Классификация биологически активных веществ (бав). Что такое биологически активные вещества

Для того чтобы после напряженных тренировок и соревнований спортсмен смог поддерживать нормальную деятельность организма и работоспособность, необходимо сбалансировать рацион в зависимости от индивидуальных потребностей спортсмена, которые должны соответствовать его возрасту, полу и виду спорта.

Как известно, физиологические потребности организма зависят от постоянно изменяющихся условий жизни спортсмена. Это не позволяет точно сбалансировать рацион.

Однако организм человека обладает регулирующими свойствами и может усваивать из пищи необходимые питательные вещества в том количестве, которое ему требуется в данный момент. Однако эти способы приспособления организма имеют определенные пределы.

Дело в том, что некоторые ценные витамины и незаменимые аминокислоты организм не может синтезировать в процессе обмена, и они могут поступить только с пищей. Если организм их не получает, питание будет несбалансированным, в результате чего и падает работоспособность, возникает угроза возникновения различных заболеваний.

Молоко, нежирные сыры и яйца богаты ценными минеральными веществами, которые защищают и укрепляют иммунную систему.

Для восстановления нормальной работы систем организма вместе с пищей спортсмен должен получать достаточное количество белков, жиров и углеводов, а также биологически активных веществ – витаминов и минеральных солей.

Белки

Эти вещества просто необходимы для спортсменов, поскольку они способствуют наращиванию мышечной массы.

Белки образуются в организме за счет поглощения белков из пищи. По пищевой ценности их невозможно заменить углеводами и жирами. Источниками белков являются продукты животного и растительного происхождения.

Белки состоят из аминокислот, которые подразделяются на заменимые (около 80%) и незаменимые (20%). Заменимые аминокислоты синтезируются в организме, а незаменимые организм синтезировать не может, поэтому они должны поступать вместе с пищей.

Белок – основной пластический материал. В составе скелетных мышц содержится приблизительно 20% белка. Белок входит в состав ферментов, ускоряющих разнообразные реакции и обеспечивающих интенсивность обмена веществ. Также белок содержится в гормонах, которые участвуют в регуляции физиологических процессов. Белок участвует в сократительной деятельности мышц. Помимо этого, белок является составной частью гемоглобина и обеспечивает транспортировку кислорода. Белок крови (фибриноген) участвует в процессе ее свертывания. Сложные белки (нуклеопротеиды) способствуют передаче по наследству качеств организма. Также белок является источником энергии, необходимой для выполнения упражнений: 1 г белка содержит 4,1 ккал.

Как уже упоминалось, мышечная ткань состоит из белка, поэтому культуристы для максимального увеличения размеров мышц вводят в рацион много белка, в 2-3 раза больше рекомендуемой нормы. Следует отметить, что мнение о том, что потребление большого количества белка увеличивает силу и выносливость, ошибочно. Единственным способом увеличения размеров мышц без вреда для здоровья является регулярная тренировка. Если спортсмен потребляет большое количество белковой пищи, это приводит к увеличению массы тела. Поскольку регулярные тренировки способствуют увеличению потребности организма в белке, большинство спортсменов употребляет насыщенную белками пищу с учетом нормы, рассчитанной диетологами.

К продуктам, обогащенным белком, относятся мясо, мясопродукты, рыба, молоко и яйца.

Мясо – источник полноценных белков, жиров, витаминов (В1, В2, В6) и минеральных веществ (калия, натрия, фосфора, железа, магния, цинка, йода). Также в состав мясных продуктов входят азотистые вещества, стимулирующие выделение желудочного сока, и безазотистые экстрактивные вещества, извлекающиеся при варке.

Признаками свежего мяса являются красный цвет, мягкий жир, часто окрашенный в яркие красные оттенки. На разрезе мякоть должна быть плотной, упругой, образующаяся при надавливании ямка должна быстро исчезать. Характерный запах свежего мяса – мясной, свойственный данному виду животного. Замороженное мясо должно иметь ровную поверхность, слегка покрытую инеем, на которой от прикосновения остаются пятна красноватого оттенка.

Срез замороженного мяса серовато-розового цвета, жир белого или светло-желтого оттенка. Свежесть мяса можно определить с помощью пробной варки. Для этого небольшой кусочек мякоти варят в кастрюле под крышкой, после чего определяют качество запаха бульона. Кислый или гнилостный запах показывает, что такое мясо употреблять в пищу нельзя. Мясной бульон должен быть прозрачным, жир на поверхности – светлым.

Почки, печень, мозги, легкие также содержат белок и имеют высокую биологическую ценность. Помимо белка, печень содержит много витамина А и жирорастворимых соединений железа, меди и фосфора. Она особенно полезна спортсменам, перенесшим тяжелую травму или операцию.

Ценным источником белка является морская и речная рыба. По наличию полезных веществ она не уступает мясу. По сравнению с мясом химический состав рыбы несколько разнообразнее. Она содержит до 20% белков, 20-30% жиров, 1,2% минеральных солей (соли калия, фосфора и железа). В морской рыбе содержится много фтора и йода.

Свежая рыба должна иметь гладкую, блестящую, плотно прилегающую к тушке чешую. Жабры свежей рыбы красного или розового цвета, глаза прозрачные, выпуклые. Мясо должно быть упругим, плотным, с трудно отделяющимися костями, ямка при нажатии пальцем не образуется, а при образовании тут же исчезает. Если тушку свежей рыбы бросить в воду, она утонет. Запах такой рыбы чистый, специфический. Мороженая доброкачественная рыба имеет плотно прилегающую чешую. Глаза на уровне орбит или выпуклые, запах, свойственный данному виду рыбы, не гнилостный. Признаками несвежей рыбы являются ввалившиеся глаза, чешуя без блеска, мутная липкая слизь на тушке, вздутый живот, желтоватые или сероватые жабры, дряблое мясо, легко отделяющееся от костей, запах гнилостный. Вторично замороженная рыба отличается тусклой поверхностью, измененным цветом мяса на разрезе, глубоко ввалившимися глазами. Использовать в пищу несвежую рыбу, имеющую указанные признаки, опасно.

Для определения качества рыбы, особенно замороженной, рекомендуется использовать пробу ножом, нагретым в кипящей воде. Нож вводится в мышцу, находящуюся сзади головы, после чего определяется запах мяса. Можно использовать и пробную варку, для чего небольшой кусок рыбы или вынутые жабры варят в воде и определяют после этого качество запаха.

В питании спортсменов разрешается использовать куриные и перепелиные яйца. Использование яиц водоплавающих птиц запрещается, так как они могут быть заражены возбудителями кишечных инфекций. Свежесть яиц определяется с помощью просмотра на свет через картонную трубку. Эффективен метод проверки, при котором яйца погружаются в раствор соли (30 г соли на 1 л воды). Свежие яйца в растворе соли тонут, длительно хранящиеся плавают в воде, усохшие и тухлые всплывают.

Кроме белков животного происхождения, существуют белки растительного происхождения, содержащиеся преимущественно в орехах и бобовых культурах, а также в сое.

Бобовые являются питательным и сытным источником обезжиренного белка, содержат нерастворимую клетчатку, сложные углеводы, железо, витамины С и группы В. Бобовые являются лучшим заменителем животного белка, снижают уровень холестерина, стабилизируют содержание сахара в крови. Включение их в рацион спортсменов обязательно не только из-за того, что в бобовых содержится большое количество белка. Такая пища позволяет контролировать массу тела. Бобовые лучше не употреблять в период соревнований, так как они являются довольно трудно усваиваемой пищей.

Соя содержит высококачественный белок, растворимую клетчатку, ингибиторы протеазы. Соевые продукты являются хорошими заменителями мяса, молока, незаменимы в рационе спортсменов-тяжелоатлетов и культуристов.

Орехи, помимо растительного белка, содержат витамины группы B, витамин E, калий, селен. Различные виды орехов включаются в рацион спортсменов в качестве питательного продукта, малый объем которого может заменить большое количество пищи. Орехи обогащают организм витаминами, белками и жирами, снижают риск онкологических заболеваний, предотвращают многие болезни сердца.

Биологически активные вещества (БАВ) - (греч. bios - жизнь, что означает связь с жизненными процессами и соответствует слову «биол.» + лат. аctivus - активный, то есть вещество, которое имеет биологическую активность) - это соединение, которое вследствие своих физико-химических свойств имеет определенную специфическую активность и выполняет или влияет, меняет каталитическую (ферменты, витамины, коферменты), энергетическую (углеводы, липиды), пластичную (углеводы, липиды, белки), регуляторную (гормоны, пептиды) или иную функцию в организме.





*************************************************************************************************************

Под биологически активными веществами подразумевают вещества, которые обладают высокой физиологической активностью и воздействуют на организм в самых малых дозах. Они могут ускорять обменные процессы, улучшать метаболизм, участвовать в синтезе витаминов, способствовать регулировке правильной работы систем организма.

В косметологии широко используют препараты, обладающие высокой биологической активностью, не ограничиваясь при этом только наружным применением. Биологически активные средства в небольших дозах оказывают благоприятный эффект и с успехом используются в косметических изделиях (кремы, лосьоны, шампуни) для предупреждения и лечения косметических недостатков путем стимуляции метаболических процессов в коже, а также для защиты ее от вредных метеорологических и токсических факторов.

Лечебные и косметические свойства растений и других природных продуктов, определяются наличием в их составе различных биологически активных веществ (БАВ). А именно: углеводов, жирных масел, сапонинов, флавоноидов, дубильных веществ, витаминов, фитогормонов и др.


Аминокислоты
служат для синтеза белков, из которых в свою очередь формируются железы, мышцы, сухожилия, волосы — словом, все части организма. Без определенных аминокислот невозможно нормальное функционирование головного мозга, так как именно аминокислота позволяет передавать нервные импульсы от одной нервной клетки к другой. Кроме того, аминокислоты регулируют энергетический обмен и способствуют тому, чтобы витамины и микроэлементы усваивались и работали в полной мере. К наиболее важным аминокислотам относятся триптофан, метионин и лизин, которые как раз не синтезируются человеком и должны поступать с пищей. Если их не хватает, то нужно принимать их в составе БАД. Триптофан содержится в мясе, бананах, овсе, финиках, кунжуте, арахисе; метионин — в рыбе, молочных продуктах, яйцах; лизин — в мясе, рыбе, молочных продуктах, пшенице. Если не хватает аминокислот, организм пытается извлечь их сначала из собственных тканей. А это ведет к их повреждению. В первую очередь организм извлекает аминокислоты из мышц — для него важнее прокормить мозг, чем бицепсы. Отсюда первым симптомом нехватки незаменимых аминокислот являются слабость, быстрая утомляемость, истощение, затем к этому присоединяются анемия, потеря аппетита и ухудшение состояния кожи. Очень опасна нехватка незаменимых аминокислот в детстве — это может привести к задержке роста и психического развития.

Углеводы . В состав косметических кремов и масок вводятся слизи и камеди (абрикосовая, трагакантовая). Они убирают раздражение и хорошо матируют кожу, обладают эмульгирующими и обволакивающими свойствами. Содержатся в семенах льна, листьях мать-и-мачехи, корнях алтея.

Органические кислоты поддерживают в организме кислотно-щелочное равновесие и участвуют во многих обменных процессах. Каждая кислота имеет свой спектр действия. Аскорбиновая и янтарная кислоты обладают мощным антиоксидантным действием, за что их еще называют эликсиром молодости. Бензойная кислота обладает антисептическим действием и помогает бороться с воспалительными процессами. Олеиновая кислота улучшает работу сердечной мышцы, препятствует атрофии мышц. Ряд кислот входит в состав гормонов. Много органических кислот входит в состав овощей и фруктов. Следует знать, что употребление слишком большого количества БАДов, содержащих органические кислоты, может привести к тому, что организму будет оказана медвежья услуга — произойдет излишне ощелачивание организма, что приведет к нарушению работы печени, ухудшению вывода токсинов.

Ферменты являются биологическими катализаторами многих процессов, протекающих в организме. Иногда их называют энзимами. Они помогают улучшить пищеварение, выводят токсины из организма, стимулируют мозговую деятельность, укрепляют иммунитет, участвуют в обновлении организма. Могут быть растительного или животного происхождения. Сейчас получены препараты, избирательно действующие на систему - , протеолитические ферменты (трипсин, химотрипсин, лизоцим-хлорид и др.), препараты, восстанавливающие сниженную активность ферментов, а также замедляющие их активность.

БАД к пище используются для:

  • восполнение недостаточного поступления с рационом белка и отдельных незаменимых аминокислот, липидов и отдельных жирных кислот (в частности, полиненасыщенных высших жирных кислот), углеводов и сахаров, витаминов и витаминоподобных веществ, макро- и микроэлементов пищевых волокон, органических кислот, биофлаваноидов, эфирных масел, экстрактивных веществ и др.;
  • уменьшение калорийности рациона, регулирования (снижения или повышения) аппетита и массы тела;
  • повышение неспецифической резистентности организма, снижения риска развития заболеваний и обменных нарушений;
  • осуществление в физиологических границах регуляции функций организма;
  • связывания в желудочно-кишечном тракте и выведения чужеродных веществ;
  • поддержания нормального состава и функциональной активности кишечной микрофлоры.

Фитонциды обладают способностью уничтожать или тормозить размножение бактерий, микроорганизмов, грибков. Известно, что они убивают вирус гриппа, дизентерийную и туберкулезную палочку, обладают ранозаживляющим действием, регулируют секреторную функцию желудочно-кишечного тракта, улучшают сердечную деятельность. Особенно ценятся фитонцидные свойства чеснока, лука, сосны, ели, эвкалипта.

Пектины - полисахариды клеточных стенок растений. Применяются в виде компрессов, добавок к лосьонам, маскам и кремам. Получают из яблок, малины, морских водорослей.

Эфирные масла - летучие смеси ароматических веществ. В косметологии используют эфирные масла мяты, лаванды, розы, шалфея, ромашки и душицы. Масла вводят в состав тоников и порошков. Они оказывают освежающее, дезинфицирующее, антиаллергическое, противовоспалительное и антисептическое действие.

Алкалоиды — это биологически активные азотсодержащие вещества, содержащиеся в растениях. Они очень активны, большинство алкалоидов в большой дозе ядовиты. В небольшой же это ценнейшее лечебное средство. Как правило алкалоиды обладают избирательным воздействием. К алкалоидам относятся такие вещества, как кофеин, атропин, хинин, кодеин, теобромин. Кофеин оказывает возбуждающее воздействие на нервную систему, а кодеин, к примеру, подавляет кашель.

Сапонины . Снимают воспаление и восстанавливают водный баланс кожи. Применяют в изготовлении косметики для увядающей кожи. Содержатся в фиалке трехцветной, розмарине, хвоще, мыльнянке лекарственной.

Флавоноиды . Замедляют процессы старения кожи. На кожу оказывают противовоспалительное, дезинфицирующее, спазмолитическое и регенерирующее действие. Содержатся в календуле, фиалке трехцветной, зверобое продырявленном, стальнике полевом и солодке.

Дубильные вещества . Обладают бактерицидными, противовоспалительными и вяжущими свойствами. Растения, содержащие дубильные вещества, применяют в косметологии для обработки кожи после механической чистки. Содержатся в коре дуба, чабреце, зверобое, плодах черники.

Смолы . Антисептическое действие. Используют при облысении, лечении трофических язв и для заживления ран. Содержатся в сосне, березовых почках, алоэ.

Фитогормоны . Оказывают стимулирующее действие на функциональное состояние стареющей кожи. В отличие от гормональных препаратов не оказывают вредных побочных действий. В частности, шишки хмеля, листья шалфея и крапивы, используют в косметологических средствах для увядающей кожи.

Витамины выполняют роль катализаторов биохимических процессов. Поэтому витамины наиболее часто применяются в косметических препаратах, прежде всего, жирорастворимые — , F, Е, D, что обусловлено их ролью в физиологических процессах кожи, высокой биологической активностью и частым возникновением в коже местной витаминной недостаточности. Перечисленные витамины, являясь биоантиоксидантами, подвержены интенсивным процессам окисления. Цепные реакции окисления витаминов протекают под действием света, температуры, некоторых ферментов, в присутствии воды, металлов, а также аутокаталитически, что приводит к полному или частичному разрушению витаминов в течение нескольких часов и сопровождается потерей их биологической активности. Установлено, что стабильность витаминов в составе различных лекарственных, профилактических средств, пищевых продуктов и др. снижается с уменьшением их концентраций. Поэтому для обеспечения стабильности витаминов в косметических средствах, где они используются в низких концентрациях, добавляют специальные стабилизаторы — антиоксиданты.

надежно защитит кожу от ветра и низких температур. Великолепный крем бережно позаботится о коже, предохранит ее от потери влаги, усилит иммунную защиту. Вернет коже эластичность. Предотвратит обветривание и шелушение. Крем можно использовать под макияж, так как он не оставляет на лице жирной пленки.

Главная > Лекция

ОСНОВНЫЕ ГРУППЫ БАВ ЛЕКАРСТВЕННЫХ РАСТЕНИЙ. Первичные метаболиты Вещества первичного синтеза: Аминокислоты, белки, липиды, углеводы, ферменты, витамины, органические кислоты. Белки, наряду с липидами и углеводами, составляют структуру клеток и тканей растительного организма, участвуют в процессах биосинтеза, являются эффективным энергетическим материалом. Это биополимеры, структурную основу которых составляют длинные полипептидные цепи, построенные из остатков α-аминокислот, соединенных между собой пептидными связями. Белки подразделяются на: - простые (при гидролизе дают только аминокислоты) - сложные - в них белок связан с веществами небелковой природы: Белки и аминокислоты лекарственных растений оказывают неспецифическое благоприятное действие на организм больного - влияют на синтез белков, создают условия для усиленного синтеза иммунных тел, это приводит к повышению защитных сил организма. Улучшенный синтез белков включает также и усиленный синтез ферментов, вследствие чего улучшается обмен веществ. Биогенные амины и аминокислоты играют важную роль в нормализации нервных процессов.

Липиды (от греч. « lipos » - жир) - большая и относительно разнородная группа органических соединений, содержащихся в животных и растительных тканях, не ра-створимых в воде и растворимых в малополярных органических растворителях (эфи-ре, бензоле, и дp.).

Они являются запасными питательными веществами растений и накапливаются в больших количествах в плодах и семенах.

В зависимости от строения липиды подразделяются на простые и сложные.

К простым липидам относятся соеди-нения, молекулы которых состоят только из остатков жирных кислот (или альдегидов) и спиртов.

Из простых липидов в растительных и животных тканях встречаются жиры и жирные масла.

Жиры (нейтральные жиры, глицеролипиды, триацилглицериды) - вещества рас-тительного или животного происхождения, представляющие собой смесь сложных эфиров глицерина и высших, жирных кислот.

Наибольшее значение для медицины имеют такие группы липидов, как жиры и жирные масла.

Жирные масла - группа жиров, которые при комнатной температуре представляют собой густые жидкости и являются смесью глицеридов высших ненасы-щенных жирных кислот.

Жиры растительные (Olea pinguia ) - природные продукты, получаемые из ле-карственного растительного сырья и являющиеся смесью триглицеридов высших, жирных кислот, чаще всего ненасыщенных.

В подавляющем большинстве имеют жид-кую консистенцию, поэтому обычно называются жирными (растительными) масла-ми.

Жидкие растительные масла - оливковое, миндальное, персиковое, абрикосо-вое - используются в медицине для приготовления инъекционных растворов камфа-ры, гормональных препаратов.

Жирное масло клещевины - касторовое масло - применяется как слабительное средство.

Жирные масла служат растворителями ле-карственных веществ при приготовлении препаратов наружного применения: мазей, линиментов.

Твердое масло какао используется как основа для приготовления твер-дых лекарственных форм суппозиториев, шариков.

Витамины (от латинского « vita » - жизнь) - биологически активные органичес-кие соединения разнообразной химической природы, присутствие которых в неболь-ших количествах в пище человека и животных необходимо для их нормальной жизне-деятельности.

Витамины были открыты в 1880 г. Н.И. Луниным, термин предложен в 1912 г. К. Функом.

Они требуются организму в очень малых количествах (от несколь-ких микрограмм до нескольких миллиграмм в сутки).

Синтезируются главным обра-зом растениями, частично микроорганизмами. Большинство витаминов (около 20 соединений) поступает в организм человека с растительной и животной пищей непос-редственно или в виде провитаминов - соединений, из которых в животных тканях в результате химических превращений образуются витамины (например, каротиноиды).

Витамины играют первостепенную роль в обмене веществ, регулируют процесс усвоения и использования питательных основных веществ - белков, жиров, углеводов.

Потребность человека в витаминах зависит от условий его жизни, работы, состо-яния и других факторов.

Растительное сырье содержит сбалансированный комплекс витаминов, который, как правило, исключает передозировку.

Наиболее богаты вита-минами плоды (шиповник, рябина, облепиха, черная смородина), цветки (ноготки), листья (крапива, первоцвет), трава (пастушья сумка).

Лекарственное растительное сырье, заготовленное от лекарственных растений, накапливающих в значительных ко-личествах несколько витаминов, называют поливитаминным.

Так, витамину С (аскор-биновой кислоте) в плодах шиповника, облепихи сопутствуют витамины Р, Е, каротиноиды.

В качестве лекарственных средств назначают сиропы, настои, отвары, масля-ные экстракты из витаминного лекарственного растительного сырья.

Ферменты. Занимают особое место среди белков. Роль : являются катализаторами большинства химических реакций. 2 класса: Однокомпонентные: состоят только из белка Двухкомпонентные: из белка (апофермента) и небелковой части (кофермента). Коферментами могут быть витамины. Органические кислоты наряду с углеводами и белками, являются самыми распространенными веществами в растениях. Принимают участие в дыхании растений, биосинтезе белков, жиров и других веществ. относятся к веществам как первичного синтеза (яблочная, уксусная, щавелевая, аскорбиновая), так и вторичного синтеза (урсоловая, олеаноловая).

Являются фармакологически активными веществами и участвуют в суммарном эффекте препаратов и лекарственных форм растений.

Углеводы обширный класс органических веществ, к которому относятся полиоксикарбонильные соединения и их производные. В зависимости от числа мономеров в молекуле, это: Моносахариды, Олигосахариды, Полисахариды.

Полисахариды - природные полимерные высокомолекулярные соединения, со-стоящие из моносахаров или продуктов их окисления (уроновых кислот), соединен-ных О-гликозидными связями, имеющих линейную или разветвленную структуру.

Наибольшее значение для медицины имеют такие высокомолекулярные полисаха-риды, как крахмал, инулин, камеди, слизи, пектиновые вещества.

Слизи (Mucilagines ) - гидрофильные гетерополисахариды, образующиеся в расте-ниях в процессе естественного обмена веществ как результат «слизистого» перерожде-ния клеток эпидермиса или паренхимы, либо клеточных стенок и межклеточного веще-ства. В состав слизей входят пентозы (85- 90% от общего числа моносахаров) и гексозы.

Полисахариды являются основными запасными питательными веществами кле-ток и в больших количествах откладываются в подземных органах и плодах. Различные виды крахмала - пшеничный, картофельный, кукурузный - широко применяются в присыпках, в составе мазей, в производстве таблеток; как обволакивающие средства употребляются внутрь в виде отвара. Слизи накапливаются в корнях (алтей), семенах (лен, подорожник блошный, пажитник), листья» (подорожник большой) и извлекают-ся из сырья водой. Они играют роль запасных питательных веществ, а также предохра-няют семена растений от пересыхания и способствует прорастанию.

В медицинских целях водные слизистые извлечения применяются при заболеваниях верхних дыха-тельных путей и желудочно-кишечного тракта.

Вещества вторичного метаболизма.

Образуются в растениях в результате диссимиляции. Диссимиляция – процесс распада веществ первичного синтеза до более простых веществ, сопровождающийся выделением энергии. Из этих простых веществ с затратой выделившейся энергии образуются вещества вторичного синтеза. К веществам вторичного синтеза относятся: терпены, гликозиды, фенольные соединения, алкалоиды. Вещества вторичного синтеза применяются в медицинской практике значительно чаще и шире, чем вещества первичного синтеза.

Сапонины (от латинского « sapo » - мыло) - природные биологически активные вещества гликозидного характера, обладающие гемолитической и поверхностной ак-тивностью, а также токсичностью для холоднокровных животных. Водные растворы сапонинов образуют при встряхивании обильную, очень стойкую пену, подобно мыльной, за что они и получили свое название.

Сапонины широко распространены в природе и встречаются в растениях различ-ных климатических зон, наиболее типичны для районов сухого и жаркого климата. В значительных количествах они накапливаются в подземных органах (синюха, солодка, аралия, женьшень).

Для сырья, содержащего сапонины, характерно отхаркиваю-щее действие, способность усиливать секрецию бронхиальных желез, снижать содер-жание холестерина в крови, а также тонизирующее действие на организм, что особен-но характерно для лекарственных препаратов женьшеня, аралии, заманихи. Очень цен-ное свойство сапонинов - их способность регулировать водно-солевой обмен, а так-же оказывать противовоспалительное действие.

Ряд стероидных сапонинов служит источником (исходным сырьем) для синтеза гормональных препаратов, широко при-меняются при нарушении холестеринового обмена.

Алкалоиды (от араб. « alkali » - щелочь и греч. « eidos » - вид, подобный) - группа природных азотсодержащих органических соединений основного характера, обладающих сильным специфическим фармакологическим действием.

Их использу-ют как спазмолитические, болеутоляющие, успокаивающие, желчегонные средства, они входят в состав препаратов отхаркивающего и гипотензивного действия.

Алкало-иды стимулируют центральную нервную систему, а также служат источниками для синтеза ценных гормональных стероидных препаратов. Химическая их структура весь-ма разнообразна и сложна.

Алкалоиды встречаются в растворенном состоянии в кле-точном соке в виде солей с органическими кислотами - щавелевой, яблочной, ли-монной. Они накапливаются во всех частях растений, но чаще преобладают только в одном органе, например в листьях чая, в траве чистотела, плодах дурмана индейского, в корневище скополии, коре хинного дерева. Большинство растений содержит в своем составе несколько алкалоидов.

Алкалоидное сырье используется для приготовления настоек, экстрактов, но наиболее типичный путь использования - это выделение индивидуальных алкалоидов или суммы алкалоидов в виде солей.

Алкалоиды имеют очень широкий спектр фармакологического действия, что связано с их сложным и разнообразном химическим составом.

Они характеризуются значительным терапев-тическим эффектом, поэтому их относят к группе сильнодействующих, и прием алка-лоидных препаратов допускается только при назначении и под контролем врача.

Антраценпроизводные - группа природных биологически активных соединений фенольного характера.

Они встречаются у представителей незначительного чис-ла семейств (крушиновые, бобовые, мареновые).

Накапливаются в коре крушины ломкой, корнях конского щавеля, ревеня, корневищах и корнях морены красильной, придавая им характерную оранжевую или красную окраску.

В зеленых частях расте-ний, например в листьях сенны, окраска маскируется хлорофиллом.

Антраценпроизводные очень чувствительны к кислороду воздуха, поэтому сырье в процессе хране-ния может изменять окраску (темнеть).

В качестве классических слабительных средств сырье, содержащее антраценпроизводные, отпускается населению в измельченном виде, в составе слабительных, желудочных сборов для приготовления отваров.

Для марены красильной характерен нефролитический эффект, который проявляется в спо-собности выводить камни из почек и мочевого пузыря.

Сердечные гликозиды - природные биологически активные вещества гликозидного характера, агликоном которых являются производные циклопентанпергидрофенантрена, у которых в 17 положении находится ненасыщенное лактонное кольцо. Об-ладают специфическим действием на сердечную мышцу.

По своему действию сердечные гликозиды не имеют аналогичных заменителей, и растения служат единственным источником для их получения. Удельный вес препара-тов растительного происхождения, используемых при лечении сердечно-сосудистых заболеваний, составляет около 80% от числа всех применяемых лекарственных средств.

Сердечные гликозиды довольно распространены в растительном мире, но особен-но богаты ими виды, произрастающие в тропической и субтропической зонах. В рас-тениях накапливаются обычно 20-30 сердечных гликозидов близкого химического стро-ения. Они встречаются в различных органах растений: в семенах строфанта, в цветках ландыша, в листьях наперстянки, в траве желтушника, в корнях кендыря и др.

Все лекарственные препараты сердеч-ных гликозидов обладают выраженным действием на сердце, в связи с чем применя-ются при сердечной недостаточности.

Сердечные гликозиды способны накапливаться в организме человека, что может привести к отравлению. Препараты сердечных гли-козидов относятся к группе сильнодействующих и применяются только по назначе-нию и под контролем врача.

Фенологликозиды - природные биологически активные соединения гликозидного характера, агликон которых представлен простыми фенолами или фенолоспиртами.

В растениях встречаются не часто.

Наиболее распространен гликозид арбутин, которые встречаются в представителях следующих семейств: верес-ковые, брусничные, розоцветные, камнеломковые, астровые.

В качестве лекарствен-ного растительного сырья используются листья (толокнянка, брусника), применяе-мые в форме отвара как мочегонное и противовоспалительное средство.

Для фенологликозидов, агликон которых представлен фенолоспиртами (корневища с корнями родиолы розовой), характерно тонизирующее действие.

Флавоноиды (от латинского « flavus » - желтый) - природные биологически ак-тивные соединения фенольного характера.

Это очень распространенная группа природных соединений, чаще всего гликозидного характера, которые наряду с растительными пигментами обусловливают жел-тую, красную, оранжевую окраску плодов, цветков и корней.

Накапливаются флаво-ноиды в различных органах растений.

Чаще всего они присутствуют в травах (пустыр-ник, горцы перечный, птичий, почечуйный, зверобой и др.), цветках (бессмертник, пижма, василек и др.), плодах (боярышник, арония черноплодная и др.), корнях (солод-ка, стальника, шлемник и др.).

Флавоноиды имеют широкий спектр фармакологичес-кого действия.

Для них установлено желчегонное, бактерицидное, спазмолитическое, кровоостанавливающее, седативное, мочегонное, кардиотоническое действие. Чрез-вычайно важная особенность некоторых флавоноидов - способность уменьшать проницаемость и ломкость капилляров, особенно в сочетании с аскорбиновой кисло-той (Р-витаминная активность).

Эфирные масла (Olea aetherea ) - многокомпонентная смесь летучих душистых веществ, образующихся в растениях и относящихся к различным классам органичес-ких соединений, преимущественно терпеноидам, реже к ароматическим и алифати-ческим соединениям.

Эфирные масла широко распространены в растительном мире, всего в приро-де известно до 3000 эфирномасличных растений.

Многие растения, например ва-лериана лекарственная, полынь горькая, чабрец, сосна и др., издавна используют-ся в качестве лекарственных.

Эфирные масла накапливаются во всех органах рас-тений в специальных образованиях : эфирно-масличных железках, вместилищах, канальцах.

Эфирными маслами богаты цветки (роза, ромашка и др.), листья (мята, эвкалипт и др.), трава (душица, полынь и др.). плоды (фенхель, анис и др.), подзем-ные органы (аир, валериана и др.).

Эфирномасличное сырье входит в состав лекарственных сборов, используется для приготовления настоев, отваров, настоек и экстрактов.

Полученные из сырья эфир-ные масла вводятся в состав комплексных препаратов.

Являясь смесями различных химических соединений эфирные масла имеют очень широкий спектр фармакологического действия, поэтому применяются как противо-воспалительные, антимикробные, противовирусные и противоглистные средства.

Они обладают отхаркивающим, успокаивающим действием, возбуждают дыхание и улуч-шают функцию желудочно-кишечного тракта, стимулируют аппетит.

Кроме того, не-которые эфирные масла оказывают выраженное влияние на деятельность сердечно-сосудистой системы, расширяют кровеносные сосуды. Издавна они известны как сред-ства, улучшающие и изменяющие вкус и запах лекарств, широко применяются в пи-щевой и парфюмерной промышленности.

ЗАГОТОВКА ЛЕКАРСТВЕННОГО РАСТИТЕЛЬНОГО СЫРЬЯ

Заготовка дикорастущего лекарственного сырья - это система организационных, технологических и экономических мероприятий, обеспечивающих получение высо-кокачественного сырья, отвечающего требованиям нормативных документов. Она включает ряд последовательных этапов: сбор сырья, первичную обработку, сушку, приведение сырья в стандартное состояние, ею упаковку и хранение. Все этапы заго-товительного процесса направлены на сохранение в сырье комплекса биологически активных веществ и получение сырья, отвечающего требованиям нормативной до-кументации (НД).

Качество лекарственного растительного сырья в первую очередь определяется со-держанием в нем биологически активных веществ (БАВ). Накопление этих веществ в растении имеет определенную динамику, поэтому собирать сырье следует в ту фазу развития растения, когда оно наиболее богато ими.

Например, большинство листьев и трав заготавливают во время цветения, подземные органы - осенью, в конце вегетации.

При сборе сырья кроме динамики накопления веществ по фазам вегетации растения учитывают также суточную динамику.

Обычно для большинства растений лучшее вре-мя сбора приходится на 11-13 часов. В это время отмечается максимальное содержаниеБАВ и растения уже высохли от росы. Этот факт особенно важно иметь в виду при заготовке сырья, содержащего гликозиды.

Кроме динамики накопления БАВ учитывается урожайность, т.е. выход сырья с единицы площади. Иногда отдают предпочтение не содержанию действующих веществ, а урожайности сырья.

Так, в листьях красавки максимальное содержание алкалоидов установлено в фазу бутонизации, а заготовку сырья ведут в фазу цветения, так как к этому времени у красавки отрастает большое количестве листьев и растение дает значительно больше сырьевой массы.

В некоторых случаях (при заготовке дикорастущих растений) учитывают легкость распознавания растений в травостое.

Например, корневища лапчатки особенно бога-ты дубильными веществами осенью, когда заканчивается период вегетации, но в это время надземная часть увядает и растение трудно распознать, поэтому заготавливают корневища лапчатки летом, во время цветения.

Общие правила сбора лекарственного растительного сырья

Почки собирают зимой или ранней весной. Заготовку почек березы ведут в местах лесоразработок или санитарных рубок.

Для сбора почек используют веткорезы. Пос-ле сушки почки обмолачивают, очищают, сортируют.

Сосновые почки срезают с вер-хушек веток целыми «коронками», по несколько штук. Сушат почки, раскладывая гонким слоем. Искусственная сушка для почек недопустима.

Если почки сразу высу-шить не удалось, их оставляют в неотапливаемом помещении, чтобы они не трону-лись в рост.

При заготовке почек в сырье могут попасть мелкие веточки, цветочные сережки, почерневшие почки, пораженные плесенью, проросшие - их следует уда-лить.

Коры собирают весной (апрель-май ) во время сокодвижения. В это время кору легко отделить от древесины.

Заготавливают коры на лесных рубках. С растущих расте-ний сбор этого сырья запрещен, так как это ведет к образованию сухостоя, а порой и к гибели растения.

Для снятия коры на отрубленных ветках острым ножом делают кольцевые надрезы на расстоянии 25-30 см один от другого, соединяют одним или двумя продольными разрезами и снимают в виде желобков или трубочек.

При сборе нужно отделить куски коры, пораженные лишайниками, с остатками древесины, по-темневшие с внутренней стороны.

Листья, как правило, собирают в фазе цветения.

Их обрывают вручную, срезают ножами или ножницами.

Сочные листья (мать-и-мачеха, наперстянка пурпуровая и др.) складывают в тару рыхло, быстро доставляют к месту сушки, раскладывают тон-ким слоем и сушат.

В сырье, помимо органической примеси (листья других неядови-тых растений), могут быть также листья, утратившие естественную окраску, измель-ченные стебли, цветки, которые следует удалить.

Цветки собирают обычно в фазе начала цветения, срывая их руками, срезая нож-ницами или счесывая специальными совками.

На каждом растении часть цветков оставляют для осеменения.

Особенно внимательно следует относиться к сбору цвет-ков с однолетних и двулетних растений.

Наиболее частые причины недоброкачествен-ности этого вида сырья - преждевременный сбор бутонов или запоздалый сбор в фазе образования семян, примесь цветоножек, стеблей, листьев, измельченность.

Трудность сбора некоторых цветков (боярышник и др.) связана с кратким периодом цветения (3-5 дней). Цветки насыпают в тару рыхло и быстро доставляют к месту сушки. Раскладывают тонким слоем и сушат без доступа прямых солнечных лучей.

Травы собирают в период цветения, срезая ножницами, ножами, секторами, косят косами, сенокосилками, предварительно удалив из зарослей нелекарственные расте-ния. Срезают цветущие верхушки лекарственных растений длиной 15-40 см. Некото-рые травы (чабреца, тимьяна обыкновенного) после сушки обмолачивают.

При сборе травы сушеницы топяной растение выдергивают с корнем и сушат целиком без отде-ления корней.

Траву собирают в мешки или доставляют к месту сушки насыпью.

Сушат обязательно в день заготовки, раскладывая тонким слоем и периодически пе-ремешивая. При заготовке трав возможны примеси одревесневших стеблей, осыпь листьев и цветков, которые следует удалить.

Плоды собирают в фазе созревания.

Сбору подлежат вполне развитые плоды без примесей плодоножек и других частей.

Плоды фенхеля, аниса, тмина, кориандра и дру-гих растений семейства сельдерейных (зонтичных) созревают не одновременно, поэто-му плодоносящие верхушки растения срезают когда в зонтике созрело около 60% пло-дов, и складывают в копны для полного дозревания, затем обмолачивают.

Сочные и мягкие плоды (шиповник, черемуха, черника, черная смородина, малина) снимают с веток руками.

Чернику в урожайные годы осторожно счесывают специальными совка-ми. Боярышник и рябину собирают целыми щитками, на месте сушки плоды освобож-дают от плодоножек.

При сборе сочных плодов в ведра по мере их наполнения массу плодов разделяют травяными или листовыми прокладками.

Сушат сочные плоды без промедления, раскладывая тонким слоем. Примесями в сырье могут быть недозрелые плоды и семена, плодоножки, плоды, поврежденные вредителями, подгоревшие плоды, плоды, слипшиеся в комки, плоды других растений (органическая примесь).

Подземные органы (корни, корневища, клубни, луковицы) лекарственных расте-ний чаще всего заготавливают в период осеннего увядания или ранней весной до начала вегетации.

Выкапывают подземные органы лопатами, копалками.

Ползучие корневища иногда вырывают из почвы руками или крючковидными захватами.

После сбора подземных органов тщательно восстанавливают нарушенную почву и в рых-лую землю по возможности подсеивают семена или подсаживают кусочки корневищ для восстановления заросли.

После сбора сырья отделяют остатки стеблей, прикорневых листьев, мелкие корни, частицы почвы.

Подземные органы моют, погружая их в проточную воду, сложив рыхло в корзину.

Сырье, содержащее слизь (корни алтея, лопуха) и сапонины (корни солодки, корневища с корнями синюхи), моют быстро, чтобы сохранить биологичес-ки активные вещества, которые очень хорошо растворяются в воде.

После промыва-ния крупные подземные органы режут на куски, удаляя загнившие части.

Некоторые корни и корневища (алтей, солодка) очищают от пробки.

Перед сушкой многие под-земные органы предварительно подвяливают.

Особые меры предосторожности следует соблюдать при сборе ядовитых расте-ний .

К сбору сырья красавки, белены, дурмана, чемерицы можно привлекать только совершеннолетних сборщиков после тщательной инструкции.

Не допускаются к такой работе беременные и кормящие женщины.

Во время работы запрещается прикасать-ся руками к слизистым оболочкам глаз, носа, принимать пищу, курить. После работы следует тщательно вымыть с мылом руки и лицо, очистить и выстирать одежду. При переработке ядовитого сырья надевают защитные респираторы или увлажненные многослойные марлевые повязки. Одновременно с ядовитым сырьем нельзя заготав-ливать другие виды лекарственного растительного сырья.

Сушка лекарственного растительного сырья

Сушка лекарственного растительного сырья - сложный биохимический процесс, который должен обеспечить сохранность внешних признаков сырья и содержание в нем биологически активных веществ (БАВ). Сушку можно рассматривать как наибо-лее простой, экономически целесообразный метод консервирования лекарственного сырья.

В свежесобранном растительном материале содержание влаги составляет 60-80%.

Удаление влаги до 20% снижает ферментативную активность, а при снижении ее до 10-14% деятельность ферментов прекращается, т.е. инактивируются биохимические процессы, приводящие к разрушению в сырье БАВ.

Сушка лекарственного растительного сырья бывает естественной и искусствен-ной.

Сушка естественным теплом пригодна для большинства видов сырья. Практику-ется солнечная и воздушно-теневая сушка.

Применение солнечной сушки возможно только в тех случаях, когда под действием УФ света не происходит изменения в струк-туре БАВ.

Она проводится в сухую жаркую погоду под открытым небом.

На ночь или в сырую погоду сырье покрывают полиэтиленовой пленкой, брезентом и открывают после спада росы.

Воздушно-теневая сушка проводится в помещениях или на воздухе. Используются сараи, типовые сборно-разборные сушилки с вентиляцией, чистые чердачные помещения под железной или шиферной крышей, где в жаркие дни темпе-ратура достигает 40-50 °С.

Воздушно-теневую сушку можно осуществлять под тенью деревьев, под навесами, на токах.

Сушка с искусственным обогревом проводится в сушилках различной конструк-ции.

Температурный режим сушки сырья определяется его химическим составом и морфологической принадлежностью.

Температура сушки сырья, содержащего эфир-ное масло, 30-40 °С.

Для определения конца сушки сырья используют простые приемы: стебли трав, крупные черешки листьев, корни легко ломаются с характерным треском; недосушенное сы-рье не ломается, а сгибается.

Выход воздушно-сухого сырья характерен для каждого вида сырья и зависит от содержания внутриклеточной и поверхностной влаги.

Хранение лекарственного растительного сырья

Хранение лекарственного растительного сырья - процесс, обеспечивающий доб-рокачественность сырья в течение установленного срока годности.

Сырье хранится на складах в соответствии с требованиями Государственной фарма-копеи.

Помещения должны быть сухие, чистые, хорошо вентилируемые, не заражен-ные амбарными вредителями, защищенные от воздействия прямого солнечного света. Необходимо строгое соблюдение правил противопожарной безопасности.

В складских помещениях сырье хранят на стеллажах, установленных на расстоянии не менее 15 см от пола, с укладкой в штабель высотой не более 2,5 м для плодов, семян, почек и 4 м для других видов сырья.

Штабель должен отстоять от стен склада на расстоянии не менее 25 см, промежутки между штабелями должны быть не менее 50 см.

На каждом штабеле помещают этикетку размером 20x10 см с указанием наименования сырья, предприя-тия-отправителя, года и месяца заготовки, номера поступления, даты поступления.

Тем-пературный режим в складских помещениях 10-12 °С и влажность около 20-30%.

Сырье хранят раздельно по следующим группам

ядовитое и сильнодействующее («список Б»); эфирно-масличное сырье; плоды и семена; общая группа хранения.

Сырье, хранящееся на складе, ежегодно перекладывают.

Помещение склада и стел-лажи во время перекладки должны подвергаться дезинфекции.

На складе должно быть приемное отделение, изолятор для сырья,

пораженного амбарными вредителями, ком-ната для размещения бракованной продукции.

В аптеках сырье хранится в шкафах с соблюдением деления по группам хранения и условий хранения, как и на складах.

Против вредителей в местах хранения сырья поме-щают склянки с ватой, пропитанной хлороформом, для отпугивания вредителей.

Вновь поступившее сырье хранят в материальной комнате, в сухих подвалах на стеллажах.

ПУТИ ИСПОЛЬЗОВАНИЯ И СПОСОБЫ ПРИМЕНЕНИЯ ЛЕКАРСТВЕННОГО РАСТИТЕЛЬНОГО СЫРЬЯ

Лекарственные растения используют в медицинской практике в свежем или высу-шенном виде.

Из свежих растений готовят соки, настои и отвары, иногда отдельные части растений прикладывают на пораженный участок тела.

Свежие растения облада-ют более сильным лечебным действием, так как в процессе сушки сырья часть биоло-гически активных веществ разрушается.

К препаратам на основе растительного сырья (plant preparation ) относят измель-ченное или порошкованное растительное сырье, полученные из растительного сырья настойки, экстракты, жирные и эфирные масла, смолы, камеди, бальзамы, соки и т.д., и препараты, чье производство включало процессы фракционирования, очистки или концентрирования, за исключением выделения индивидуальных компонентов с изве-стным химическим строением. Препарат на основе растительного сырья можно рас-сматривать как активный ингредиент, независимо оттого, известны ли компоненты, обладающие терапевтической активностью, или нет.

В медицинской практике чаще всего используют высушенное и измельченное ле-карственное растительное сырье.

Самой простой лекарственной формой являются порошки.

Наиболее часто изготавливают настои и отвары, которые представляют водные из-влечения из лекарственного растительного сырья.

Настои и отвары можно готовить в домашних условиях, для чего измельченное лекарственное растительное сырье залива-ют водой комнатной температуры и нагревают на кипящей водяной бане.

Однако эта лекарственная форма является нестойкой и может храниться в прохладных условиях не более 2 суток.

Фильтр-пакет - дозированная форма выпуска лекарственного растительного сы-рья, представляющая собой пакет, изготовленный из пористого материала, в который помещена разовая доза сырья для приготовления настоя. При погружении в горячую воду обеспечивается проникновение ее внутрь пакета и извлечение действующих ве-ществ из лекарственного растительного сырья.

Настойки - спиртовые или водно-спиртовые извлечения из лекарственного рас-тительного сырья, получаемые без нагревания и удаления экстрагента.

В медицинской практике настойки применяют как самостоятельные препараты для внутреннего и наружного применения; кроме того, они входят в состав микстур, капель, мазей и пластырей.

Экстракты представляют собой концентрированные извлечения из раститель-ного сырья.

Сиропы - жидкая лекарственная форма для внутреннего применения, представ-ляющая собой концентрированный, густой, водный раствор различных Сахаров с ле-карственными веществами, экстрактами, настойками, плодово-ягодными соками или без них.

Лекарственные средства, представляющие собой различные водно-спиртовые из-влечения из лекарственного растительного сырья для применения внутрь или (и) на-ружно раньше называли галеновыми препаратами (по имени римского врача Клав-дия Галена, предложившего их получение).

Максимально очищенные от балластных веществ извлечения из растительного сырья, содержащие в своем составе весь комп-лекс биологически активных веществ растений, получили название новогаленовых препаратов. В настоящее время эти препараты чаще называют суммарными очищен-ными лекарственными средствами.

Лекарственное растительное сырье поступает на фармацевтические предприятия, где из него с использованием различных методов экстракции и очистки выделяют индивиду-альные соединения . Например, алкалоиды - анабазин, платифиллин, эфедрин, берберин, глауцин; сердечные гликозиды-дигоксин, строфантин; флавоноиды-рутин и др.

Лекарственный растительный сбор - лекарственная форма, представляющая собой смесь нескольких видов высушенных, чаще измельченных лекарственных рас тений или их частей, иногда с добавлением лекарственных средств иного происхожде-ния.

Обычно используется для приготовления настоев и отваров.

Сырье, входящее в сбор, измельчают по отдельности.

Листья, травы и коры режут; кожистые листья пре-вращают в грубый порошок; корни и корневища режут или дробят, плоды и семена пропускают через вальцы или мельницы; некоторые плоды и цветки оставляют цель-ными. Измельченное сырье отсеивают от пыли и тщательно смешивают для получе-ния однородной смеси.

Биологически активные вещества (аббревиатура - БАВ) (от греческого слова - Bios - жизнь, соответствует слову «биологический» и означает связь с жизненными процессами, а также от латинского слова - Аctivus - активный, то есть вещество, которое имеет биологическую активность). Смысл словосочетания может существенно меняться в зависимости от сферы использования.

В научном смысле слова (психических, нейрофизиологических, химических процессах) биологически активные вещества оказывают повышение активности основных жизненных процессов организма.

Другими словами, биологическое действие - это физиологические, биохимические, генетические и другие изменения, которые протекают в организме и живых клетках в результате действия биологически активных веществ.

Итак, биологически активные вещества (БАВ) - это соединение, которое в силу своих физических и химических свойств имеет определенную специфическую активность и выполняет или влияет, изменяет каталитическую (витамины, ферменты, коферменты), энергетическую (липиды, углеводы), пластическую (липиды, углеводы, белки), регуляторную (пептиды, гормоны, гормоноподобные вещества) или иную функцию в организме человека, животных или растений. Вообще в природе нет полностью индифферентных веществ. Все вещества выполняют какие-то определенные функции в организме животных, человека, растений или используются для осуществления или достижения определенных эффектов. Например, вода, является активным участником транспортировки питательных субстратов и продуктов метаболизма в организме, связана с метаболическими функциями живой клетки, субстрата ряда ферментативных реакций (см. Вода).

С целью классификации все биологически активные вещества разделяют на эндогенные и экзогенные. К эндогенным веществам относят химические элементы (калий, водород, кислород, фосфор и др.), низкомолекулярные соединения (АТФ , этанол, глюкоза, адреналин и др.) и высокомолекулярные субстанции (РНК, ДНК, белки). Указанные соединения входят в состав организма, участвуют в метаболических процессах веществ и имеют выраженную физиологическую (биологическую) активность. Экзогенными считаются биологически-активные соединения (БАВ) , поступающих в организм растений, животных, человека различными путями.

С учетом взаимодействия с организмом биологически активные вещества разделяют на биоинертные, которые практически не усваиваются организмом (гемицеллюлоза, целлюлоза, кремнийорганические полимеры, лигнин, поликарбонат и др.); биосовместимые, которые медленно ферментируются или растворяются в организме (поливинилпирролидон, полисахариды, поливиниловый спирт, полиакриламид, водорастворимые эфиры целлюлозы, полиэтиленоксид и др.); бионесосвместимые, которые вызывают раздражение или некроз ткани организма (некоторые полиамиды, полиантрацены и многие др.); биоактивные субстанции направленного действия (винилиновые полимеры в соединении с лекарственными веществами).

Биосовместимые и биоинертные вещества широко применяются в производстве лекарств как вспомогательные (аддитивные) вещества, а также для изготовления тары, конструкционных и упаковочных материалов и т. д. В зависимости от степени токсичности биологически активные вещества разделяют на обычные субстанции, ядовитые и сильнодействующие. Проявление токсичности у биологически активных добавок зависит от дозы (концентрации) БАВ, чувствительности последнего, путей поступления в организм, поведения БАВ в организме и других факторов (например, токсические вещества применяются как лекарства в определенных дозах). Возможны также другие подходы к классификации биологически активных веществ, например, в зависимости от природы (животного или растительного происхождения), размера частиц, молекулярной массы, устойчивости к температуре, возможности аккумулироваться в организме, выявлять наркотические и другие свойства.

Главным источником поступления биологически активных веществ в организм является пища, лекарства, и другие продукты (см. Перга). Многие биологически активные вещества (БАВ) попадает в организм из окружающей среды с питьевой водой и воздухом. В условиях растущего химического загрязнения окружающей среды в организм человека, животных и растений может попадать большое количество ксенобиотиков, которые могут вызвать разнообразые болезни. Биологическую активность имеют ядовитые вещества, алкоголь, содержащиеся в табачном дыме и наркотических веществах. Следовательно, наряду с положительным влиянием на живой организм биологически активные вещества могут негативно влиять и в зависимости от степени токсичности вызывать неблагоприятные последствия или неспецифические реакции (изменения структуры общей заболеваемости или депрессии трудовых функций), а иногда и гибель организма. Поэтому лекарственные субстанции, такие, как биологически активные вещества (БАВ), к применению в медицинской, ветеринарной практике тщательно и всесторонне изучаются в лабораторных (см. Доклиническое изучения лекарств) и клинических (см. Клиническое изучение лекарств) условиях с целью определения их токсичности и специфического действия.

Министерство образования и науки РФ

ФГБОУ ВПО «Бурятский государственный университет»

Медицинский факультет

Кафедра фармации

КУРСОВАЯ РАБОТА

"Основные группы биологически активных веществ лекарственных растений"

Выполнила:

Варкина Л.С.гр.14290з

План работы

Введение

1.Полисахариды

Витамины

Органические кислоты

Фенольные соединения

Эфирные масла

Сапонины

Сердечные гликозиды

9. Алкалоиды

Используемая литература

Введение

Биологически активные вещества (БАВ) - химические вещества, обладающие высокой физиологической активностью при небольших концентрациях по отношению к определённым группам живых организмов (в первую очередь - по отношению к человеку, а также по отношению к растениям, животным, грибам и пр.) или к отдельным группам их клеток. Физиологическая активность веществ может рассматриваться как с точки зрения возможности их медицинского применения, так и с точки зрения поддержания нормальной жизнедеятельности человеческого организма либо придания группе организмов особых свойств (таких, например, как повышенная устойчивость культурных растений к болезням).

Биологически активные вещества (БАВ) растений обладают выраженной фармакологической активностью (их еще называют действующими веществами).

К БАВ относятся:

Вещества первичного синтеза: витамины, липиды, углеводы.

Вещества вторичного синтеза: эфирные масла, горечи, сердечные гликозиды, сапонины, алкалоиды, кумарины, хромоны, лигнаны, флавоноиды, дубильные вещества и т.д.).

Вещества, кажущиеся неактивными, условно делят на сопутствующие и балластные. Сопутствующие вещества могут быть полезными и вредными (нежелательными).

Полезные сопутствующие вещества (витамины, органические кислоты, минеральные вещества, сахара и др.) оказывают благоприятное воздействие на организм. Некоторые из них могут влиять на эффективность проявления фармакотерапевтического действия БАВ растворимые или набухающие полисахариды, дубильные вещества способствуют пролонгированию лечебного эффекта БАВ.

Примерами нежелательных сопутствующих веществ могут служить: производные антранола в свежесобранной коре крушины, обладающие выраженным рвотным действием; смолистые вещества в листьях сенны.

Кажущиеся неактивными вещества, во-первых, выполняют биофармацевтическую функцию вспомогательных веществ в лекарственных формах - влияют на кинетику действующих веществ. И, во-вторых, оказывают неспецифическое благоприятное воздействие на организм больного, повышая его защитные силы и улучшая обмен веществ, что способствует лечению основного заболевания. Одна и та же группа веществ в разных растениях может играть роль или БАВ, или сопутствующих веществ.

В лекарственных растениях содержится, как правило, не одна, а несколько групп БАВ. Поэтому так часто используют экстракционные препараты из лекарственного растительного сырья - настои, отвары, настойки, экстракты. При этом БАВ растений совместно участвуют в фармакологическом эффекте.

Флавоноиды сушеницы способствуют расширению кровеносных сосудов вблизи поврежденного места, при этом улучшается кровоснабжение (орошение кровью). Кроме того, флавоноиды снимают спазмы гладкой мускулатуры, оказывают антимикробное, противовоспалительное действие. Каротиноиды способствуют эпитализации поврежденной поверхности. Все это способствует быстрому заживлению поврежденных тканей.

Используя различные технологические приемы, добиваются более полного извлечения из растительного сырья отдельных групп БАВ для направленного фармакологического действия. При использовании лекарственного растительного сырья для производства препаратов необходимо учитывать наличие всех групп БАВ. Используя технологию последовательного извлечения, из некоторых видов сырья получают препараты на основе разных групп БАВ с разным фармакологическим действием. Такая технология является одним из способов рационального, более полного использования лекарственного растительного сырья.

Таким образом, современные фитохимические исследования и создание новых фитопрепаратов подтверждают условность классификации веществ лекарственных растений. Вещества, ранее считавшиеся сопутствующими или балластными, в новых препаратах являются действующими.

1. Полисахариды

Полисахариды (полиозы) - природные полимерные высокомолекулярные углеводы, в состав которых входят различные моносахариды (монозы) или олигосахариды, соединенные гликозидными связями и образуют линейные или разветвленные цепи. Полисахариды необходимы для жизнедеятельности животных и растительных организмов. Они являются одним из основных источников энергии, образующейся в результате обмена веществ организма. Они принимают участие в иммунных процессах, обеспечивают сцепление клеток в тканях, являются основной массой органического вещества в биосфере.

Классификация полисахаридов:

Полисахариды делят на два типа: гомополисахариды (гомополимеры) и гетерополисахариды (гетерополимеры), в зависимости от характера входящих в их состав моносахаридов и их производных.

Гомополисахариды построены из моносахаридных единиц (мономеров) одного типа (например) крахмал, клетчатка, из животных полисахаридов - гликоген, хитин), а гетерополисахариды - из остатков различных моносахаридов и их производных (например, гемицеллюлозы, инулин, пектиновые вещества, слизи и камеди).

Также полисахариды можно классифицировать:

По кислотности: нейтральные, кислые;

По характеру скелета: линейные, разветвленные;

По происхождению: фитополисахариды (крахмал, инулин, камеди, слизи, пектиновые вещества, клетчатка), зоополисахариды (гликоген, хитин); полисахариды микроорганизмов.

В зависимости от функций полисахариды делятся на:

Øкаркасные (конструктивные) - клетчатка, хитин;

Øэнергетические (резервные, запасные) - крахмал, гликоген, инулин, слизи, альгиновые кислоты;

Øзащитные - слизи, камеди.

В составе полисахаридов обнаружено свыше 20 различных видов моносахаридов и их производных, наиболее часто встречаются: из гексоз - D-глюкоза, D-галактоза, L-фруктоза, D-манноза; из пентоз - D-ксилоза, L-арабиноза и др., из дезоксисахаров - L-рамноза, D-фукоза; из продуктов восстановления D-маннозы - спирт маннит; из продуктов окисления моносахаридов - D-глюкуроновая, D-маннуроновая, D-галактуроновая, D-гулуроновая и другие кислоты.

D-манноза b-D-глюкопираноза

α-D-галактозаα-L-рамноза

α-D-глюкуроновая кислотаβ-D-фукоза

α-D-галактоуроновая кислотыα-L-олеандроза β-D -апиозаβ-D-фруктофураноза

ØСтруктурные полисахариды придают клеточным стенкам прочность.

ØВодорастворимые полисахариды не дают клеткам высохнуть.

ØРезервные полисахариды по мере необходимости расщепляются на моносахариды и используются организмом.

Физические и химические свойства.

Физические свойства. Аморфные, реже кристаллические вещества от серовато-желтоватого до буроватого цвета, практически без запаха, вкус - с ощущением слизистости, иногда - сладковатый. Полисахариды нерастворимы в спирте и неполярных органических растворителях, растворимость в воде варьирует: некоторые линейные гомополисахариды (ксиланы. целлюлоза, маннаны) в воде не растворяются из-за прочных межмолекулярных связей; сложные и разветвленные полисахариды либо растворяются в воде (гликоген, декстраны), либо образуют гели (пектины, агар-агар, альгиновые кислоты). Различная растворимость в воде и спирте используется в качественном и количественном анализе.

Химические свойства. Полисахариды подвергаются кислотном или ферментативному гидролизу с образованием моно- или олигосахаридов. Полисахариды не обладают восстанавливающими свойствами. В природе 80% органических веществ составляют полисахариды. Они играют различную биологическую роль для растений и животных.

Обнаружение полисахаридов в лекарственном растительном сырье.. Осаждение полисахаридов этанолом. Обнаружение полисахаридов в лекарственном растительном сырье проводят путем осаждения их этанолом. Для этого к концентрированным водным извлечениям прибавляют трехкратный объем 96% этилового спирта, что приводит к выпадению рыхлых осадков. Полученные осадки отделяют, промывают спиртом и высушивают. Водные растворы осадков используют для проведения реакций с реактивом Фелинга и раствором меди сульфата. Положительные реакции свидетельствуют о наличии в сырье полисахаридов.. Хроматографический анализ. Метод хроматографии широко используется для анализа моносахаридного состава полисахаридов и включает в себя несколько стадий:

Экстракция полисахаридов из сырья соответствующими экстрагентами при комнатной температуре или при нагревании:

водой (для водорастворимых полисахаридов),

водными растворами органических или минеральных кислот (смесь 0,5 % растворов щавелевой кислоты и оксалата аммония 1:1 - для пектиновых веществ),

водными растворами КОН, NaOH (7-15% - для гемицеллюлоз).

Выделение полисахаридов проводится путем осаждения полисахаридов из концентрированных извлечений этиловым спиртом.

Гидролиз полисахаридов.

Для расщепления полисахаридов до моносахаридов используют гидролиз серной кислотой (1 моль/л) при 100°С в течение 6 часов (для водорастворимых полисахаридов) и 24 часов (для пектиновых веществ).

Анализ гидролизатов.

Определение количественного содержания полисахаридов в лекарственном растительном сырье включает следующие этапы:

Экстракция полисахаридов их сырья;

Используются следующие методы:

Гравиметрический. Этот метод основан на извлечении полисахаридов из сырья, их осаждении и последующем определении массы полуденного осадка.

Спектрофотометрический метод. Основан на измерении оптической плотности продуктов взаимодействия моносахаридов, образовавшихся после гидролиза полисахаридов, с пикриновой кислотой в щелочной среде.

Титрометрический метод. Такой способ качественной и количественной оценки выделенной из растений полисахаридной фракции предложен по реакции образования комплекса полисахаридов с йодом (обратное йодиметрическое титрование) и опробован для водорастворимых полисахаридов подорожника и мать-и-мачехи. Потенциометрическое титрование используется для определения пектиновых веществ.

Иммуноферментный анализ по реакции антиген-антитело. Метод позволяет не только оценить количество субстанции, но и ее иммунную активность, т.е. биологическое действие. Такой метод разработан для определения иммуноактивных полисахаридной и гликопротеиновой фракции в экстрактах эхинацеи пурпурной.

Сырьевая база:

Алтей армянский произрастает в лесостепной и степной зонах европейской части России. Алтей лекарственный - в лесной и лесостепной зонах европейской части России и Западной Сибири, на лугах, в поймах и долинах рек среди зарослей кустарников, по берегам озер. Липа сердцевидная произрастает в лесной и лесостепной зонах европейской части России, в широколиственных и смешанных лесах. На ДВ произрастают викарианты липы сердцевидной или широколистной. Мать-и-мачеха произрастает в лесной, лесостепной и степной зонах европейской части России и Западной Сибири, по берегам рек и ручьев, в сыроватых оврагах, предпочитает глинистые почвы. На Дальнем Востоке - встречается как заносное. Подорожник большой - евразиатский вид, распространен по всей территории России как рудеральный (придорожный) сорняк. Подорожник болотный на территории России не произрастает и не культивируется. Ламинария японская встречается у южных берегов Японского и Охотского морей, в Тихом океане вдоль южных Курильских островов и Сахалина. Ламинария сахаристая распространена вдоль берегов Белого, Баренцева и Карского морей. Лен посевной, а также растения - источники получения крахмала - широко культивируются в России. Таким образом, потребности в сырье липы, мать-и-мачехи, подорожника большого, ламинарии обеспечиваются за счет дикорастущих растений; алтея - от дикорастущих и культивируемых растений; льна - за счет культивируемых растений. Сырье подорожника болотного импортируется.

Жиры

Жиры - природные соединения, находящиеся в тканях животных, растений, в семенах и плодах различных растений, в некоторых микроорганизмах. Как правило, это смеси, состоящие из полных эфиров глицерина и жирных кислот и имеющие состав где R, R" и R - углеводородные остатки (радикалы) жирных кислот, содержащие от 4 до 26 атомов углерода.

Классификация жиров:. По происхождению:

Животные жиры:

плотные: твердые и мягкие (например, свинной жир);

жидкие жиры (например, тресковый жир (рыбий жир)).

Растительные жиры:

твердые: масло Какао, пальмовое масло, лавровое масло, кокосовое масло;

жидкие: растительные масла (например, оливковое масло).. По высыхаемости:

Невысыхающие: оливковое масло, персиковое масло, арахисовое масло, миндальное масло, касторовое масло.

Полувысыхающие: подсолнечное масло, кукурузное масло, кунжутное масло, соевое масло, хлопковое масло.

Высыхающие: маковое масло, соевое масло, коноплевое масло, ореховое масло.

Строение жиров.

Жиры состоят почти исключительно из триглицеридов жирных кислот, то есть это сложные эфиры глицерина и высокомолекулярных жирных кислот. Входящие в состав триглицеридов жирные кислоты могут быть насыщенными и ненасыщенными. Жиры некоторых растений содержат специфические жирные кислоты, характерные только для данных растений. Большинство известных жиров представляют смеси собой разнокислотных глицеридов.

Встречающиеся в природе жирные кислоты можно разделить на три группы:

Насыщенные; 2. мононенасыщенные; 3. полиненасыщенные.

Не насыщенность жирных кислот обусловлена наличием двойных связей. В большинстве растительных масел двойная связь находится между С-9 и С-10 атомами углеродной цепи. Если двойных связей больше одной (число двойных связей может быть от 1 до 9), они обычно располагаются через три углеродных атома. Кроме триглициридов в состав жиров входят стерины, пигменты (хлорофилл, каротиноиды), жирорастворимые витамины (группы А, Е, D, K, F), свободные жирные кислоты, слизи.

Физические свойства.

Жиры и жирные масла характеризуются общими физическими свойствами: они жирны на ощупь; нанесенные на бумагу, дают характерное пятно, не исчезающее, а, наоборот, расплывающееся при нагревании.

Природные жиры и жирные масла окрашены в желтоватый, реже в зеленоватый цвет благодаря присутствию хлорофилла, еще реже - в красно-оранжевый или иной цвет, зависящий от наличия тех или иных красящих веществ. Свежие жиры и жирные масла имеют специфические, обычно приятные, запах и вкус, обусловленные примесью различных летучих веществ. Консистенция, цвет, вкус и запах растительных жиров зависят от вида растения, из которого они получены, от климата и условий добывания масла. От наземных животных получают плотные или мягкие жиры, содержащие предельные кислоты, а от морских животных и рыб - жидкие, непредельные. Все жиры легче воды. В воде они совершенно нерастворимы, в спирте малорастворимы (за исключением касторового масла), несколько больше растворимы в кипящем спирте и во всех соотношениях растворимы в эфире, хлороформе и сероуглероде. Жиры и жирные масла не летучи и не перегоняются без разложения. При сильном нагревании жиры начинают разлагаться и выделять раздражающий глаз альдегид акролеин, представляющий продукт разложения глицерина и обладающий весьма неприятным острым запахом. Жиры и жирные масла при обыкновенной температуре не загораются, но при сильном нагревании могут гореть ярким пламенем.

Химические свойства.

Омыление. Омылением жиров называется расщепление их на свободные жирные кислоты и глицерин. В природе расщепление жиров происходит под влиянием фермента липазы, содержащегося во всех жирномасличных семенах; реакция протекает в присутствии влаги. Омыление происходит также при наличии катализаторов. Для омыления пользуются растворами щелочей и окисями металлов; при этом получаются соли жирных кислот и глицерин.

Прогоркание. При длительном хранении жиров происходит сложный химический процесс, называющийся прогорканием. Реакция протекает на свету при доступе воздуха и влаги и, вероятно, не без участия соответствующих микроорганизмов; жиры и масла частью окисляются (присоединяя кислород воздуха), частью же подвергаются процессу омыления, распадаясь на глицерин и свободные кислоты. При этом появляются неприятный запах, раздражающий горьковатый вкус и кислая реакция.

Высыхание жиров - сложный физико-химический процесс, при котором под влиянием кислорода воздуха происходит их окисление, а затем конденсация и полимеризация. Этот процесс связан с наличием в маслах линолевой и линоленовой кислот. Масла, в которых преобладает линолевая кислота, дают мягкие пленки и называются полувысыхающими; масла, состоящие преимущественно из глицеридов линоленовой и изолинолевой кислот, образуют твердые пленки и называются высыхающими.

Гидрогенизация жиров - присоединение водорода по месту двойных связей. Жиры, содержащие жирные кислоты непредельного ряда, могут присоединять по месту двойной связи два атома водорода, переходя в соответствующие предельные кислоты.

Анализ жиров.

Для определения подлинности и качества жира разработана методика определения физических и химических показателей, «чисел или констант», характерных для каждого жира. К физическим показателям относятся: преломляющая способность масел (рефракция), удельный вес (наиболее характерный для жидких масел) и температура плавления (для твердых жиров).

Химические показатели - это кислотное число, число омыления и йодное число. Кислотным числом называют количество миллиграммов едкого кали, необходимое для нейтрализации свободных жирных кислот в 1 г жира. Таким образом, оно свидетельствует о наличии свободных кислот. При хранении кислотное число повышается в связи с происходящим гидролитическим расщеплением жира. Следовательно, кислотное число является показателем свежести жира.

Сырьевая база:

Родиной растений являются: Северная Америка - для подсолнечника, Центральная Америка (Мексика) - для кукурузы и шоколадного дерева, Южная Америка (Бразилия) - для арахиса, Тропическая Африка (Эфиопия) - для клещевины, Страны Средиземноморья (Сирия, Южная Анатолия) - для маслины, горы Кавказа и Средней Азии - для абрикоса и миндаля, жиромасличные растения культивируют в России и странах ближнего зарубежья. В центрально-черноземных областях культивируют кукурузу и подсолнечник. Севернее - в Нечерноземных областях России культивируют лен посевной - это Калининградская, Псковская, Вологодская области, Поволжье, Западная Сибирь и Прибалтика.

Не культивируют в России и ближнем Зарубежье шоколадное дерево, масличную пальму и кокосовую пальму. Это сырье только импортное.

Витамины

Витамины - это БАВ, необходимые для процессов усвоения организмом всех пищевых веществ, роста и восстановления клеток, тканей, других жизненно важных процессов. Их медицинское применение не ограничивается только ситуациями, связанными с соответствующим дефицитом. Витамины способны оказывать выраженное регулирующее влияние на функциональное состояние разных органов и систем человека в норме и при патологии, повышая резистентность организма, активируя иммунологические и обменные процессы.

Существуют несколько классификаций витаминов: по растворимости, по действию на организм (фармакологическая), буквенная (обозначаемая буквами и цифрами латинского алфавита), химическая (по их принадлежности к группам химических соединений, в частности, к ациклическому (алифатическому) ряду, к алициклическому ряду, ароматическому ряду и к гетероциклическому ряду).

Классификация витаминов и витаминосодержащего лекарственного растительного сырья:

Существует несколько классификаций витаминов.

Буквенная классификация - первая в историческом плане. При обнаружении новых факторов витаминной природы им присваивали условные названия в виде буквы латинского алфавита. Например: витамины A, B, C, D и др.

Фармакологическая классификация. Эта классификация вводилась параллельно с буквенной и указывала на заболевание, от которого предохраняет витамин:

·витамин С - противоцинготный;

·витамин К - антигеморрагический;

·витамин D - антирахитический и др.

Химическая классификация. В зависимости от химической структуры выделены группы:

·витамины алифатического ряда - С, F и др.;

·витамины алициклического ряда - A, D и др.;

·витамины ароматического ряда - К и др.;

·витамины гетероциклического ряда - Е, Р и др.

Классификация по растворимости витаминов:

·водорастворимые витамины - группы В, С, Р, Н, РР;

·жирорастворимые витамины - A, D, Е, К, F, U.

Классификация витаминов по их растворимости исходит из их физико-химических свойств, в частности, на водо- и жирорастворимости витаминов, образующих 2 основные группы, в форме которых эти вещества и содержатся в лекарственном растительном сырье.

Во всех растениях содержатся витамины, но витаминосодержащими называют те растения, которые избирательно накапливают витамины в дозах, способных оказать выраженный фармакологический эффект. Это в 500-1000 больше, чем в других растениях. В настоящее время практически все витамины получают синтетическим путем. Однако витаминосодержащие лекарственные растения не утратили своего значения. Их используют в педиатрии, в гериатрии и для лечения лиц, склонных к аллергическим заболеваниям, т.к.

во-первых, витамины в лекарственном растительном сырье находятся в комплексе с полисахаридами, сапонинами, флавоноидами, поэтому такие витамины легче усваиваются;

во-вторых, растительные витамины реже дают аллергические реакции, чем их синтетические аналоги;

в-третьих, в организме человека есть специальные системы защиты от передозировки витаминов (например, каротин в организме человека превращается в витамин А по мере необходимости).

Физические свойства.

В чистом виде витамины - кристаллические вещества или жидкости белого, желтого, оранжевого или красного цвета, имеющие специфический вкус, без характерного запаха. В настоящее время установлено, что витамины - индивидуальные вещества различных химических классов.

Химические свойства.

Строение витаминов изучено сравнительно недавно. Оказалось, что витамин С относится к классу кислот, витамин А - к первичным спиртам, витамины группы D - производные высокомолекулярных спиртов стеринов. Если витамин С имеет углеводный характер строения, то витамин D относится к сложным стероидным или гормоноподобным соединениям. В растениях витамины встречаются иногда в виде провитаминов, например каротин - провитамин А, состоящий из двух молекул витамина А.

Методы анализа.

Согласно существующей нормативной документации подтверждают присутствие витаминов только в листьях крапивы. Определяют наличие витамина К1.

Метод определения хроматографический. Определение основано на способности витамина К1 флюоресцировать в УФ-свете. Экстрагируют из растительного сырья витамин К1 гексаном. Хроматографическое разделение проводят восходящим способом на пластинке «Силуфол» при температуре 40-70 0С. Система растворителей: бензол - петролейный эфир (1:1). Готовую хроматограмму выдерживают в УФ-свете при длине волны 360 нм (2 минуты). На пластинке- должно появиться пятно с желто-зеленой флюоресценцией.

Количественное определение витаминов проводят в плодах шиповника (витамин С) и облепихи (каротиноиды в пересчете на β-каротин).

Плоды шиповника - ГФ XI изд., стр.274 - витамина С должно быть не менее 0,2%.

Плоды облепихи свежие - ФС 42-1052-76.

Оценку качества витаминосодержащего сырья проводят и по другим группам биологически активных веществ: полисахаридов (трава череды), флавоноидов (трава сушеницы), дубильных веществ (кора калины), экстрактивных веществ (кора калины, цветки календулы, столбики с рыльцами кукурузы, трава пастушьей сумки). Для сырья крапивы, рябины, земляники, смородины - количественного определения биологически активных веществ не проводят.

Сырьевая база:

Концентраторы витамина С: плоды черной смородины, шиповника, рябины обыкновенной, малины, листья крапивы, земляники.

Концентраторы и источники витамина Р: плоды софоры японской, рябины черноплодной, черной смородины, кожура цитрусовых, листья чая.

Концентраторы каротиноидов (провитамина А): плоды шиповника, облепихи, рябины, цветки календулы, трава череды, сушеницы топяной.

Концентраторы витамина К: листья крапивы, подорожника, трава пастушьей сумки, тысячелистника, горца почечуйного, горца перечного, цветки и листья зайцегуба, кора калины, кукурузные рыльца.

Концентраторы витамина Е: плоды облепихи, облепиховое масло, масло шиповника, кукурузное масло, льняное масло, семена тыквы.

Концентраторы витамина F: масло кукурузное, масло подсолнечное.

Витамины встречаются в растениях практически всех семейств. Почти все растения способны биосинтезироваться растениями. При этом концентрации одних витаминов (группа В, кислоты фолиевая, пантотеновая) в большинстве растений невелики и примерно одинаковы, других (витамины К, кислота никотиновая, биотин, токоферолы) - существенно отличаются, но остаются небольшими. В высоких концентрациях способны накапливаться только кислота аскорбиновая (витамин С), каротиноиды (провитамин А) и некоторые флавоноиды (рутин, кверцетин), относимые к витамину Р. Витамины локализуются в зеленых частях растений, цветках, плодах (витамины С, Р, каротин) и в семенах (витамины Е и Р).

Водорастворимые витамины находятся в растворенном состоянии в клеточном соке, жирорастворимые витамины включены в пластиды и алейроновые зерна. Каротины находятся в хромопластах - пластидах плодов, цветков и других частей растений, они находятся в виде водорастворимых белковых комплексов или в капельках масла. Содержание витаминов в растениях зависит от генетических особенностей видов и от условий среды.

Органические кислоты

Органические кислоты - широко распространенная в растительном мире группа соединений. Органические кислоты обладают широким спектром биологического действия. Бензойная и салициловая кислоты (цветков ромашки, таволги, коры ивы, черной и красной смородины) обладают антисептическим свойством. Производные кофейной и других оксикоричных кислот, содержащиеся в листьях подорожника и мать-и-мачехи, побегах артишока и других растениях, оказывают желчегонное, противовоспалительной действие. Уроновые кислоты и их производные (пектины), содержащиеся в мякоти плодов и ягод (яблок, айвы, груш, абрикосов, крыжовника, малины, вишни, персика и др.), обладают детоксицирующими свойствами и способствуют выведению тяжелых металлов из организма человека, холестерина.

Органические кислоты оказывают благоприятное влияние на процесс пищеварения. Они снижают рН среды, способствуя созданию определенного состава микрофлоры, активно участвуют в энергетическом обмене веществ (цикл Кребса), стимулируют сокоотделение в желудочно-кишечном тракте, улучшают пищеварение, активизируют перистальтику кишечника, способствуя снижению риска развития многих желудочно-кишечных и других заболеваний, обеспечивая ежедневный стул нормальной структуры, тормозят развитие гнилостных процессов в толстом кишечнике.

Органические кислоты наряду с углеводами и белками являются наиболее распространенными соединениями в растениях и играют важную роль в биохимических процессах обмена веществ в растительных клетках. Они могут присутствовать в растениях в свободном состоянии или в виде солей, эфиров и других соединений. Органические кислоты определяют вкус растений, а летучие - их запах (муравьиная, уксусная, масляная, изовалериановая). Некоторые органические кислоты, например бензойная, обладают антисептическим действием и предохраняют плоды, в которых они находятся, от гниения при хранении (клюква, брусника), другие проявляют витаминное действие (широко встречающаяся в растительном сырье аскорбиновая кислота).

Наиболее распространены в растениях яблочная, лимонная, винная, щавелевая кислоты. Некоторые из них - источник получения органических кислот, сырье других используется самостоятельно или в лечебных сборах. Органические кислоты могут накапливаться в подземных органах растений, но больше их содержится в надземной части, особенно в плодах (клюква, малина, черная смородина, плоды цитрусовых и др.) Роль органических кислот в жизнедеятельности организма существенна. Они являются связующим звеном между обменом углеводов и аминокислот, поддерживают кислотно-щелочное равновесие в организме, некоторые предупреждают развитие атеросклероза или входят в состав клеточных гормонов - простагландинов.

Сырьевая база.

Низшие карбоновые кислоты (щавелевая, малоновая) содержатся в плодах и листьях спаржи, крапивы, чистотела, рябины, черники, а также в незрелых плодах крыжовника. Яблочная, винная, лимонная, оксикарбоновая кислоты содержатся в плодах барабариса (до 3%) земляники, малины, а так же в овощных культурах. Сорбиновая и парасорбиновая кислоты характерны для плодов рябины обыкновенной. Муравьиная кислота обнаружена в малине. Сложная смесь оксикоричных кислот характерна для боярышников, винограда амурского, рябины, смородины, лесных яблок. Для ягод семейства брусничных характерны фенолокислоты: п-оксибензойная, протокатеховая, о-пирокатеховая, галловая. Галловая кислота содержится также в листьях чая. Лимонной кислоты особенно много в цитрусовых и клюкве (до 3%). В малине имеется много производных салициловой кислоты, в меньших количествах они присутствуют в землянике, смородине, вишне и винограде, тысячелистнике, цветках ромашки, клюкве, рябине. В сливах и клюкве обнаружена хинная кислота.

Фенольные соединения

Фенольные соединения представляют собой один из наиболее распространенных и многочисленных классов природных соединений, обладающих биологической активностью, отличительная особенность которых состоит в наличии свободного или связанного фенольного гидроксила.

По химическому строению они весьма разнообразны, поэтому их трудно классифицировать.

К. Фрейнденберг делит фенольные вещества на две группы:

гидролизируемые; - конденсированные.

К первой группе он относит гидролизирующие дубильные вещества, у которых бензольные ядра соединены в комплекс посредством атомов кислорода в форме сложных эфиров или гликозидных связей. Вторую группу составляют конденсированные фенольные соединения, у которых молекулы соединены одна с другой углеродными связями.

В настоящее время фенольные соединения делят на три группы по их углеродному скелету.

К первой группе относятся простейшие фенольные соединения, имеющие общую формулу: С6-С1. К этим соединениям относятся фенольные кислоты: н-оксибензой-ная, протокатеховая, галловая, ванилиновая, салициловая, генти-зиновая и др., а также соответствующие альдегиды и спирты.

Во вторую группу входят фенольные соединения со структурой С6-С3, они состоят из одного ароматического ядра и трехуг-леродной боковой цепи, как показано ниже:

К ним относятся производные оксикоричной кислоты: п-окси-коричная, n-кумаровая, синаповая, кофейная, феруловая, а также соответствующие спирты.

К третьей группе относят фенольные соединения со структурой Сб-С3-С6, имеющие следующее строение:

Это фенольное соединение состоит из двух ароматических ядер (А и В), соединенных между собой трехуглеродным фрагментом. (С). Эти соединения называют флавоноидами.

Третья группа наиболее распространенная. В зависимости от окисленности или восстановленности трехуглеродного фрагмента (С) получаются различные подгруппы фенольных соединений: катехины, лейкоантоцианы, флавононы, флавононолы, антоцианы, флавоны, флавонолы. При обработке флавоноидов кислотами происходит конденсация и дальнейшее укрупнение молекул. Эти конденсированные соединения называют флобафенами.

Важнейшее химическое свойство фенолов - это способность к обратимому окислению, или восстановительному и антиоксидантному (противоокислительному) действию на другие соединения.

Качественный и количественный анализ сырья основан на физических и химических свойствах.

Качественный анализ.

Включает качественные реакции и хроматографические пробы.

Фенольные соединения в виде гликозидов извлекают из растительного сырья водой, затем извлечения очищают от сопутствующих веществ, осаждая их растворами ацетата свинца. С очищенным извлечением выполняют качественные реакции.

Характерные для фенольных соединений реакции:

·с железоаммонийными квасцами

·с солями тяжелых металлов

·с диазотированными ароматическими аминами.

Для количественного определения простых фенологликозидов в лекарственном растительном сырье используют различные методы: гравиметрические, титриметрические и физико-химические.

Гравиметрическим методом определяют содержание флороглюцидов в корневищах папоротника мужского. Метод основан на извлечении флороглюцидов из сырья диэтиловым эфиром в аппарате Сокслета. Извлечение очищают, отгоняют эфир, полученный сухой остаток высушивают и доводят до постоянной массы. В пересчете на абсолютно сухое сырье содержание флороглюцидов не менее 1,8%.

Титриметрический йодометрический метод используется для определения содержания арбутина в сырье брусники и толокнянки. Метод основан на окислении агликона гидрохинона до хинона 0,1 М раствором йода в кислой среде и в присутствии натрия гидрокарбоната.

Спектрофотометрический метод используется для определения содержания салидрозида в сырье родиолы розовой.

Сырьевая база. Фенольные соединения содержатся в растениях в виде гликозидов или в свободном состоянии, встречаются почти во всех растениях в количестве от 0,1 до 7 %. Богатые источники фенольных соединений - бурые морские водоросли, из некоторых видов которых фенольные соединения были выделены ещё в XIX в. Фенольные вещества широко распространены в растительном мире, они встречаются в самых различных органах растений.

Эфирные масла

Эфирными маслами называют смесь летучих, душистых веществ, образующихся в растениях и обладающих способностью перегоняться с водным паром. Главной составной частью эфирных масел являются терпены и их кислородсодержащие производные, реже - ароматические и алифатические соединения.

Классификация:

Эфирные масла представляют собой многокомпонентную смесь, поэтому классификация их условна. За основу принимаются главные ценные компоненты эфирного масла, являющиеся носителями запаха данного масла и обладающие биологической активностью. Все эфирные масла и растения, их содержащие, делятся на следующие группы:

Øациклические монотерпены (линалоол, гераниол, цитраль);

Øмоноциклические монотерпены (ментол, цинеол);

Øбициклические монотерпены (камфора, пинен);

Øсесквитерпены (азулен, сантонин);

Øароматические соединения (тимол).

Метод количественного определения содержания эфирного масла в растительном сырье основан на:

·физических свойствах эфирного масла - летучести и практической нерастворимости в воде;

·на отсутствии химического взаимодействия эфирного масла и воды;

·на законе Дальтона о парциальных давлениях.

Согласно закону, смесь жидкостей закипает тогда, когда сумма их парциальных давлений достигает атмосферного давления. Следовательно, давление паров смеси жидкостей (вода + эфирное масло) достигнет атмосферного давления еще до кипения воды. В соответствии с ГФ-Х1, вып. 1, стр.290 (раздел «Общие методы анализа») определение проводят одним из 4 методов в зависимости от количества в сырье эфирного масла, его состава, плотности и термолабильности.

Метод 1 и 2 применяют, если эфирное масло имеет плотность меньше 1 и не растворяется в воде. Метод 3 и 4 применяют для сырья, содержащего эфирное масло, которое претерпевает изменения, образует эмульсию, легко загустевает и имеет плотность близкую к единице.

Метод 1 (метод Гинзберга) - применяют для сырья, где много эфирного (масло термостабильное), в его составе преобладают моно- и бициклические монотерпены. Приемник для сбора эфирного масла помещается в экстрактивной колбе. Этим методом определяют содержание эфирного масла в сырье можжевельника, мяты, шалфея, эвкалипта, тмина.

Метод 2 (метод Клавенджера) - используют, когда сырье содержит эфирного масла менее 0.2-0.3 %. Этот метод дает меньшую ошибку опыта. Приемник вынесен за пределы экстракционной колбы, что позволяет определить в сырье содержание термолабильного эфирного масла. Этим методом определяют содержание эфирного масла в сырье ромашки, тмина, мяты, шалфея, эвкалипта.

Метод 3 (метод Клавенджера). Приемник см. 2-й метод. В приемник прибавляют органический растворитель для разрушения эмульсии или растворения загустевшего или тяжелого масла. Определяют эфирное масло в сырье аниса, аира, тысячелистника.

Метод 4 впервые включен в ГФ Х1 и отличается от 3-его метода возможностью контролировать температуру конденсации. Во время гидродистилляции температура в отстойнике не должна превышать 25°С.

В ГФ-Х1, вып.2, стр.227 на побеги багульника болотного даны два показателя содержания эфирного масла в сырье:

если сырье предназначено для получения экстемпоральных лекарственных форм, то эфирного масла должно быть не менее 0.1%;

если сырье предназначено для получения ледина, то эфирного масла должно быть не менее 0.7%.

Эфирные масла - бесцветные или желтоватые прозрачные жидкости, реже - темно-коричневые (коричное масло), красные (тимиановое масло), зеленые от присутствия хлорофилла (бергамотовое масло) или синие, зеленовато-синие от присутствия азулена (масло ромашки, тысячелистника, полыни горькой и цитварной). Запах масел характерный, ароматный. Вкус пряный, острый, жгучий. Большая часть эфирных масел имеет относительную плотность меньше единицы, некоторые (коричное, гвоздичное) - тяжелее воды. Эфирные масла почти не растворимы в воде, но при взбалтывании она приобретает их запах и вкус; почти все масла хорошо растворяются в спирте и смешиваются во всех пропорциях с хлороформом, петролейным эфиром. Реактив Судан III окрашивает масло в оранжевый цвет.

Химические свойства.

Эфирные масла являются сложными смесями различных органических соединений, среди которых основную группу составляют вещества с изопреновой структурой. Присутствуют монотерпены, сесквитерпены, реже - ароматические и алифатические соединения. Терпеноиды, содержащиеся в эфирных маслах, представлены альдегидами, кетонами, спиртами, фонолами, эфирами, лактонами, кислотами и другими соединениями

Сырьевая база.

Растения, содержащие эфирные масла (эфироносы), широко представлены в мировой флоре. Особенно богаты эфирными маслами растения тропиков и сухих субтропиков - 44% от числа растений-эфироносов приходится на эти районы. В медицинской практике используют растения Средиземноморья (анис, кориандр, фенхель, тимьян, шалфей). Растения семейства сельдерейных культивируют и в центральных черноземных областях России (Воронежской, Белгородской). Эфиросодержащие растения встречаются в умеренном климате: в зонах лесной, лесостепной, степной. В тундровой зоне из эфироносов растет лишь багульник болотный, а в лесостепной - душица, чабрец, девясил, аир, тмин, хмель и многие другие. Он ограничен только Европейской частью у девясила; занимает Европейскую часть России и Западную Сибирь - у липы, ромашки ромашковидной; Европейскую часть + Западную Сибирь + Восточную Сибирь - у чабреца, можжевельника, хмеля, душицы, полыни горькой, ромашки аптечной; Европейскую часть +Сибирь + Дальний Восток - у багульника, березы, валерианы, тысячелистника, тмина. Разорванный ареал у аира болотного: запад Европейской части России и Восточная Сибирь.

На Дальнем Востоке в диком виде встречается сосна обыкновенная, ель обыкновенная замещается викарными видами. В совхозе «Женьшень» в Приморском крае выращивают мяту перечную, валериану лекарственную. Различны места обитания: береза, сосна, тополь - растения лесов, валериана, тмин, тысячелистник - растения лугов, багульник - растение болот. База сырья большинства дикорастущих растений-эфироносов России значительна и обеспечивает потребность здравоохранения (сырье сосны, березы, можжевельника, багульника, душицы, чабреца, девясила, аира). Такие растения не только собирают в природе, но и культивируют. Это валериана, хмель, ромашка. Особое место среди эфироносов, разрешенных к медицинскому использованию в России, занимает арника горная.

Сапонины

Сапонины - это гетерозиды, производные стероидов и тритерпеноидов, обладающие гемолитической активностью и токсичностью для холоднокровных животных. Слово "сапонины" происходит от латинского названия растения Saponaria officinalis - мыльнянка лекарственная, из которой впервые в 1811 году было выделено вещество, обладающее указанными выше свойствами. Термин "сапонины" был предложен в 1819 г. Melon.

В зависимости от химической природы агликона сапонины делят на три группы:

Стероидные сапонины

Стероидные гликоалкалоиды

Тритерпеновые сапонины.


Физические свойства.

Сапонины - бесцветные или желтоватые гигроскопические кристаллические (чаще стероидные) или аморфные вещества с высокой температурой плавления (с разложением). Растворяются в воде; водные растворы при встряхивании образуют устойчивую пену за счет снижения сапонинами поверхностного натяжения жидкости. Растворимость в полярных растворителях (воде, спирте) увеличивается с возрастанием количества углеводных остатков в молекуле сапонина. Не растворяются в неполярных органических растворителях. Агликоны сапонинов не растворяются в воде, хорошо растворяются в спирте и других органических растворителях. Водные растворы сапонинов могут иметь кислую или нейтральную реакцию. Кислотные свойства могут быть обусловлены наличием карбоксильной группы у агликона и углеводного компонента. Необходимо иметь ввиду, что некоторые сапонины могут не давать устойчивой пены (глицирризин), а гемолиз крови вызывают и другие вещества.

Химические свойства.

Сапонины образуют (в том числе и в растениях) не растворимые в воде молекулярные комплексы со стеринами, липидами, дубильными веществами, белками. Эти комплексы разрушаются при нагревании с хлороформом. Поэтому перед экстракцией сапонинов из сырья, его рекомендуют предварительно обработать хлороформом в аппарате Сокслета в течение 2 часов. Сапонины гидролизуются ферментами и кислотами. С кислотными реагентами (конц. Кислота серная, кремневольфрамовая, уксусный ангидрид, сурьма трехвалентная и др.) сапонины образуют окрашенные продукты за счет образования ненасыщенных (полиеновых) сопряженных структур. Кислые сапонины, производные олеаноловой, урсоловой, глицирризиновой и др. кислот взаимодействуют со щелочами, а также солями тяжелых металлов (свинец, барий и др.), образуя не растворимые в воде осадки. Стероидные сапонины спиростанового типа дают осадки с холестерином. На физических, биологических и химических свойствах сапонинов основаны методы их анализа.

Количественное определение.

Используют весовой метод (осаждением сапонинов с последующим взвешиванием остатка), гемолитический и рыбный индексы, пенное число и химические методы.

Качественное определение.

Анализ сырья. Физический метод. Проба на пенообразование основана на высокой поверхностной активности. Раствор пенится при встряхивании и образуется обильная пена даже в очень больших разведениях. Берут 2 пробирки и наливают в одну из них 5 мл HCl, в другую - 5 мл NaOH. Добавляют в обе пробирки 2-3 капли извлечения или раствора сапонина. Сильно встряхивают. При наличии стероидных сапонинов в пробирке со щелочью образуется более обильная и стойкая пена, чем в пробирке с кислотой. Такой же результат можно получить, используя и тритерпеновые сапонины, которые имеют нейтральную реакцию. В этом случае следует провести еще реакцию на стероидное ядро. При наличии тритерпеновых сапонинов в обеих пробирках образуется пена, равная по объему и стойкости.

Химические методы. К ним относятся:

а) Реакции осаждения. В пробирки с настоями добавляют гидроксид Ва, Мn, ацетата свинца - сапонины осаждаются;

б) Проба Лафона. К 2 мл водного настоя прибавляют 1 мл концентрата серной кислоты, 1 мл этанола, 1 каплю 10% раствора сульфата железа. При нагревании появляется сине-зеленое окрашивание.

Биологические методы. Определяют гемолитический индекс - наименьшую концентрацию извлечения из сырья, которая вызывает полный гемолиз эритроцитов. Для этого к настою сырья на изотоническом растворе добавляют 2% взвесь бараньих эритроцитов. В результате гемолиза кровь становится прозрачной, ярко-красной, лакированной (эритроциты перейдут в плазму). Расчет проводят на 1 г испытуемого вещества. Кроме того, определяют силу действия сапонинового сырья на рыбах, то есть рыбный индекс. Это наименьшая концентрация извлечения, при которой гибнут рыбы массой до 0,5 г, длиной 3-4 см в течение 1 часа. В последнее время для обнаружения сапонинов в сырье начали использовать хроматографию на бумаге и в тонком слое сорбента.

Сырьевая база.

Лекарственные растения - диоскорея ниппонская, аралия маньчжурская - преимущественно дикорастущие дальневосточные виды. Женьшень обычно собирают с плантаций. В настоящее время изучаются надземные виды сырья - листья и плоды, что будет способствовать восстановлению зарослей женьшеня, аралии. Сырьевая база солодки не очень значительна. Потребность в корне этого растения велика как в медицине, так и в других отраслях народного хозяйства. Кроме того, Россия - крупнейший поставщик этого сырья на мировом рынке.

Сердечные гликозиды

"Сердечные гликозиды" это соединения специфической химической структуры, содержащиеся в ряде растений и обладающих характерной кардиотонической активностью. Это сложные органические соединения, расщепляющиеся при гидролизе на сахара (гликоны) и бессахаристую часть (агликоны или генины). Сердечные гликозиды представляют собой наиболее важную группу гликозидов, не имеющих себе равных синтетических заменителей и оказывающих сильное и специфическое воздействие на сердечную мышцу, увеличивая силу ее сокращений.

Лекарственные растения служат единственным источником получения сердечных гликозидов. Растения, содержащие сердечные гликозиды, известны давно. У народов разных стран они в течение многих веков применялись для лечения сердечных и других заболеваний.

Характеристика агликона.

Как и все гликозиды, гликозиды кардиотонического действия состоят из двух частей: сахаристых и несахаристых веществ - агликонов. Агликон гликозидов является производным циклопентанпергидрофенантрена (и относится к классу стероидов, к которым принадлежат и другие соединения, вырабатываемые растениями и животными, такие как витамин D, стероидные сапонины, фитостерины и холестерины, желчные кислоты, половые гормоны). Например, содержащийся в наперстянке гликозид дигинин, имеющий стероидное строение но лишенный лактонного кольца, сердечного действие не оказывает.


В зависимости от строения ненасыщенной: лактонного кольца все сердечные гликозиды делятся на две группы с пятичленным - карденолиды (гликозиды наперстянки, строфанта, ландыша, горицвета) и шестичленным - буфадиенолиды (гликозиды морозника) лактонным кольцом. В формуле карденолидов встречаются заместители: -СН3, -С-OH; в формуле буфадиенолидов заместителями могут быть -СН3, -С-OH, -СН2OН.

В зависимости от заместителя в положении C10 карденолиды подразделяются на три подгруппы.

Подгруппа наперстянки включает гликозиды, агликоны которых в положении С10 имеют метильную группу - СН3. Гликозиды этой подгруппы медленно всасываются и медленно выводятся из организма, обладают кумулятивным действием, например гликозид гитоксигенин.

Подгруппа строфанта - агликон имеет в положении 10 альдегидную группу -С-OH. Эти гликозиды быстро всасываются, быстро выводятся из организма и не обладают кумулятивным действием, например строфантидин.

Подгруппа объединяет сердечные гликозиды, имеющие в положении 10 спиртовую группу (-OН2OН):

Сердечные гликозиды, как и все другие гликозиды, по количеству остатков в углеводной части молекулы делят на монозиды, биозиды, триозиды и т. д.

Физико-химические свойства.

Сердечные гликозиды чаще кристаллические вещества, бесцветные или кремоватые, без запаха, горького вкуса; характеризуются определенной точкой плавления и углом вращения. Многие гликозиды обладают флюоресценцией в УФ-свете (ланатозиды наперстянки шерстистой). Сердечные гликозиды в основном мало растворимы в воде, хлороформе, но хорошо растворимы в водных растворах метанола и этанола. Агликоны сердечных гликозидов лучше растворимы в органических растворителях. Сердечные гликозиды легко подвергаются кислотному, щелочному и ферментативному гидролизу. При кислотном или щелочном гидролизе сразу происходит глубокое расщепление до агликона и cахаров.

Качественные реакции. Проводятся с индивидуальными веществами или очищенным извлечением из растительного сырья: на углеводную часть молекулы (реакция Келлер-Килиани); на стероидное ядро; на лактонное ненасыщенное кольцо (реакция Балье) - с пикриновой кислотой в щелочной среде. В полевых условиях пользуются пикратной бумагой, в которую завертывают свежее растение и надавливают плоскогубцами; появление красного окрашивания на бумаге характеризует присутствие сердечных гликозидов.

Количественное определение.

Проводится различными методами: фотоколометрическим, спектрофотометрическим, флюориметрическим, газожидкостной хроматографии и биологической стандартизации.

НТД на лекарственное растительное сырье, содержащее сердечные гликозиды, требует обязательной стандартизации сырья биологическими методами, которая проводится на лягушках, кошках, голубях. Активность оценивают по сравнению со стандартным кристаллическим препаратом и выражают в единицах действия (лягушачьих, кошачьих и голубиных). Чаще других используется стандартизация на лягушках. За единицу (1 ЛЕД) принято наименьшее количество испытуемого вещества, способное вызвать систолическую остановку сердца у животных в течение 1 ч. Для биологической стандартизации используют лягушек массой 25-40 г, предпочтительно самцов. Стандарты изготовляют и выпускают специализированные научно-исследовательские организации. В НТД на лекарственное растительное сырье, содержащее сердечные гликозиды, обязательно указывается валор. Валер сырья - это количество единиц действия в 1 г сырья. Например, при испытании на лягушках в 1 г листьев наперстянки пурпуровой должно содержаться не менее 50-66 ЛЕД, в траве ландыша майского - 120 ЛЕД, а в цветках ландыша - 200 ЛЕД. При испытании кардиотонических средств на кошках или голубях активность выражают в кошачьих и голубиных единицах действия: КЕД и ГЕД. Гликозиды действуют на сердце в 5-6 раз сильнее, чем их агликоны.

Сырьевая база.

К растениям, содержащим сердечные гликозиды, относятся разные виды наперстянки (Digitalis purpurea L., Digitalis Lanata Ehrh. и др.), горицвета (Аdonis vernalis L. и др.), ландыш (Соnvallaria majalis L,.), обвойник (Реriploca graeса L.), разные виды желтушника (Еrysimum саnescens Roth., Еrуsimum cheiranthоides L. и др.), строфанта (Strophanthus gratus, Strophanthus Коmbe), олеандр (Nerium оleander L.), морозник (Неllеbоrus рurрurascens W. еt К.), джут длинноплодный (Соrсhоrus оlitоrius L.), харг кустарниковый (Gomphocarpus fruticosus А. Вr.) и др.

9. Алкалоиды

Алкалоиды - это природные азотсодержащие органические соединения основного характера, имеющие сложный состав и обладающие сильным специфическим действием. Большинство их относится к соединениям с гетероциклическим атомом азота в кольце, реже азот находится в боковой цепи. Синтезируются преимущественно растениями. В переводе термин "алкалоид" (от араб. "alkali" - щелочь и греч. "eidos" - подобный) означает щелочноподобный. Подобно щелочам, алкалоиды образуют с кислотами соли.

Классификация.

В фармакогнозии принята химическая классификация сырья, содержащего алкалоиды, разработанная акад. А. П. Ореховым. В основу классификации положено деление на группы в зависимости от строения углеродного скелета. Из них некоторые группы встречаются редко.

Алкалоиды с азотом в боковой цепи - эфедрин из различных видов эфедры, сферофизин из травы сферофизы солонцовой, колхицин и колхамин из клубнелуковиц безвременников.

Производные пирролидина и пирролизидина (платифиллин, саррацин, сенецифилллин из крестовника плосколистного и ромболистного).

Производные пиридина и пиперидина (анабазин, лобелин) из анабазиса безлистного и лобелии одутлой.

Алкалоиды с конденсированными пирролидиновыми и пиперидиновыми кольцами (производные тропана) - гиосциамин, атропин, скополамин из красавки, белены, дурмана.

Производные хинолизидина (пахикарпин, термопсин) - софора толстоплодная, термопсис.

Производные хинолина - хинин из хинной коры, эхинопсин из плодов мордовника.

Производные изохинолина - сальсолин из солянки Рихтера, морфин и папаверин из коробочек мака, алкалоиды чистотела, барбариса, мачка желтого.

Производные индола - алкалоиды спорыньи, барвинков, резерпин из корня раувольфии, стрихнин из семян чилибухи, катарантус розовый.

Производные пурина - кофеин из листьев чая и семян колы.

Стероидные алкалоиды - соласонин паслена дольчатого, алкалоиды чемерицы и др.

Физико-химические свойства.

В состав алкалоидов в основном входят углерод, водород, азот и кислород; алкалоиды кубышки дополнительно содержат серу.

Большинство алкалоидов, содержащих кислород - бесцветные, оптически активные, кристаллические или аморфные вещества со щелочной реакцией; некоторые алкалоиды окрашены (например, алкалоид берберин из барбариса желтого цвета), без запаха, горького вкуса. Бескислородные алкалоиды - летучие жидкости с неприятным запахом (например, алкалоид никотин из табака, кониин из болиголова).

Алкалоиды-основания, в воде почти нерастворимы; растворяются в спирте, эфире, хлороформе и других органических растворителях. Соли алкалоидов растворимы в воде и спирте, но нерастворимы в органических растворителях. Алкалоиды в растениях находятся в виде солей, связаны с органическими кислотами: щавелевой, лимонной, яблочной, винной. Для мака снотворного характерна меконовая кислота, а для хинной коры - хинная кислота.

Химические свойства.

Алкалоиды - довольно слабые основания. К наиболее слабым основаниям относится кофеин (константа диссоциации 10-14), к наиболее сильным - кодеин (К = 9·10-7). Благодаря основному характеру, алкалоиды при взаимодействии с кислотами образуют соли. Слабые основания (раствор аммиака, карбонаты, гидроокись бария или кальция и магния оксид) разлагают соли алкалоидов до свободных оснований. Это свойство широко используют при выделении и очистке алкалоидов, количественном определении алкалоидов, получении препаратов. Под действием сильных щелочей алкалоиды гидролизуются. Это необходимо учитывать при выделении их из сырья.

Алкалоиды образуют осадки с солями тяжелых металлов, с комплексными соединениями, с некоторыми органическими соединениями кислого характера, например, с пикриновой кислотой, танином (эти свойства алкалоидов используют для их обнаружения).

Качественные реакции.

Для обнаружения алкалоидов применяют реакции, в результате которых образуются осадки или характерное окрашивание.

Общие осаждающие реакции. Позволяют установить присутствие алкалоидов даже при незначительном их содержании. Из общих алкалоидных реактивов часто используют следующие: танин, дихлорид ртути, раствор иода в иодиде калия, пикриновую и фосфорномолибденовую кислоты, хлорную платину и золото, соли тяжелых металлов и др.

Специальные цветные реакции. Применяют при анализе от дельных алкалоидов - чистых или с очищенными извлечениями. Для этого несколько капель очищенного хлороформного или эфирного извлечения испаряют в фарфоровой чашке, прибавляют к остатку тот или иной реактив; при этом образуется соответствующее окрашивание. В других случаях готовят извлечение (например, из листьев белладонны: 2 г листьев кипятят с 50 мл 1-2% хлористоводородной или уксусной кислоты в течение 10 мин). Извлечение фильтруют и разливают в пробирки. Наиболее распространенные реактивы - концентрированная серная и азотная кислоты, раствор формалина в серной кислоте.

Кроме качественных реакций (осаждающих и цветных), для обнаружения алкалоидов используют люминесцентный анализ. Установлено, что ряд веществ в УФ-лучах дает характерное свечение: например, хинин - синюю флюоресценцию, гидрастин - золотистую.

Количественное определение.

Среди методов количественного определения алкалоидов в растениях распространены весовой, объемный, физико-химический. Перед количественным анализом алкалоиды выделяют из сырья - либо в виде солей, либо в виде оснований. Для каждого растения разработан специальный метод, указанный в Фармакопее или других руководствах.

Сырьевая база.

Содержание алкалоидов в растениях, как правило, невелико - от следов до нескольких процентов. Они накапливаются во многих частях растений, но чаще преобладают в одном органе, например в листьях (чай), в траве (чистотел), коре (хинное дерево). Большинство растений в своем составе содержат не один, а несколько алкалоидов. Алкалоидоносные растения составляют примерно 10% мировой флоры.

Это пиперин в черном перце, кофеин в плодах кофе, листьях чая, какао, теобромин и теофиллин содержатся в зернах какао, берберин в плодах барбариса и т.д.

полисахарид витамин гликозид растение

Используемая литература

1. Соколов С.Я. Фитотерапия и фитофармакология: Руководство для врачей. - М.: Медицинское информационное агентство, 2000г.

Фитотерапия с основами клинической фармакологии / Под ред. В.Г. Кукеса. - М.: Медицина, 1999г.

Дроговоз С.М., Гудзенко А.П., Бутко Я.А. и др. Побочное действие лекарств: Учебник-справочник. - Х.: СИМ, 2010г.

Куркин В.А. Фармакогнозия: Учебник для студентов фармацевтических вузов. - Самара: ООО «Офорт», ГОУ ВПО «СамГМУ», 2004г.

Машковский М.Д. Лекарственные средства: в 2 т. - 14-е изд., перераб., испр. и доп. - М.: ООО «Издательство Новая Волна», 2002г.

Федюкович Н.И. Фармакология для медицинских училищ и колледжей: Учеб. пособие. - Ростов-на-Дону: Феникс, 2001г.