм рт.ст.) подъем давлений наполнения на фоне существенного прироста CB (более 5 % исходной величины) характерен для гиповолемии. В модели Франка-Старлинга такая реакция соответствует восходящей части кривой, когда работа сердца критически зависит от преднагруз-ки. Целесообразно усилить инфузию, поскольку имеющийся дефицит явно ограничивает производительность сердца.
Для так называемой умеренной сердечной недостаточности характерно существенное увеличение при инфузионной нагрузке как ДЗЛА (ЦВД), так и CB. Нормальная производительность сердца пока еще может поддерживаться жидкостной интервенцией, но для этого уже требуется более высокий уровень давлений наполнения. Необходимо подчеркнуть, что абсолютная величина последних не требует коррекции. Наоборот, стимуляция диуреза на этой стадии сердечной недостаточности приведет к падению системной перфузии.
Наконец, при резком приросте давления наполнения и неизменности CB можно ставить диагноз сердечной недостаточности. Форсированные инфузии чреваты объемной перегрузкой кровообращения. Следует искать другие пути повышения производительности сердца (например, инотропные).
Шок. Общепринятая классификация шока основана на совокупной оценке производительности сердца, давлений наполнения и сосудистого тонуса (табл. 16.4).
Показатели СИ ниже 2,5 л-мшГ1 м~2 и ДЗЛА ниже 6 мм рт.ст. свидетельствуют о тяжелой гиповолемии. Содружественное повышение сосудистого тонуса является обычной
Таблица 16.4. Гемодинамический профиль при разных видах шока Вид шока АД CB ДЗЛА И OCC Гиповолемический 4 I I t Распределительный I t J, 4 Кардиогенный I I t t Обструктивный i LU t компенсаторной реакцией, направленной на перераспределение системного кровотока в жизненно важные органы.
Сочетание гипердинамии кровообращения (СИ>4 л-мин^-м"2) и низкого уровня давления наполнения (ДЗЛА Для кардиогенного шока характерны признаки системной гипопер-фузии (СИ>2,5 л-мин^-м"2), системной артериальной гипотензии (АДср ниже 70 мм рт.ст.) и перегрузки малого круга кровообращения. ДЗЛА обычно превышает 18-20 мм рт.ст.
При аналогичном гемодинамическом профиле обструктивный шок (например, при тампонаде сердца) отличается феноменом эквилибрации диастолических давлений. Величины ЦВД, ДЗЛА, ДЛАд и диастолического АД в правом желудочке будут одинаковыми и относительно высокими.
Частная патология сердечно-сосудистой системы. Наблюдение за формой отдельных кривых давления позволяет выявить сопутствующую патологию сердечно-сосудистой
системы. Учет этой патологии необходим и для более корректной оценки инвазивных данных, и для выбора более эффективной терапии.
Иногда на кривой ДЗЛА появляется высокий пик а, амплитуда которого сопоставима с пульсовым давлением в легочной артерии (-15 мм рт.ст.). Появление такой волны прямо указывает на препятствие кровотоку во время систолы предсердия (например, при митральном стенозе).
В ряде случаев (рис. 16.8) на кривой ДЗЛА и ЦВД можно наблюдать обратное соотношение высоты пика а и? (???). Подобная форма кривой обычно свидетельствует о регургитации крови из левого желудочка в левое предсердие или правый желудочек. Вероятные причины - недостаточность митрального клапана, дилатационная кардиомиопатия, дефект межжелудочковой перегородки.
Кривая ЦВД или ДЗЛА «пилообразного» вида (за счет выраженных углублений? и у) может быть вызвана ускоренным диастолическим наполнением желудочка. Оно возникает, в частности, при фибринозном перикардите, когда физический контакт эпикарда с ригидной околосердечной оболочкой облегчает расслабление сердечной мышцы (рис. 16.9).
Один из косвенных признаков диастолической дисфункции миокарда при инвазивном мониторинге - это стирание углубления у. Подобная картина свидетельствует обычно о затруднении раннего диастолического наполнения желудочка вследствие избыточной жесткости (рис. 16.10).
16.6. Осложнения катетеризации легочной артерии
Нарушения проводимости и возбудимости миокарда. Продвижение катетера через правый желудочек достаточно часто сопровождается аритмиями. Вероятность их развития увеличивается при гипоксии, ишемии миокарда, симпатикотонии, гипокалиемии или гипомагниемии. По меньшей мере, у каждого второго пациента возникают желудочковые экстрасистолы. В 2- 3 % случаев процедура осложняется желудочковой тахикардией и фибрилляцией.
Обычным следствием катетеризации является также преходящая блокада правой ножки пучка Гиса. В случае сопутствующей блокады левой ножки пучка Гиса гарантировано развитие полной поперечной блокады сердца.
Правила безопасной катетеризации легочной артерии:
подготовка дефибриллятора;
установка электрокардиостимулятора при необходимости;
коррекция ишемических и электролитных расстройств;
болюсное введение лидокаина (1-2 мг/кг массы тела) перед процедурой.
Необходимо также строго придерживаться следующего правила: путь катетера от одной позиции до другой не должен превышать 20 см. Так, при доступе через правую внутреннюю яремную вену кривая давления правого желудочка появляется обычно в пределах первых 20 см, кривая легочной артерии - в пределах первых 40 см, и кривая заклинивания - в пределах первых 60 см от поверхности тела. Несоблюдение этого стандарта свидетельствует либо о скручивании катетера в камерах сердца, либо о его внесердечном продвижении.
Разрыв легочной артерии. При оставлении свободного хода (петли) катетера в одной из камер сердца он со временем вытягивается в дистальном направлении. Подобная миграция остается по большей части незамеченной, и последующее форсированное раздувание баллон-

Рис. 16.8. Кривая ДЗЛА с преобладающей волной?. ЗЛА - заклинивание легочной артерии.

Рис. 16.9. Кривая ЦВД при перикардите.

Рис. 16.10. Кривая ЦВД при диастолической дисфункции сердца.
чика в просвете мелкой ветви легочной артерии приводит к ее разрыву. Особенно опасна подобная манипуляция при выраженном пневмосклерозе, легочной артериальной гипертензии, гипотермии, т.е. во всех тех случаях, когда сосудистая стенка теряет свою пластичность.
Во избежание этого осложнения необходимо:
при завершении катетеризации легочной артерии сдуть баллончик и вытянуть катетер наружу на 1-2 см;
избегать продвижения катетера вперед со сдутым баллончиком;
ограничить процедуру измерения ДЗЛА 10-15 с;
максимально сократить число измерений ДЗЛА или заменить их мониторингом ДЛАд у пациентов группы риска;
немедленно прекратить раздувание баллончика, если кривая заклинивания появляется при малом нестандартном объеме введенного воздуха (мл);
избегать промывания дистального канала катетера в положении заклинивания;
строго соблюдать правило «20 см».
Инфарктная пневмония. Благодаря двойному кровоснабжению легочной ткани заклинивание легочной артерии проходит обычно без аноксических повреждений. Однако это правило не распространяется на случаи грубого нарушения техники безопасности инвазивного мониторинга (длительное заклинивание легочной артерии раздутым баллончиком или собственно кончиком катетера).
Основная причина инфаркта легкого - это образование тромба в просвете (или на кончике катетера) с последующим его вымыванием в дистальные ветви легочной артерии. Ретроградному поступлению крови в катетер и ее свертыванию в нем обычно способствует негерметичность измерительного контура - неплотное подсоединение разъемов измерительной цепи с постепенным вытеснением (просачиванием) заполняющего раствора. Тромбирование просвета катетера определяют по постепенному угасанию (выравниванию) колебаний кровяного давления.
Во избежание этого осложнения в контур измерения стандартно включают промывную систему, состоящую из емкости с гепаринизирован-ным раствором (из расчета 10 ЕД ге-парина/мл), инфузионной линии и автоматического дозатора. Введение 1-2 капель промывного раствора под давлением никоим образом не отражается на точности измерений.
Инфицирование катетера. Пребывание катетера в легочной артерии в течение 2-3 сут, как правило, не вызывает гнойно-септических осложнений. Всякие гарантии, однако, условны. При появлении гипертермии в отсутствие явного источника инфекции следует сразу же предполагать инфицирование катетера. Его удаление и последующее бактериологическое исследование - это стандартные меры при подозрениях подобного рода. Новый катетер Свана-Ганца при необходимости может быть установлен через альтернативный венозный доступ.