История тригонометрии: возникновение и развитие. Связь тригонометрической функции и медицины

Синус, косинус, тангенс - при произнесении этих слов в присутствии учеников старших классов можно быть уверенным, что две трети из них потеряют интерес к дальнейшему разговору. Причина кроется в том, что основы тригонометрии в школе преподаются в полном отрыве от реальности, а потому учащиеся не видят смысла в изучении формул и теорем.

В действительности данная область знаний при ближайшем рассмотрении оказывается весьма интересной, а также прикладной - тригонометрия находит применение в астрономии, строительстве, физике, музыке и многих других областях.

Ознакомимся с основными понятиями и назовем несколько причин изучить этот раздел математической науки.

История

Неизвестно, в какой момент времени человечество начало создавать будущую тригонометрию с нуля. Однако документально зафиксировано, что уже во втором тысячелетии до нашей эры египтяне были знакомы с азами этой науки: археологами найден папирус с задачей, в которой требуется найти угол наклона пирамиды по двум известным сторонам.

Более серьезных успехов достигли ученые Древнего Вавилона. На протяжении веков занимаясь астрономией, они освоили ряд теорем, ввели особые способы измерения углов, которыми, кстати, мы пользуемся сегодня: градусы, минуты и секунды были заимствованы европейской наукой в греко-римской культуре, в которую данные единицы попали от вавилонян.

Предполагается, что знаменитая теорема Пифагора, относящаяся к основам тригонометрии, была известна вавилонянам почти четыре тысячи лет назад.

Название

Дословно термин «тригонометрия» можно перевести как «измерение треугольников». Основным объектом изучения в рамках данного раздела науки на протяжении многих веков был прямоугольный треугольник, а точнее - взаимосвязь между величинами углов и длинами его сторон (сегодня с этого раздела начинается изучение тригонометрии с нуля). В жизни нередки ситуации, когда практически измерить все требуемые параметры объекта (или расстояние до объекта) невозможно, и тогда возникает необходимость недостающие данные получить посредством расчётов.

Например, в прошлом человек не мог измерить расстояние до космических объектов, а вот попытки эти расстояния рассчитать встречаются задолго до наступления нашей эры. Важнейшую роль играла тригонометрия и в навигации: обладая некоторыми знаниями, капитан всегда мог сориентироваться ночью по звездам и скорректировать курс.

Основные понятия

Для освоения тригонометрии с нуля требуется понять и запомнить несколько основных терминов.

Синус некоторого угла - это отношение противолежащего катета к гипотенузе. Уточним, что противолежащий катет - это сторона, лежащая напротив рассматриваемого нами угла. Таким образом, если угол составляет 30 градусов, синус этого угла всегда, при любом размере треугольника, будет равен ½. Косинус угла - это отношение прилежащего катета к гипотенузе.

Тангенс - это отношение противолежащего катета к прилежащему (либо, что то же самое, отношение синуса к косинусу). Котангенс - это единица, деленная на тангенс.

Стоит упомянуть и знаменитое число Пи (3,14…), которое представляет собой половину длины окружности с радиусом в одну единицу.

Популярные ошибки

Люди, изучающие тригонометрию с нуля, совершают ряд ошибок - в основном по невнимательности.

Во-первых, при решении задач по геометрии необходимо помнить, что использование синусов и косинусов возможно только в прямоугольном треугольнике. Случается, что учащийся «на автомате» принимает за гипотенузу самую длинную сторону треугольника и получает неверные результаты вычислений.

Во-вторых, поначалу легко перепутать значения синуса и косинуса для выбранного угла: напомним, что синус 30 градусов численно равен косинусу 60, и наоборот. При подстановке неверного числа все дальнейшие расчёты окажутся неверными.

В-третьих, пока задача полностью не решена, не стоит округлять какие бы то ни было значения, извлекать корни, записывать обыкновенную дробь в виде десятичной. Часто ученики стремятся получить в задаче по тригонометрии «красивое» число и сразу же извлекают корень из трёх, хотя ровно через одно действие этот корень можно будет сократить.

Этимология слова «синус»

История слова «синус» поистине необычна. Дело в том, что буквальный перевод этого слова с латыни означает «впадина». Всё потому, что верное понимание слова затерялось при переводе с одного языка на другой.

Названия базовых тригонометрических функций произошли из Индии, где понятие синуса обозначалось словом «тетива» на санскрите - дело в том, что отрезок вместе с дугой окружности, на которую он опирался, походил на лук. Во времена расцвета арабской цивилизации индийские достижения в области тригонометрии были заимствованы, и термин перешел в арабский язык в виде транскрипции. Случилось так, что в этом языке уже было похожее слово, обозначающее впадину, и если арабы понимали фонетическую разницу между родным и заимствованным словом, то европейцы, переводящие научные трактаты на латынь, по ошибке буквально перевели арабское слово, никакого отношения к понятию синуса не имеющее. Им мы и пользуемся по сей день.

Таблицы значений

Существуют таблицы, в которые занесены числовые значения для синусов, косинусов и тангенсов всех возможных углов. Ниже представим данные для углов в 0, 30, 45, 60 и 90 градусов, которые необходимо выучить как обязательный раздел тригонометрии для «чайников», благо запомнить их довольно легко.

Если случилось так, что числовое значение синуса или косинуса угла «вылетело из головы», есть способ вывести его самостоятельно.

Геометрическое представление

Начертим круг, через его центр проведем оси абсцисс и ординат. Ось абсцисс располагается горизонтально, ось ординат - вертикально. Обычно они подписываются как «X» и «Y» соответственно. Теперь из центра окружности проведем прямую таким образом, чтобы между ней и осью X получился нужный нам угол. Наконец, из той точки, где прямая пересекает окружность, опустим перпендикуляр на ось X. Длина получившегося отрезка будет равна численному значению синуса нашего угла.

Данный способ весьма актуален, если вы забыли нужное значение, например, на экзамене, и учебника по тригонометрии под рукой нет. Точной цифры вы таким образом не получите, но разницу между ½ и 1,73/2 (синус и косинус угла в 30 градусов) вы точно увидите.

Применение

Одними из первых специалистов, использующих тригонометрию, были моряки, не имеющие никакого другого ориентира в открытом море, кроме неба над головой. Сегодня капитаны кораблей (самолётов и других видов транспорта) не ищут кратчайший путь по звёздам, зато активно прибегают к помощи GPS-навигации, которая без использования тригонометрии была бы невозможна.

Практически в каждом разделе физики вас ждут расчёты с использованием синусов и косинусов: будь то приложение силы в механике, расчёты пути объектов в кинематике, колебания, распространение волн, преломление света - без базовой тригонометрии в формулах просто не обойтись.

Ещё одна профессия, которая немыслима без тригонометрии - это геодезист. Используя теодолит и нивелир либо более сложный прибор - тахиометр, эти люди измеряют разницу в высоте между различными точками на земной поверхности.

Повторяемость

Тригонометрия имеет дело не только с углами и сторонами треугольника, хотя именно с этого она начинала своё существование. Во всех областях, где присутствует цикличность (биологии, медицине, физике, музыке и т. д.) вы встретитесь с графиком, название которого наверняка вам знакомо - это синусоида.

Такой график представляет собой развёрнутую вдоль оси времени окружность и внешне похож на волну. Если вы когда-нибудь работали с осциллографом на занятиях по физике, вы понимаете, о чем идет речь. Как музыкальный эквалайзер, так и прибор, отображающий сердечные ритмы, используют формулы тригонометрии в своей работе.

В заключение

Задумываясь о том, как выучить тригонометрию, большинство учащихся средней и старшей школы начинают считать её сложной и непрактичной наукой, поскольку знакомятся лишь со скучной информацией из учебника.

Что касается непрактичности - мы уже увидели, что в той или иной степени умение обращаться с синусами и тангенсами требуется практически в любой сфере деятельности. А что касается сложности… Подумайте: если люди пользовались этими знаниями больше двух тысяч лет назад, когда взрослый человек имел меньше знаний, чем сегодняшний старшеклассник, реально ли изучить данную область науки на базовом уровне лично вам? Несколько часов вдумчивых занятий с решением задач - и вы достигнете своей цели, изучив базовый курс, так называемую тригонометрию для «чайников».

Другие разделы

Слово «тригонометрия» впервые встречается (1505 г.) в заглавии книги немецкого теолога и математика Питискуса. Происхождение этого слова греческое: xpiyrovov - треугольник, цетресо - мера. Иными словами, тригонометрия - наука об измерении треугольников. Хотя название возникло сравнительно недавно, многие относимые сейчас к тригонометрии понятия и факты были известны уже две тысячи лет назад.

Длительную историю имеет понятие
синуса. Фактически различные отношения отрезков треугольника и окружности (а по существу, и тригонометрические функции) встречаются уже в III в. до н. э. в работах великих математиков Древней Греции - Евклида, Архимеда, Аполлония Пергского. В римский период эти отношения уже достаточно систематично исследовались Менелаем (1в. н.э.), хотя и не приобрели специального названия.

В последующий период математика долгое время наиболее активно развивалась индийскими и арабскими учеными. В IV-V вв. появился, в частности, уже специальный термин в трудах по астрономии великого индийского ученого Ариабхаты (476 - ок. 550), именем которого назван первый индийский спутник Земли. Отрезок он назвал ардхаджива
.

Позднее привилось более краткое название джива. Арабскими математиками в IX в. слово джива (или джиба) было заменено на арабское слово джайб (выпуклость). При переводе арабских математических текстов в XII в. это слово было заменено латинским
синус (sinus - изгиб, кривизна).

Слово косинус намного моложе.
Косинус - это сокращение латинского выражения complementy sinus, т. е. «дополнительный синус» (или иначе «синус дополнительной дуги»; вспомните cos а = sin (90° - а)).

Тангенсы возникли в связи с решением задачи об определении длины тени. Тангенс (а также котангенс, секанс и косеканс) введен в X в. арабским математиком Абул-Вафой, который составил и первые таблицы для нахождения тангенсов и котангенсов. Однако эти открытия долгое время оставались неизвестными европейским ученым, и тангенсы были заново открыты в XIV в. сначала английским ученым Т. Бравердином, а позднее немецким математиком, астрономом Региомонтаном (1467 г.). 

Название «тангенс», происходящее от латинского tanger (касаться), появилось в 1583 г. Tangens переводится как «касающийся» (линия тангенсов - это касательная к единичной окружности).


Современные обозначения
arcsin и arctg появляются в 1772 г. в работах венского математика Шерфера и известного французского ученого Лагранжа, хотя несколько ранее их уже рассматривал Я. Бернулли, который употреблял иную символику. Но общепринятыми эти символы стали лишь в конце XVIII столетия. Приставка «арк» происходит от латинского arcus (лук, дуга), что вполне согласуется со смыслом понятия: arcsin х, например, - это угол (а можно сказать, и дуга), синус которого равен х.

Длительное время тригонометрия развивалась как часть геометрии
. Пожалуй, наибольшие стимулы к развитию тригонометрии возникали в связи с решением задач астрономии, что представляло большой практический интерес (например, для решения задач определения местонахождения судна, предсказания затмений и т. д.).

Астрономов интересовали соотношения между сторонами и углами сферических треугольников, составленных из больших кругов, лежащих на сфере.


Во всяком случае в геометрической форме многие формулы тригонометрии открывались и переоткрывались древнегреческими, индийскими, арабскими математиками. (Правда, формулы разности тригонометрических функций стали известны только в XVII в.- их вывел английский математик Непер для упрощения вычислений с тригонометрическими функциями. А первый рисунок синусоиды появился в 1634 г.)


Принципиальное значение имело составление К. Птолемеем первой таблицы синусов (долгое время она называлась таблицей хорд): появилось практическое средство решения ряда прикладных задач, и в первую очередь задач астрономии.


Современный вид тригонометрии придал крупнейший математик XVIII столетия Л . Эйлер (1707-1783), швейцарец по происхождению, долгие годы работавший в России и являвшийся членом Петербургской Академии наук. Именно Эйлер первым ввел известные определения тригонометрических функций, стал рассматривать функции произвольного угла, получил формулы приведения. Все это малая доля того, что за долгую жизнь Эйлер успел сделать в математике: он оставил свыше 800 работ, доказал многие ставшие классическими теоремы, относящиеся к самым разным областям математики. (Несмотря на то что в 1776 г. Эйлер потерял зрение, он до последних дней продолжал диктовать все новые и новые работы.)

После Эйлера тригонометрия приобрела форму исчисления: различные факты стали доказываться путем формального применения формул тригонометрии, доказательства стали намного компактнее, проще.

Область применения тригонометрии охватывает самые разные сферы математики, некоторые разделы естествознания и техники.

Тригонометрия имеет несколько разновидностей:

    Сферическая тригонометрия занимается изучением сферических треугольников.

    Прямолинейная или плоская тригонометрия изучает обычнее треугольники.


Значительно развили тригонометрию древнегреческие и эллинистические ученые. Однако в работах Евклида и Архимеда тригонометрия представлена в геометрическом виде. Теоремы о длине хорд применяются в законах синусов. А теорема Архимеда для деления хорд соответствует формулам для синусов суммы и разности углов.

В настоящее время математики используют новую запись известных теорем, например, sin α/ sin β < α/β < tan α/ tan β, где 0° < β < α < 90°, тем самым, компенсируют недостатки таблиц хорд, времен Аристарха Самосского.

Предположительно первые тригонометрические таблицы были составлены Гиппархом Никейским , которого по праву считают «отцом тригонометрии». Ему принадлежит заслуга в создании сводной таблицы величин дуг и хорд для серии углов. Более того именно Гиппарх Никейский впервые стал использовать 360° окружности.

Клавдий Птолемей значительно развил и расширил учение Гиппарха. Теорема Птолемея гласит: сумма произведений противоположных сторон циклического четырехугольника равна произведению диагоналей. Следствием теоремы Птолемея стало понимание эквивалентности четырех формул суммы и разности для синуса и косинуса. Кроме того, Птолемей вывел формулу половинного угла. Все свои результаты Птолемей использовал при составлении тригонометрических таблиц. К сожалению, ни одной подлинной тригонометрической таблицы Гиппарха и Птолемея не сохранилось до наших дней.

Тригонометрические вычисления нашли свое применение почти во всех областях геометрии, физики и инженерного дела.
С помощью тригонометрии (техника триангуляции) можно измерять расстояния между звездами, между ориентирами в географии, производить контроль над системами навигации спутников.


Тригонометрия успешно применяется в технике навигации, теории музыки, акустике, оптике, при анализе финансовых рынков, электронике, теории вероятности, статистике, биологии и медицине, химии и теории чисел (криптографии), сейсмологии, метеорологии, океанологии, картографии, топографии и геодезии, архитектуре и фонетике, машиностроении и компьютерной график
е .

Введение

Реальные процессы окружающего мира обычно связаны с большим количеством переменных и зависимостей между ними. Описать эти зависимости можно с помощью функций. Понятие «функция» сыграло и поныне играет большую роль в познании реального мира. Знание свойств функций позволяет понять суть происходящих процессов, предсказать ход их развития, управлять ими. Изучение функций является актуальным всегда.

Цель : выявить связь тригонометрических функций с явлениями окружающего мира и показать, что данные функции находит широкое применение в жизни.

задачи :

1. Изучить литературу и ресурсы удаленного доступа по теме проекта.

2. Выяснить, какие законы природы выражаются тригонометрическими функцией.

3. Найти примеры применения тригонометрических функций в окружающем мире.

4. Проанализировать и систематизировать имеющийся материал.

5. Подготовить оформленный материал в соответствии с требованиями информационного проекта.

6. Разработать в соответствии с содержанием проекта электронную презентацию.

7. Выступить на конференции с результатами проведённой работы.

На подготовительном этапе я нашел материал по данной теме и ознакомился с ним выдвинул гипотезы сформулировали цель своего проекта. Я начал поиск необходимой информации, изучал литературу по моей теме и материалы ресурсов удаленного доступа.

На основном этапе , была подобрана и накоплена информация по теме, проанализированы найденные материалы. Я выяснил основные области применения тригонометрических функций. Все данные были обобщены и систематизированы. Затем разработан целостный окончательный вариант информационного проекта, составлена презентация по теме исследования.

На заключительном этапе была проанализированапрезентация работы на конкурс. На этом этапе также предполагалась деятельность по реализации всех поставленных задач, подведение итогов, т. е. оценка своей деятельность.

Восход и заход солнца, изменение фаз луны, чередование времен года, биение сердца, циклы в жизнедеятельности организма, вращение колеса, морские приливы и отливы - модели этих многообразных процессов описываются тригонометрическими функциями.


Тригонометрия в физике.

В технике и окружающем нас мире часто приходится сталкиваться с периодическими (или почти периодическими) процессами, которые повторяются через одинаковые промежутки времени. Такие процессы называют колебательными. Колебательные явления различной физической природы подчиняются общим закономерностям. Например, колебания тока в электрической цепи и колебания математического маятника могут описываться одинаковыми уравнениями. Общность колебательных закономерностей позволяет рассматривать колебательные процессы различной природы с единой точки зрения. Наряду с поступательными и вращательными движениями тел в механике значительный интерес представляют и колебательные движения.

Механическими колебаниями называют движения тел, повторяющиеся точно (или приблизительно) через одинаковые промежутки времени. Закон движения тела, совершающего колебания, задается с помощью некоторой периодической функции времени x = f(t). Графическое изображение этой функции дает наглядное представление о протекании колебательного процесса во времени. Примером волны такого рода могут служить волны, бегущие по натянутому резиновому жгуту или по струне.

Примерами простых колебательных систем могут служить груз на пружине или математический маятник (рис.1).

Рис.1. Механические колебательные системы.

Механические колебания, как и колебательные процессы любой другой физической природы, могут быть свободными и вынужденными. Свободные колебаниясовершаются под действием внутренних сил системы, после того, как система была выведена из состояния равновесия. Колебания груза на пружине или колебания маятника являются свободными колебаниями. Колебания, происходящие под действием внешних периодически изменяющихся сил, называются вынужденными.

На рисунке 2 приведены графики координаты, скорости и ускорения тела, совершающего гармонические колебания.

Простейшим видом колебательного процесса являются простые гармонические колебания, которые описываются уравнением:

x = m cos (ωt + f 0).

Рисунок 2- Графики координаты x(t), скорости υ(t)

и ускорения a(t) тела, совершающего гармонические колебания.

Звуковыми волнами или просто звуком принято называть волны, воспринимаемые человеческим ухом.

Если в каком-нибудь месте твердой, жидкой или газообразной среды возбуждены колебания частиц, то вследствие взаимодействия атомов и молекул среды колебания начинают передаваться от одной точки к другой с конечной скоростью. Процесс распространения колебаний в среде называется волной.

Значительный интерес для практики представляют простые гармонические или синусоидальные волны. Они характеризуются амплитудой A колебания частиц, частотой f и длиной волны λ. Синусоидальные волны распространяются в однородных средах с некоторой постоянной скоростьюυ.

Если бы зрение людей обладало способностью видеть звуковые, электромагнитные и радиоволны, то мы видели бы вокруг многочисленные синусоиды всевозможных видов.

Наверняка, каждый не раз наблюдал явление, когда опущенные в воду предметы сразу же меняли свои размеры и пропорции. Интересное явление, погружаешь в воду свою руку, и она сразу же превращается в руку какого-то другого человека. Почему так происходит? Ответ на этот вопрос и подробное объяснение этого явления как всегда дает физика – наука, которая может объяснить практически все, что нас окружает в этом мире.

Итак, на самом деле, при погружении в воду предметы, конечно же, не меняют ни своих размеров, ни своих очертаний. Это просто оптический эффект, то есть мы зрительно воспринимаем этот объект по-другому. Происходит это из-за свойства светового луча. Оказывается, на скорость распространения света в огромной мере влияет, так называемая оптическая плотность среды. Чем плотнее эта оптическая среда, тем медленнее распространяется луч света.

Но и изменение скорости луча света еще не объясняет в полной мере рассматриваемого нами явления. Существует и еще один фактор. Так вот, когда световой луч проходит границу между менее плотной оптической средой, например воздухом, и более плотной оптической средой, например водой, часть светового луча не проникает внутрь новой среды, а отражается от ее поверхности. Другая же часть светового луча проникает внутрь, но, уже меняя направление.

Это явление называется преломлением света, и ученые уже давно могут не просто наблюдать, но и точно рассчитывать угол этого преломления. Оказалось, что простейшие тригонометрические формулы и знание синуса угла падения и угла преломления дают возможность узнать постоянный коэффициент преломления для перехода светового луча из одной конкретной среды в другую. Например, коэффициент преломления воздуха чрезвычайно мал и составляет 1,0002926, коэффициент преломления воды чуть больше - 1,332986, алмаз преломляет свет с коэффициентом 2,419, а кремний - 4,010.

Данное явление лежит в основе, так называемой Теории радуги. Впервые теория радуги была дана в 1637 году Рене Декартом. Он объяснил радугу, как явление, связанное с отражением и преломлением света в дождевых каплях.

Радуга возникает из-за того, что солнечный свет испытывает преломление в капельках воды, взвешенных в воздухе по закону преломления:

где n 1 =1, n 2 ≈1,33 – соответственно показатели преломления воздуха и воды, α – угол падения, а β – угол преломления света.


Применение тригонометрии в искусстве и архитектуре.

С того времени как человек стал существовать на земле, основой улучшения быта и других сфер жизни стала наука. Основы всего, что создано человеком – это различные направления в естественных и математических науках. Одна из них – геометрия. Архитектура не единственная сфера науки, в которой используются тригонометрические формулы. Большинство композиционных решений и построений рисунков проходило именно с помощью геометрии. Но теоретические данные мало что значат. Рассмотрим пример на построение одной скульптуры французского мастера Золотого века искусства.

Пропорциональное соотношение в построении статуи было идеально. Однако при поднятии статуи на высокий пьедестал, она смотрелась уродливой. Скульптором не было учтено, что в перспективе к горизонту уменьшаются многие детали и при взгляде снизу вверх уже не создается впечатления ее идеальности. Велось множество расчетов, чтобы фигура с большой высоты смотрелась пропорционально. В основном они были основаны на методе визирования, то есть приблизительного измерения, на глаз. Однако коэффициент разности тех или иных пропорций позволили сделать фигуру более приближенной к идеалу. Таким образом, зная примерное расстояние от статуи до точки зрения, а именно от верха статуи до глаз человека и высоту статуи, можно рассчитать синус угла падения взгляда с помощью таблицы, тем самым найдем точку зрения (рис.4).

На рисунке 5 ситуация меняется, так как статую поднимают на высоту АС и НС увеличиваются, можно рассчитать значения косинуса угла С, по таблице найдем угол падения взгляда. В процессе можно рассчитать АН, а также синус угла С, что позволит проверить результаты с помощью основного тригонометрического тождества cos 2 a+ sin 2 a = 1.

Сравнив измерения АН в первом и во втором случаи можно найти коэффициент пропорциональности. Впоследствии мы получим чертеж, а потом скульптуру, при поднятии которой зрительно фигура будет приближена к идеалу

Культовые здания во всем мире были спроектированы благодаря математике, которая может считаться гением архитектуры. Некоторые известные примеры таких зданий:Детская школа Гауди в Барселоне, Небоскрёб Мэри-Экс в Лондоне, Винодельня «Бодегас Исиос» в Испании,Ресторан в Лос-Манантиалесе в Аргентине. При проектировании этих зданий не обошлось без тригонометрии.


Тригонометрия в биологии.

Одно из фундаментальных свойств живой природы - это цикличность большинства происходящих в ней процессов. Между движением небесных тел и живыми организмами на Земле существует связь. Живые организмы не только улавливают свет и тепло Солнца и Луны, но и обладают различными механизмами, точно определяющими положение Солнца, реагирующими на ритм приливов, фазы Луны и движение нашей планеты.

Биологические ритмы, биоритмы, - это более или менее регулярные изменения характера и интенсивности биологических процессов. Способность к таким изменениям жизнедеятельности передается по наследству и обнаружена практически у всех живых организмов. Их можно наблюдать в отдельных клетках, тканях и органах, целых организмах и популяциях. Биоритмы подразделяют на физиологические , имеющие периоды от долей секунды до нескольких минут и экологические, по длительности совпадающие с каким либо ритмом окружающей среды. К ним относят суточные, сезонные, годовые, приливные и лунные ритмы. Основной земной ритм – суточный, обусловлен вращением Земли вокруг своей оси, поэтому практически все процессы в живом организме обладают суточной периодичностью.

Множество экологических факторов на нашей планете, в первую очередь световой режим, температура, давление и влажность воздуха, атмосферное и электромагнитное поле, морские приливы и отливы, под влиянием этого вращения закономерно изменяются.

Мы на семьдесят пять процентов состоим из воды, и если в момент полнолуния воды мирового океана поднимаются на 19 метров над уровнем моря и начинается прилив, то вода, находящаяся в нашем организме так же устремляется в верхние отделы нашего тела. И у людей с повышенным давлением часто наблюдаются обострения болезни в эти периоды, а натуралисты, собирающие лекарственные травы, точно знают в какую фазу луны собирать «вершки – (плоды)», а в какую – «корешки».

Вы замечали, что в определенные периоды ваша жизнь делает необъяснимые скачки? Вдруг откуда не возьмись - бьют через край эмоции. Повышается чувствительность, которая внезапно может смениться полной апатией. Творческие и бесплодные дни, счастливые и несчастные моменты, резкие скачки настроения. Подмечено, что возможности человеческого организма меняются периодически. Эти знания лежат в основе «теории трех биоритмов».

Физический биоритм – регулирует физическую активность. В течение первой половины физического цикла человек энергичен, и достигает лучших результатов в своей деятельности (вторая половина – энергичность уступает лености).

Эмоциональный ритм – в периоды его активности повышается чувствительность, улучшается настроение. Человек становится возбудимым к различным внешним катаклизмам. Если у него хорошее настроение, он строит воздушные замки, мечтает влюбиться и влюбляется. При снижении эмоционального биоритма происходит упадок душевных сил, пропадает желание, радостное настроение.

Интеллектуальный биоритм - он распоряжается памятью, способностью к обучению, логическому мышлению. В фазе активности наблюдается подъем, а во второй фазе спад творческой активности, отсутствуют удача и успех.

Теория трех ритмов.

· Физический цикл -23 дня. Определяет энергию, силу, выносливость, координацию движения

· Эмоциональный цикл - 28 дней. Состояние нервной системы и настроение

· Интеллектуальный цикл - 33 дня. Определяет творческую способность личности

Тригонометрия встречается и в природе. Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения. При плавании тело рыбы принимает форму кривой, которая напоминает график функции y=tgx.

При полёте птицы траектория взмаха крыльев образует синусоиду.


Тригонометрия в медицине.

В результате исследования, проведенного студентом иранского университета Шираз Вахидом-Резой Аббаси, медики впервые получили возможность упорядочить информацию, относящуюся к электрической активности сердца или, другими словами, электрокардиографии.

Формула, получившая название тегеранской, была представлена широкой научной общественности на 14-й конференции географической медицины и затем - на 28-й конференции по вопросам применения компьютерной техники в кардиологии, состоявшейся в Нидерландах.

Эта формула представляет собой комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии. Как утверждают медики, эта формула в значительной степени облегчает процесс описания основных параметров деятельности сердца, ускоряя, тем самым, постановку диагноза и начало собственно лечения.

Многим людям приходится делать кардиограмму сердца, но немногие знают, что кардиограмма человеческого сердца – график синуса или косинуса.

Тригонометрия помогает нашему мозгу определять расстояния до объектов. Американские ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения. Такой вывод был сделан после серии экспериментов, участникам которых предлагалось взглянуть на окружающий мир через призмы, увеличивающие этот угол.

Такое искажение приводило к тому, что подопытные носители призм воспринимали удаленные объекты как более близкие и не могли справиться с простейшими тестами. Некоторые из участников экспериментов даже наклонялись вперед, стремясь выровнять свое тело перпендикулярно неправильно представляемой поверхности земли. Однако по происшествии 20 минут они привыкли к искаженному восприятию, и все проблемы исчезли. Это обстоятельство указывает на гибкость механизма, с помощью которого мозг приспосабливает зрительную систему к меняющимся внешним условиям. Интересно заметить, что после того, как призмы были сняты, некоторое время наблюдался обратный эффект - переоценка расстояния.

Результаты нового исследования, как можно предположить, окажутся небезынтересны инженерам, конструирующим системы навигации для роботов, а также специалистам, которые работают над созданием максимально реалистичных виртуальных моделей. Возможны и приложения в области медицины, при реабилитации пациентов с повреждениями определенных областей мозга.


Заключение

В настоящее время тригонометрические вычисления применяются практически во всех областях геометрии, физики и инженерного дела. Большое значение имеет техника триангуляции, позволяющая измерять расстояния до недалёких звёзд в астрономии, между ориентирами в географии, контролировать системы навигации спутников. Также следует отметить применение тригонометрии в таких областях, как теория музыки, акустика, оптика, анализ финансовых рынков, электроника, теория вероятностей, статистика, медицина (включая ультразвуковое исследование (УЗИ) и компьютерную томографию), фармацевтика, химия, теория чисел, сейсмология, метеорология, океанология, картография, многие разделы физики, топография и геодезия, архитектура, экономика, электронная техника, машиностроение, компьютерная графика, кристаллография.

Выводы:

· Мы выяснили, что тригонометрия была вызвана к жизни необходимостью производить измерения углов, но со временем развилась и в науку о тригонометрических функциях.

· Мы доказали, что тригонометрия тесно связана с физикой, биологией, встречается в природе, архитектуре и медицине.

· Мы думаем, что тригонометрия нашла отражение в нашей жизни, и сферы, в которых она играет важную роль, будут расширяться.


Литература

1. Алимов Ш.А.и др. "Алгебра и начала анализа" Учебник для 10-11 классов общеобразовательных учреждений, М., Просвещение, 2010.

2. Виленкин Н.Я. Функции в природе и техники: Кн. для внеклас. чтения IX-XX кл. – 2-е изд., испр.-М: Просвещение, 1985.

3. Глейзер Г.И. История математики в школе: IX-X кл. - М.: Просвещение, 1983.

4. Маслова Т.Н. «Справочник школьника по математике»

5. Рыбников К.А. История математики: Учебник. - М.: Изд-во МГУ, 1994.

6. Учеба.ru

7. Math.ru «библиотека»

История тригонометрии неразрывно связана с астрономией, ведь именно для решения задач этой науки древние ученые стали исследовать соотношения различных величин в треугольнике.

На сегодняшний день тригонометрия является микроразделом математики, изучающим зависимость между значениями величин углов и длин сторон треугольников, а также занимающимся анализом алгебраических тождеств тригонометрических функций.

Термин «тригонометрия»

Сам термин, давший название этому разделу математики, впервые был обнаружен в заголовке книги под авторством немецкого ученого-математика Питискуса в 1505 году. Слово «тригонометрия» имеет греческое происхождение и означает «измеряю треугольник». Если быть точнее, то речь идет не о буквальном измерении этой фигуры, а об её решении, то есть определении значений её неизвестных элементов с помощью известных.

Общие сведения о тригонометрии

История тригонометрии началась более двух тысячелетий назад. Первоначально ее возникновение было связано с необходимостью выяснения соотношений углов и сторон треугольника. В процессе исследований выяснилось, что математическое выражение данных соотношений требует введения особых тригонометрических функций, которые первоначально оформлялись как числовые таблицы.

Для многих смежных с математикой наук толчком к развитию стала именно история тригонометрии. Происхождение единиц измерения углов (градусов), связанное с исследованиями ученых Древнего Вавилона, опирается на шестидесятиричную систему исчисления, которая дала начала современной десятиричной, применяемой во многих прикладных науках.

Предполагается, что изначально тригонометрия существовала как часть астрономии. Затем она стала использоваться в архитектуре. А со временем возникла целесообразность применения данной науки в различных областях человеческой деятельности. Это, в частности, астрономия, морская и воздушная навигация, акустика, оптика, электроника, архитектура и прочие.

Тригонометрия в ранние века

Руководствуясь данными о сохранившихся научных реликвиях, исследователи сделали вывод, что история возникновения тригонометрии связана с работами греческого астронома Гиппарха, который впервые задумался над поиском способов решения треугольников (сферических). Его труды относятся ко 2 веку до нашей эры.

Также одним из важнейших достижений тех времен является определение соотношения катетов и гипотенузы в прямоугольных треугольниках, которое позже получило название теоремы Пифагора.

История развития тригонометрии в Древней Греции связана с именем астронома Птоломея - автора геоцентрической господствовавшей до Коперника.

Греческим астрономам не были известны синусы, косинусы и тангенсы. Они пользовались таблицами, позволяющими найти значение хорды окружности с помощью стягиваемой дуги. Единицами для измерения хорды были градусы, минуты и секунды. Один градус приравнивался к шестидесятой части радиуса.

Также исследования древних греков продвинули развитие сферической тригонометрии. В частности, Евклид в своих «Началах» приводит теорему о закономерностях соотношений объемов шаров различного диаметра. Его труды в этой области стали своеобразным толчком в развитии еще и смежных областей знаний. Это, в частности, технология астрономических приборов, теория картографических проекций, система небесных координат и т. д.

Средневековье: исследования индийских ученых

Значительных успехов достигли индийские средневековые астрономы. Гибель античной науки в IV веке обусловила перемещение центра развития математики в Индию.

История возникновения тригонометрии как обособленного раздела математического учения началась в Средневековье. Именно тогда ученые заменили хорды синусами. Это открытие позволило ввести функции, касающиеся исследования сторон и углов То есть именно тогда тригонометрия начала обосабливаться от астрономии, превращаясь в раздел математики.

Первые таблицы синусов были у Ариабхаты, они была проведены через 3 о, 4 о, 5 о. Позже появились подробные варианты таблиц: в частности, Бхаскара привел таблицу синусов через 1 о.

Первый специализированный трактат по тригонометрии появился в X—XI веке. Автором его был среднеазиатский учёный Аль-Бируни. А в своем главном труде «Канон Мас‘уда» (книга III) средневековый автор еще более углубляется в тригонометрию, приводя таблицу синусов (с шагом 15") и таблицу тангенсов (с шагом 1°).

История развития тригонометрии в Европе

После перевода арабских трактатов на латынь (XII-XIII в) большинство идей индийских и персидских ученых были заимствованы европейской наукой. Первые упоминания о тригонометрии в Европе относятся к XII веку.

По мнению исследователей, история тригонометрии в Европе связана с именем англичанина Ричарда Уоллингфордского, который стал автором сочинения «Четыре трактата о прямых и обращенных хордах». Именно его труд стал первой работой, которая целиком посвящена тригонометрии. К XV веку многие авторы в своих трудах упоминают о тригонометрических функциях.

История тригонометрии: Новое время

В Новое время большинство ученых стало осознавать чрезвычайную важность тригонометрии не только в астрономии и астрологии, но и в других областях жизни. Это, в первую очередь, артиллерия, оптика и навигация в дальних морских походах. Поэтому во второй половине XVI века эта тема заинтересовала многих выдающихся людей того времени, в том числе Николая Коперника, Франсуа Виета. Коперник отвел тригонометрии несколько глав своего трактата «О вращении небесных сфер» (1543). Чуть позже, в 60-х годах XVI века, Ретик - ученик Коперника - приводит в своем труде «Оптическая часть астрономии» пятнадцатизначные тригонометрические таблицы.

В «Математическом каноне» (1579) дает обстоятельную и систематическую, хотя и бездоказательную, характеристику плоской и сферической тригонометрии. А Альбрехт Дюрер стал тем, благодаря кому на свет появилась синусоида.

Заслуги Леонарда Эйлера

Придание тригонометрии современного содержания и вида стало заслугой Леонарда Эйлера. Его трактат «Введение в анализ бесконечных» (1748) содержит определение термина «тригонометрические функции», которое эквивалентно современному. Таким образом, этот ученый смог определить Но и это еще не все.

Определение тригонометрических функций на всей числовой прямой стало возможным благодаря исследованиям Эйлера не только допустимых отрицательных углов, но и углов боле 360°. Именно он в своих работах впервые доказал, что косинус и тангенс прямого угла отрицательные. Разложение целых степеней косинуса и синуса тоже стало заслугой этого ученого. Общая теория тригонометрических рядов и изучение сходимости полученных рядов не были объектами исследований Эйлера. Однако, работая над решением смежных задач, он сделал много открытий в этой области. Именно благодаря его работам продолжилась история тригонометрии. Кратко в своих трудах он касался и вопросов сферической тригонометрии.

Области применения тригонометрии

Тригонометрия не относится к прикладным наукам, в реальной повседневной жизни ее задачи редко применяются. Однако этот факт не снижает ее значимости. Очень важна, например, техника триангуляции, которая позволяет астрономам достаточно точно измерить расстояние до недалеких звезд и осуществлять контроль за системами навигации спутников.

Также тригонометрию применяют в навигации, теории музыки, акустике, оптике, анализе финансовых рынков, электронике, теории вероятностей, статистике, биологии, медицине (например, в расшифровке ультразвуковых исследований УЗИ и компьютерной томографии), фармацевтике, химии, теории чисел, сейсмологиии, метеорологии, океанологии, картографии, многих разделах физики, топографии и геодезии, архитектуре, фонетике, экономике, электронной технике, машиностроении, компьютерной графике, кристаллографиии и т. д. История тригонометрии и ее роль в изучении естественно-математических наук изучаются и по сей день. Возможно, в будущем областей ее применения станет еще больше.

История происхождения основных понятий

История возникновения и развития тригонометрии насчитывает не один век. Введение понятий, которые составляют основу этого раздела математической науки, также не было одномоментным.

Так, понятие «синус» имеет очень долгую историю. Упоминания о различных отношениях отрезков треугольников и окружностей обнаруживаются еще в научных трудах, датируемых III веком до нашей эры. Работы таких великих древних ученых, как Евклид, Архимед, Апполоний Пергский, уже содержат первые исследования этих соотношений. Новые открытия требовали определенных терминологических уточнений. Так, индийский учёный Ариабхата дает хорде название «джива», означающее «тетива лука». Когда арабские математические тексты переводились на латынь, термин заменили близким по значению синусом (т. е. «изгиб»).

Слово «косинус» появилось намного позже. Этот термин является сокращенным вариантом латинской фразы «дополнительный синус».

Возникновение тангенсов связано с расшифровкой задачи определения длины тени. Термин «тангенс» ввел в X веке арабский математик Абу-ль-Вафа, составивший первые таблицы для определения тангенсов и котангенсов. Но европейские ученые не знали об этих достижениях. Немецкий математик и астроном Регимонтан заново открывает эти понятия в 1467 г. Доказательство теоремы тангенсов - его заслуга. А переводится этот термин как «касающийся».