Исследование морфологического состава крови у животных. Исследования системы крови у животных

Клетки, неклеточные структуры, бесформенное вещество, находящиеся в определённых взаимоотношениях друг с другом и приспособленные к выполнению определённых функций, образуют ткани организма. Многообразие тканей, существующих в животном организме, принято объединять в основные группы: эпителиальная (покровная) ткань; опорно-трофические ткани (т.е. ткани внутренней среды: кровь, лимфа, соединительная, жировая, хрящевая, костная ткани); мышечные ткани; нервная ткань. Каждая группа тканей выполняет большое количество разнообразных жизненно важных функций. К разнообразным функциям опорно-трофических тканей относятся: обмен веществ, защитная, трофическая (питательная), кроветворная, механические функции. Функции крови разнообразны и определяются функциями ее форменных элементов.

Лимфа - тканевая жидкость, выполняющая дренажную функцию, циркулирующая в замкнутой лимфатической системе, состоящей из сосудов разного калибра. Обычно лимфососуды идут по ходу кровеносных сосудов, собираясь в протоки, которые в свою очередь впадают в центральные венозные сосуды. Лимфа состоит из воды и растворенных в ней неорганических и органических веществ (жиры, белки, углеводы).

Морфологический состав крови. Кроме воды с растворенными в ней веществами (плазмы) в крови содержатся клетки различной формы и выполняющие важные функции.

Эритроциты - красные кровяные клетки. Формирование эритроцитов (эритропоэз) происходит в костном мозге черепа, ребер и позвоночника, продолжительность жизни эритроцита собак - 107 дней, разрушение (гемолиз) происходит в печени и селезенке. Обычно эритроциты имеют форму двояковогнутого диска. У некоторых животных (например, верблюда, лягушки) эритроциты имеют овальную форму. Содержимое эритроцита представлено главным образом дыхательным пигментом гемоглобином, обусловливающим красный цвет крови. Важную роль в эритроците выполняет клеточная (плазматическая) мембрана, пропускающая газы (кислород, углекислый газ), ионы (Na, K) и воду. Форма двояковогнутого диска обеспечивает прохождение эритроцитов через узкие просветы капилляров. В капиллярах они движутся со скоростью 2 сантиметра в минуту, что дает им время передать кислород от гемоглобина к миоглобину. Миоглобин действует как посредник, принимая кислород у гемоглобина в крови и передавая его цитохромам в мышечных клетках. На поверхности липопротеидной мембраны эритроцита находятся специфические антигены гликопротеидной природы - агглютиногены - факторы систем групп крови (на данный момент изучено более 15 систем групп крови: AB0, резус фактор, Даффи, Келл, Кидд), обусловливающие агглютинацию эритроцитов.

Функции эритроцитов: дыхательная - функция выполняется эритроцитами за счёт пигмента гемоглобина, который обладает способностью присоединять к себе и отдавать кислород и углекислый газ. Питательная функция эритроцитов состоит в транспортировке аминокислот к клеткам организма от органов пищеварения. Защитная - определяется функцией эритроцитов связывать токсины за счёт наличия на их поверхности специальных веществ белковой природы - антител. Ферментативная - связана с тем, что эритроциты являются носителями разнообразных ферментов.

Лейкоцимты - белые кровяные клетки - неоднородная группа различных по внешнему виду и функциям клеток крови, выделенная по признаку отсутствия самостоятельной окраски и наличия ядра. Главная сфера действия лейкоцитов - защита. Они играют основную роль в специфической и неспецифической защите организма от внешних и внутренних патогенных агентов, а также в реализации типичных патологических процессов. Все виды лейкоцитов способны к активному движению и могут переходить через стенку капилляров и проникать в ткани, где они и выполняют свои защитные функции. Содержание лейкоцитов в крови не является постоянным, а динамически изменяется в зависимости от времени суток и функционального состояния организма. Так, количество лейкоцитов обычно несколько повышается к вечеру, после приёма пищи, а также после физического и эмоционального напряжения. Лейкоциты различаются по происхождению, функциям и внешнему виду. Некоторые из лейкоцитов способны захватывать и переваривать чужеродные микроорганизмы (фагоцитоз), а другие могут вырабатывать антитела.

По морфологическим признакам лейкоциты, окрашенные по Романовскому-Гимзе, традиционно делят на две группы: зернистые лейкоциты, или гранулоциты - клетки имеющие крупные сегментированные ядра и обнаруживающие специфическую зернистость цитоплазмы; в зависимости от способности воспринимать красители они подразделяются на нейтрофильные, эозинофильные и базофильные. Незернистые лейкоциты, или агранулоциты - клетки, не имеющие специфической зернистости и содержащие простое несегментированное ядро, к ним относятся лимфоциты и моноциты. Соотношение разных видов белых клеток, выраженное в процентах, называется лейкоцитарной формулой. Эозинофилы - лейкоциты, содержащие двудольчатое ядро и гранулы, которые окрашиваются эозином в красный цвет. Они регулируют аллергические реакции, их количество возрастает при аллергиях, а так же в случаях заражения глистами.

Тромбоцимты (кровяные пластинки) - мелкие плоские бесцветные тельца неправильной формы, в большом количестве циркулирующие в крови; это постклеточные структуры, представляющие собой окружённые мембраной и лишённые ядра фрагменты цитоплазмы гигантских клеток костного мозга - мегакариоцитов. Образуются в красном костном мозге. Жизненный цикл циркулирующих тромбоцитов составляет около 7 дней (с вариациями от 1 до 14 дней), затем они утилизируются ретикулоэндотелиальными клетками печени и селезенки. Различают 5 форм тромбоцитов: юные (10%), зрелые (80-85%), старые (5-10%), формы раздражения и дегенеративные формы. Главная функция тромбоцитов - участие в процессе свёртывания крови (гемостазе) - важной защитной реакции организма, предотвращающей большую кровопотерю при ранении сосудов. Оно характеризуется следующими процессами: адгезия, агрегация, секреция, ретракция, спазм мелких сосудов и вязкий метаморфоз, образование белого тромбоцитарного тромба в сосудах микроциркуляции с диаметром до 100 нм.

Другая функция тромбоцитов ангиотрофическая - питание эндотелия кровеносных сосудов.

(Морфология форменных элементов крови

На долю форменных элементов крови приходится в среднем от 10,0 до 30,0% всей массы крови рыб и от 30,0 до 50,0% - у птиц и млекопитающих. Отношение объема форменных элементов и плазмы определяют с помощью гематокрита.

Эритроциты составляют основную массу форменных элементов крови. Наименьшее количество эритроцитов в 1 мкл содержится в крови круглоротых и рыб (около 0,15 млн.), несколько больше (3-4 млн.) - в крови птиц, и максимально - в крови млекопитающих (7,5 млн. и более)(табл.1).

Между количеством эритроцитов в единице объема крови и их объемом имеется обратно пропорциональная зависимость: эритроциты млекопитающих - самые маленькие (ок. 60-95 фл), а эритроциты хвостатых амфибий - самые крупные (10000 - 14000 фл).

По форме эритроцит представляет собой двояковогнутый диск, средний диаметр которого у млекопитающих 7,5 мкм, а толщина -2 мкм.

Эритроциты содержат до 95% по сухой массе гемоглобина и благодаря этому осуществляют дыхательную функцию крови. Сродство гемоглобина к кислороду регулируется 2,3-дифосфоглицератом, находящимся в значительных количествах в эритроцитах.

Установлено, что менее 3% молекул гемоглобина расположено на поверхности эритроцитов, и с точки зрения оптимальных условий для контакта с кислородом остальной гемоглобин находится в невыгодных условиях. Однако молекулы гемоглобина в толще эритроцитов расположены в определенном порядке и обладают свободным вращательным движением, способствующим активному, транспорту кислорода.

Использование методов разделения веществ позволило установить, что гемоглобин многих животных (лошадь, буйвол, коза, овца) имеет гетерогенную природу; гемоглобин коровы, свиньи, ламы, верблюда, кролика - гомогенен. Отмечены значительные различия и в способности гемоглобина полностью оксигенироваться, т.е. превращаться в оксигемоглобин. Так, гемоглобин оксигенируется на 50% у лошади при 26 мм ртутного столба, у ламы - при 22 мм, северного оленя - 35 мм, скумбрии - 17 мм, щуки - 2,5 мм, личинки комара Хирономуса - 0,5 мм, а лошадиного овода - при 0,02 мм рт. ст. Эти различия в величине сродства гемоглобина к кислороду у разных животных отражают несхожесть экологических условий, к которым надо приспосабливаться организмам в борьбе за существование.

Молекула гемоглобина транспортирует около 20% выделяемого организмом объема углекислоты, остальное количество переносится в виде физически растворенной (10%) и химически связанной, преимущественно в виде бикарбоната натрия (70%) форме плазмой крови.



В эритроцитах и на их поверхности могут присутствовать различные антигенные факторы (например, агглютиногены), которые обусловливают разнообразные иммунологические особенности крови.

В фиксированных и окрашенных обычными гематологическими красителями мазках крови эритроциты выглядят в виде круглых клеток розового или серовато-розового цвета с просветлением в центре за, счет двояковогнутой формы. Окраска эритроцитов кислыми красителями связана с присутствием гемоглобина, следовательно ее интенсивность может служить показателем насыщенности эритроцитов гемоглобином.

Лейкоциты, или белые (бесцветные) клетки, в периферической крови в норме циркулируют в виде зрелых зернистых форм, а также лимфоцитов и моноцитов. Зернистые лейкоциты в зависимости от характера грануляции в цитоплазме делятся на нейтрофильные, базофиль-ные и эозинофильные гранулоциты.

Нейтрофилы являются высокоспециализированными клетками с выраженной защитной функцией. Это связано с фагоцитарной и двигательной активностью нейтрофилов, способностью вырабатывать бактерицидные (лизоцим) и анитоксические факторы, пирогенные факторы. Эти клетки способны выделять биологически активные вещества (катепсины и др.), изменяющие проницаемость сосудов, способны переносить антитела, усиливать пролиферацию гранулоцитов костного мозга. Специфическая активность нейтрофилов обеспечивается многочисленными ферментными системами: в митохондриях при участии ферментов цикла Кребса осуществляется синтез АТФ, в специальных гранулах локализуются пероксидаза и цитохромоксидаза, в лизосомах - кислая и щелочная фосфатаза, неспецифические эстеразы, аминопептидаза, ?-глю-куронидаза, арисульфатаза и др.

В состав специфической зернистости входят лизоцим, различные аминокислоты, липиды, гликоген. Гликоген является важнейшим энергетическим веществом, обеспечивающим анаэробный гликолиз и жизнедеятельность нейтрофилов в неблагоприятных условиях.

Диаметр зрелых нейтрофилов 10-15 мкм; большую часть клетки занимает цитоплазма, содержащая специфическую зернистость. Ядро у сегментоядерных нейтрофилов представлено 2-4 сегментами, соединенными тонкими нитями хроматина; у палочкоядерных - С- или S - образной формы.

В гематологических препаратах цитоплазма нейтрофилов розовато-серого цвета, содержит мелкую бледно-фиолетовую зернистость, равномерно распределенную по всей цитоплазме. Ядро - темно-фиолетового цвета; у сегментоядерных иногда при окраске не выявляются межсегментные перемычки и создается впечатление, что в клетке несколько мелких ядер. В некоторых случаях, когда сегменты плотно прилегают друг к другу, возникают трудности в дифференцировке сегментоядерных от палочкоядерных нейтрофилов: работа с микровинтом микроскопа позволяет идентифицировать их.

Базофилы принимают участив в аллергических реакциях, процессах гемокоагуляции и многие функциональные и метаболические особенности базофилов неясны, поскольку исследования этих малочисленных гранулоцитов крайне ограничены. Известно, что базофилы способны вырабатывать гистамин, в их гранулах обнаружены скопления гепарина, а также содержатся липопротеиды, пероксидаза, гиалуроновая кислота, аминокислоты, кислая фосфатаза, арилсульфатаза, дегидрогеназы.

По размеру базофилы чуть меньше (8-10 мкм) нейтрофилов. В окрашенных препаратах цитоплазма, бледно-розового цвета, содержит темно-фиолетовые гранулы разной величины. Гранулы хорошо выявляются при окраске мазков по Паппенгейму; при использовании других красителей они легко растворяются в воде и выглядят бледно-фиолетовыми, размытыми структурами.

Ядро клетки большое, окрашено в темный цвет, не имеет строго определенной формы, иногда напоминает лист растения.

Эозинофилы участвуют в аллергических реакциях, обладают фагоцитарной и двигательной активностью, но в меньшей степени, чем нейтрофилы. Эозинофилы способны сорбировать на своей поверхности антитела, различные токсические вещества, даже инактивировать их, благодаря чему участвуют в иммунологических и антитоксических свойствах крови.

В эозинофилах обнаружено высокое содержание пероксидазы, арисульфатазы, катерсинов, цитохромоксидазы, сукциндегидрогеназы, аминокислот, фосфолипидов и других веществ, главным образом сосредоточенных в специфических гранулах. Участие эозинофилов в аллергических реакциях объясняется содержанием в них гистаминосвобождающих и ингибирующих освобождение гистамина из тучных клеток особых субстанций.

Обладая размером в 12-15 мкм, эозинофилы имеют весьма характерную структуру. В окрашенных препаратах они отличаются обильной, крупной розовой зернистостью, заполняющей всю цитоплазму клетки. В отдельных клетках выявляются гранулы светло-фиолетового цвета. Ядро чаще расположено эксцентрично и имеет две-три доли. По сравнению с сегментным ядром нейтрофилов, ядро эозинофилов окрашено менее интенсивно и больших размеров.

Лимфоциты представляют центральное звено иммунной системы организма. Они отвечают за формирование специфического иммунитета и выполняют функцию иммунного надзора в организме, обеспечивай защиту от всего чужеродного и сохраняя генетическое постоянство внутренней среды. Эту задачу лимфоциты выполняют благодаря наличию на оболочке специальных участков - рецепторов, активирующихся при контакте с чужеродным антигеном.

Лимфоциты синтезируют защитные антитела, лизируют чужеродные клетки, обеспечивают уничтожение собственных мутантных клеток, осуществляют иммунную память, участвуют в реакции отторжения трансплантата.

Выполнение перечисленных функций осуществляется специализированными формами лимфоцитов. В настоящее время различают три группы лимфоцитов: Т-лимфоциты (тимусзависимые), В-лимфоциты (бурсазависимые) и нулевые.

Т-лимфоциты образуются в костном мозге из клеток-предшественников, проходят стадию дифференцировки в вилочковой железе (тимус) а затем попадают в кровь, лимфатические узлы, селезенку.

Среди Т-лимфоцитов существует специализация. Различают клетки-хелперы (помощники), способствующие превращению В-лимфоцитов в плазматические клетки; клетки-супрессоры (угнетатели), контролирующие соотношение различных форм лимфоцитов и блокирующие чрезмерные реакции В-лимфоцитов; клетки-киллеры (убийцы), непосредственных пластинок, продолжительность жизни которых 8-12 суток.

Тромбоциты выполняют ряд важнейших функций. Одна из них участие в процессе гемостаза. В тромбоцитах помимо многочисленных ферментов и биологически активных соединений, присутствуют вещества, называемые тромбоцитарными факторами, участвующие в свертывании крови. В настоящее время известно более 11 факторов, регулирующие процессы адгезии (прилипание к поверхности) тромбоцитов, их агрегации (склеивание), связывание гепарина, уплотнение кровяного сгустка, сужение сосудов и пр.

Кроме участия в гемостазе, тромбоциты выполняют функцию транспорта креаторных веществ, важных для сохранения структуры сосудистой стенки. Они поглощаются клетками эндотелия, доставляя им находящиеся в тромбоцитах макромолекулы. На эти цели ежедневно расходуется до 15% циркулирующих в крови тромбоцитов. При нарушении указанного процесса эндотелий сосудов подвергается дистрофии и начинает пропускать через себя эритроциты.

Помимо этого, тромбоциты способны фиксировать антитела и выполняют фагоцитарную функцию. Доказаны и иммуногенные свойства тромбоцитов.

В мазках крови, окрашенных обычными красителями, тромбоциты выглядят как мелкие круглые или овальные образования. Их структура представлена гомогенной периферической зоной (гиаломер), окрашенной в сероватые или голубоватые цвета, и центральной - зернистой (грануломер) зоной, окрашенной в светло-фиолетовый цвет.)

I (sanguis) жидкая ткань, осуществляющая в организме транспорт химических веществ (в т.ч. кислорода), благодаря которому происходит интеграция биохимических процессов, протекающих в различных клетках и межклеточных пространствах, в единую систему.

Кровь состоит из жидкой части - плазмы и взвешенных в ней клеточных (форменных) элементов. Нерастворимые жировые частицы клеточного происхождения, присутствующие в плазме, называют гемокониями (кровяная пыль). Объем К. в норме составляет в среднем у мужчин 5200 мл, у женщин 3900 мл.

Различают красные и белые кровяные тельца (клетки). В норме красных кровяных телец (эритроцитов) у мужчин 4-5․1012/л, у женщин 3,9-4,7․1012/л, белых кровяных телец (лейкоцитов) - 4-9․109/л крови. Кроме того, в 1 мкл крови содержится 180-320․109/л тромбоцитов (кровяных пластинок). В норме объем клеток составляет 35-45% объема крови.

Физико-химические свойства. Плотность цельной К. зависит от содержания в ней эритроцитов, белков и липидов Цвет К. меняется от алого до темно-красного в зависимости от соотношения форм гемоглобина, а также присутствия его дериватов - метгемоглобина, карбоксигемоглобина и др. Алый цвет артериальной крови связан с присутствием в эритроцитах оксигемоглобина, темно красный цвет венозной крови - с наличием восстановленного гемоглобина. Окраска плазмы обусловлена присутствием в ней красных и желтых пигментов, главным образом каротиноидов и билирубина; содержание в плазме большого количества билирубина при ряде патологических состояний придает ей желтый цвет.

Кровь представляет собой коллоидно-полимерный раствор, в котором вода является растворителем, соли и низкомолекулярные органические вещества плазмы - растворенными веществами, а белки и их комплексы - коллоидным компонентом. На поверхности клеток К. имеется двойной слой электрических зарядов, состоящий из прочно связанных с мембраной отрицательных зарядов и уравновешивающего их диффузного слоя положительных зарядов. За счет двойною электрического слоя возникает электрокинетический потенциал (дзета-потенциал), предотвращающий агрегацию (склеивание) клеток и играющий, т.о., важную роль в их стабилизации.

Поверхностный ионный заряд мембран клеток крови непосредственно связан с физико-химическими превращениями, происходящими на клеточных мембранах. Определить клеточный заряд мембран можно с помощью электрофореза. Электрофоретическая подвижность прямо пропорциональна величине заряда клетки. Наибольшей электрофоретической подвижностью обладают эритроциты, наименьшей - лимфоциты.

Проявлением микрогетерогенности К. является феномен оседания эритроцитов (см. Гемограмма). Склеивание (агглютинация) эритроцитов и связанное с ним оседание во многом зависят от состава среди, в которой они взвешены.

Электропроводность крови, т.е. ее способность проводить электрический ток, зависит от содержания электролитов в плазме и величины гематокритного числа. Электропроводность цельной К. на 70% определяется присутствующими в плазме солями (главным образом хлоридом натрия), на 25% белками плазмы и лишь на 5% клетками крови. Измерение электропроводности крови используют в клинической практике, в частности при определении СОЭ.

Ионная сила раствора - величина, характеризующая взаимодействие растворенных в нем ионов, что сказывается на коэффициентах активности, электропроводности и других свойствах растворов электролитов; для плазмы К. человека эта величина равна 0,145. Концентрация водородных ионов плазмы выражается в величинах водородного показателя (Водородный показатель). Средний рН крови 7,4. В норме рН артериальной крови 7,35-7,47, венозной крови на 0,02 ниже, содержимое эритроцитов обычно имеет на 0,1-0,2 более кислую реакцию, чем плазма. Поддержание постоянства концентрации водородных ионов в К. обеспечивается многочисленными физико-химическими, биохимическими и физиологическими механизмами, среди которых важную роль играют буферные системы крови. Их свойства зависят от присутствия солей слабых кислот, главным образом угольной, а также гемоглобина (он диссоциирует как слабая кислота), низкомолекулярных органических кислот и фосфорной кислоты (см. Буферные растворы). Сдвиг концентрации водородных ионов в кислую сторону называется Ацидозом, в щелочную - Алкалозом. Для поддержания постоянства рН плазмы наибольшее значение имеет бикарбонатная буферная система (см. Кислотно-щелочное равновесие). Т.к. буферные свойства плазмы почти целиком зависят от содержания в ней бикарбоната, а в эритроцитах большую роль играет также гемоглобин, то буферные свойства цельной К. в большой степени обусловлены содержанием в ней гемоглобина. Гемоглобин, как и подавляющее большинство белков К., при физиологических значениях рН диссоциирует как слабая кислота, при переходе в оксигемоглобин он превращается в значительно более сильную кислоту, что способствует вытеснению угольной кислоты из К. и переходу ее в альвеолярный воздух.

Осмотическое давление плазмы К. определяется ее осмотической концентрацией, т.е. суммой всех частиц - молекул, ионов, коллоидных частиц, находящихся в единице объема. Эта величина поддерживается физиологическими механизмами с большим постоянством и при температуре тела 37° составляет 7,8 мН/м2 (≈ 7,6 атм). Она в основном зависит от содержания в К. хлористого натрия и других низкомолекулярных веществ, а также белков, главным образом альбуминов, неспособных легко проникать через эндотелий капилляров. Эту часть осмотического давления называют коллоидно-осмотическим, или онкотическим. Оно играет важную роль в движении жидкости между кровью и лимфой, а также в образовании гломерулярного фильтрата.

Одно из важнейших свойств К. - вязкость составляет предмет изучения биореологии. Вязкость К. зависит от содержания белков и форменных элементов, главным образом эритроцитов, от калибра кровеносных сосудов. Измеряемая на капиллярных вискозиметрах (с диаметром капилляра несколько десятых миллиметра), вязкость крови в 4-5 раз выше вязкости воды. Величина, обратная вязкости, называется текучестью. При патологических состояниях текучесть К. существенно изменяется вследствие действия определенных факторов свертывающей системы крови (Свёртывающая система крови).

Морфология и функция форменных элементов крови. К форменным элементам крови относятся эритроциты, лейкоциты, представленные гранулоцитами (нейтрофильными, эозинофильными и базофильными полиморфно-ядерными) и агранулоцитами (лимфоцитами и моноцитами), а также тромбоциты. В крови содержится незначительное количество плазматических и других клеток. На мембранах клеток К. происходят ферментативные процессы и осуществляются иммунные реакции. Мембраны клеток К. несут информацию о группах К. в тканевых антигенах.

Эритроциты (около 85%) являются безъядерными двояковогнутыми клетками с ровной поверхностью (дискоцитами), диаметром 7-8 мкм (рис. 1). Объем клетки 90 мкм3 площадь 142 мкм2, наибольшая толщина 2,4 мкм, минимальная - 1 мкм, средний диаметр на высушенных препаратах 7,55 мкм. Сухое вещество эритроцита содержит около 95% гемоглобина, 5% приходится на долю других веществ (негемоглобиновые белки и липиды). Ультраструктура эритроцитов однообразна. При исследовании их с помощью трансмиссионного электронного микроскопа отмечается высокая однородная электронно-оптическая плотность цитоплазмы за счет содержащегося в ней гемоглобина; органеллы отсутствуют. На более ранних стадиях развития эритроцита (ретикулоцита) в цитоплазме можно обнаружить остатки структур клеток-предшественников (митохондрии и др.). Клеточная мембрана эритроцита на всем протяжении одинакова; она имеет сложное строение. Если мембрана эритроцитов нарушается, то клетки принимают сферические формы (стоматоциты, эхиноциты, сфероциты). При исследовании в сканирующем электронном микроскопе (растровая электронная микроскопия) определяют различные формы эритроцитов в зависимости от их поверхностной архитектоники. Трансформация дискоцитов вызывается рядом факторов, как внутриклеточных, так и внеклеточных (рис. 2)

Эритроциты в зависимости от размера называют нормо-, микро- и макроцитами. У здоровых взрослых людей количество нормоцитов составляет в среднем 70%.

Определение размеров эритроцитов (эритроцитометрия) дает представление об эритроцитопоэзе. Для характеристики эритроцитопоэза используют также эритрограмму - результат распределения эритроцитов по какому-либо признаку (например, по диаметру, содержанию гемоглобина), выраженный в процентах и (или) графически.

Зрелые эритроциты не способны к синтезу нуклеиновых кислот и гемоглобина. Для них характерен относительно низкий уровень обмена, что обусловливает длительную продолжительность их жизни (приблизительно 120 дней). Начиная с 60-го дня после попадания эритроцита в кровяное русло постепенно снижается активность ферментов. Это приводит к нарушению гликолиза и, следовательно, к уменьшению потенциала энергетических процессов в эритроците. Изменения внутриклеточного обмена связаны со старением клетки и в итоге приводят к ее разрушению. Большое число эритроцитов (около 200 млрд.) ежедневно подвергается деструктивным изменениям и погибает.

Лейкоциты. Гранулоциты - нейтрофильные (нейтрофилы), эозинофильные (эозинофилы), базофильные (базофилы) полиморфно-ядерные лейкоциты - крупные клетки от 9 до 15 мкм, они циркулируют в К. несколько часов, а затем перемещаются в ткани. В процессы дифференциации гранулоциты проходят стадии метамиелоцитов и палочкоядерных форм. В метамиелоцитах бобовидное ядро имеет нежное строение. В палочкоядерных гранулоцитах хроматин ядра более плотно упакован, ядро вытягивается, иногда в нем намечается образование долек (сегментов). В зрелых (сегментоядерных) гранулоцитах ядро обычно имеет несколько сегментов. Все гранулоциты характеризуются наличием в цитоплазме зернистости, которую подразделяют на азурофильную и специальную. В последней, в свою очередь, различают зрелую и незрелую зернистость.

В нейтрофильных зрелых гранулоцитах количество сегментов бывает от 2 до 5; новообразования гранул в них не происходит. Зернистость нейтрофильных гранулоцитов окрашивается красителями от коричневатого до красновато-фиолетового цвета; цитоплазма - в розовый цвет. Соотношение азурофильных и специльных гранул непостоянно. Относительное число азурофильных гранул достигает 10-20%. Важную роль в жизнедеятельности гранулоцитов играет их поверхностная мембрана. По набору гидролитических ферментов гранулы могут быть идентифицированы как лизосомы с некоторыми специфическими особенностями (наличие фагоцитина и лизоцима). При ультрацитохимическом исследовании показано, что активность кислой фосфатазы в основном связана с азурофильными гранулами, а активность щелочной фосфатазы - со специальными гранулами. С помощью цитохимических реакций в нейтрофильных гранулоцитах обнаружены липиды, полисахариды, пероксидаза и др. Основной функцией нейтрофильных гранулоцитов является защитная реакция по отношению к микроорганизмам (микрофаги). Они активные фагоциты.

Эозинофильные гранулоциты содержат ядро, состоящее из 2, реже 3 сегментов. Цитоплазма слабо базофильна. Эозинофильная зернистость окрашивается кислыми анилиновыми красителями, особенно хорошо эозином (от розового до цвета меди). В эозинофилах выявлены пероксидаза, цитохромоксидаза, сукцинатдегидрогеназа, кислая фосфатаза и др. Эозинофильные гранулоциты обладают дезинтоксикационной функцией. Количество их увеличивается при введении в организм чужеродного белка. Эозинофилия является характерным симптомом при аллергических состояниях. Эозинофилы принимают участие в дезинтеграции белка и удалении белковых продуктов, наряду с другими гранулоцитами способны к фагоцитозу.

Базофильные гранулоциты обладают свойством окрашиваться метахроматически, т.е. в оттенки, отличные от цвета краски. Ядро этих клеток не имеет структурных особенностей. В цитоплазме органеллы развиты слабо, в ней определяются специальные гранулы полигональной формы (диаметром 0,15-1,2 мкм), состоящие из электронно-плотных частиц. Базофилы наряду с эозинофилами участвуют в аллергических реакциях организма. Несомненна их роль и в обмене гепарина.

Для всех гранулоцитов характерна высокая лабильность клеточной поверхности, которая проявляется в адгезивных свойствах, способности к агрегации, образованию псевдоподий, передвижению, фагоцитозу. В гранулоцитах обнаружены кейлоны - вещества, которые оказывают специфическое действие, подавляя синтез ДНК в клетках гранулоцитарного ряда.

В отличие от эритроцитов лейкоциты в функциональном отношении являются полноценными клетками с большим ядром и митохондриями, высоким содержанием нуклеиновых кислот и окислительным фосфорилированием. В них сосредоточен весь гликоген крови, служащий источником энергии при недостатке кислорода, например в очагах воспаления. Основная функция сегментоядерных лейкоцитов - фагоцитоз. Их антимикробная и антивирусная активность связана с выработкой лизоцима и интерферона (Интерфероны).

Лимфоциты - центральное звено в специфических иммунологических реакциях; они являются предшественниками антителообразующих клеток и носителями иммунологической памяти. Основная функция лимфоцитов - выработка иммуноглобулинов (см. Антитела). В зависимости от величины различают малые, средние и большие лимфоциты. В связи с различием иммунологических свойств выделяют лимфоциты тимусзависимые (Т-лимфоциты), ответственные за опосредованный иммунный ответ, и В-лимфоциты, которые являются предшественниками плазматических клеток и ответственны за эффективность гуморального иммунитета.

Большие лимфоциты (рис. 3) имеют обычно круглое или овальное ядро, хроматин конденсируется по краю ядерной мембраны. В цитоплазме находятся одиночные рибосомы. Эндоплазматическая сеть развита слабо. Выявляют 3-5 митохондрий, реже их больше. Пластинчатый комплекс представлен небольшими пузырьками. Определяются электронно-плотные осмиофильные гранулы, окруженные однослойной мембраной. Малые лимфоциты (рис. 4) характеризуются высоким ядерно-цитоплазматическим отношением. Плотно упакованный хроматин образует крупные конгломераты по периферии и в центре ядра, которое бывает овальной или бобовидной формы. Цитоплазматические органеллы локализуются на одном полюсе клетки.

Продолжительность жизни лимфоцита колеблется от 15-27 дней до нескольких месяцев и лет. В химическом составе лимфоцита наиболее выраженными компонентами являются нуклеопротеиды. Лимфоциты содержат также катепсин, нуклеазу, амилазу, липазу, кислую фосфатазу, сукцинатдегидрогеназу, цитохромоксидазу, аргинин, гистидин, гликоген.

Моноциты - наиболее крупные (12-20 мкм) клетки крови. Форма ядра разнообразная, клетка окрашивается в фиолетово-красный цвет; хроматиновая сеть в ядре имеет широко-нитчатое, рыхлое строение (рис. 5). Цитоплазма обладает слабобазофильными свойствами, окрашивается в сине-розовый цвет, имея в разных клетках различные оттенки. В цитоплазме определяется мелкая нежная азурофильная зернистость, диффузно распределенная по всей клетке; окрашивается в красный цвет. Моноциты обладают резко выраженной способностью к окрашиванию, амебоидному движению и фагоцитозу, особенно остатков клеток и мелких чужеродных тел.

Тромбоциты - полиморфные безъядерные образования, окруженные мембраной. В кровяном русле тромбоциты имеют округлую или овальную форму. В зависимости от степени целости различают зрелые формы тромбоцитов, юные, старые, так называемые формы раздражения и дегенеративные формы (последние встречаются у здоровых людей крайне редко). Нормальные (зрелые) тромбоциты - круглой или овальной формы с диаметром 3-4 мкм; составляют 88,2 ± 0,19% всех тромбоцитов. В них различают наружную бледно-голубую зону (гиаломер) и центральную с азурофильной зернистостью - грануломер (рис. 6). При соприкосновении с чужеродной поверхностью волоконца гиаломера, переплетаясь между собой, образуют на периферии тромбоцита отростки различной величины. Юные (незрелые) тромбоциты - несколько больших размеров по сравнению со зрелыми с базофильным содержимым; составляют 4,1 ± 0,13%. Старые тромбоциты - различной формы с узким ободком и обильной грануляцией, содержат много вакуолей; составляют 4,1 ± 0,21%. Процентное соотношение различных форм тромбоцитов отражают в тромбоцитограмме (тромбоцитарной формуле), которая зависит от возраста, функционального состояния кроветворения, наличия патологических процессов в организме. Химический состав тромбоцитов достаточно сложен. Так, в их сухом остатке содержится 0,24% натрия, 0,3% калия, 0,096% кальция, 0,02% магния, 0,0012% меди, 0,0065% железа и 0,00016% марганца. Наличие в тромбоцитах железа и меди позволяет предположить их участие в дыхании. Большая часть кальция тромбоцитов связана с липидами в виде липидно-кальциевого комплекса. Важную роль играет калий; в процессе образования кровяного сгустка он переходит в сыворотку крови, что необходимо для осуществления его ретракции. До 60% сухого веса тромбоцитов составляют белки. Содержание липидов достигает 16-19% от сухого веса. В тромбоцитах выявлены также холинплазмалоген и этанолплазмалоген, играющие определенную роль в ретракции сгустка. Кроме того, в тромбоцитах отмечаются значительные количества β-глюкуронидазы и кислой фосфатазы, а также цитохромоксидазы и дегидрогеназы, полисахариды, гистидин. В тромбоцитах обнаружено соединение, близкое к гликопротеидам, способное ускорять процесс образования кровяного сгустка, и небольшое количество РНК и ДНК, которые локализуются в митохондриях. Хотя в тромбоцитах отсутствуют ядра, в них протекают все основные биохимические процессы, например синтезируется белок, происходит обмен углеводов и жиров. Основная функция тромбоцитов - способствовать остановке кровотечения; они обладают свойством распластываться, агрегировать и сжиматься, обеспечивая тем самым начало образования кровяного сгустка, а после его формирования - ретракцию. В тромбоцитах содержится фибриноген, а также сократительный белок тромбастенин, во многом напоминающий мышечный сократительный белок актомиозин. Они богаты аденилнуклеотидами, гликогеном, серотонином, гистамином. В гранулах содержится III, а на поверхности адсорбированы V, VII, VIII, IX, X, XI и XIII факторы свертывания крови.

Плазматические клетки встречаются в нормальной К., в единичном количестве. Для них характерно значительное развитие структур эргастоплазмы в виде канальцев, мешочков и др. На мембранах эргастоплазмы очень много рибосом, что делает цитоплазму интенсивно-базофильной. Около ядра локализуется светлая зона, в которой обнаруживается клеточный центр и пластинчатый комплекс. Ядро располагается эксцентрично. Плазматические клетки продуцируют иммуноглобулины

Биохимия. Перенос кислорода к тканям К. (эритроциты) осуществляет с помощью специальных белков - переносчиков кислорода. Это содержащие железо или медь хромопротеиды, которые получили название кровяных пигментов. Если переносчик низкомолекулярный, он повышает коллоидно-осмотическое давление, если высокомолекулярный - увеличивает вязкость К., затрудняя ее движение.

Сухой остаток плазмы К. человека около 9%, из них 7% составляют белки, в том числе около 4% приходится на альбумин, поддерживающий коллоидно-осмотическое давление. В эритроцитах плотных веществ значительно больше (35-40%), из них 9/10 приходится на гемоглобин.

Исследование химического состава цельной К. широко используется для диагностики заболеваний и контроля за лечением. Для облегчения интерпретации результатов исследования вещества, входящие в состав К., делят на несколько групп. В первую группу входят вещества (водородные ионы, натрий, калий, глюкоза и др.), имеющие постоянную концентрацию, которая необходима для правильного функционирования клеток. К ним применимо понятие постоянства внутренней среды (гомеостаза). Ко второй группе относятся вещества (гормоны, плазмоспецифические ферменты и др.), продуцируемые специальными видами клеток; изменение их концентрации свидетельствует о повреждении соответствующих органов. Третья группа включает вещества (некоторые из них токсичны), удаляемые из организма лишь специальными системами (мочевина, креатинин, билирубин и др.); накопление их в крови является симптомом повреждения этих систем. Четвертую группу составляют вещества (органоспецифические ферменты), которыми богаты лишь некоторые ткани; появление их в плазме служит признаком разрушения или повреждения клеток этих тканей. В пятую группу входят вещества, в норме продуцируемые в небольших количествах; в плазме они появляются при воспалении, новообразовании, нарушении обмена веществ и др. К шестой группе относятся токсические вещества экзогенного происхождения.

Для облегчения лабораторной диагностики разработано понятие нормы, или нормального состава, К. -диапазон концентраций, не свидетельствующих о заболевании. Однако общепринятые нормальные величины удалось установить лишь для некоторых веществ. Сложность заключается в том, что в большинстве случаев индивидуальные различия значительно превышают колебания концентрации у одного и того же человека в разное время. Индивидуальные различия связаны с возрастом, полом, этнической принадлежностью (распространенностью генетически обусловленных вариантов нормального обмена веществ), географическими и профессиональными особенностями, с употреблением определенной пищи.

В плазме К. содержится более 100 различных белков, из которых около 60 выделено в чистом виде. Подавляющее большинство из них гликопротеиды. Плазматические белки образуются в основном в печени, которая у взрослого человека продуцирует их до 15-20 г в день. Плазматические белки служат для поддержания коллоидно-осмотического давления (и тем самым для удержания воды и электролитов), выполняют транспортные, регуляторные и защитные функции, обеспечивают свертывание крови (гемостаз) и могут служить резервом аминокислот. Различают 5 основных фракций белков крови: альбумины, ․α1-, α2-, β-, γ-глобулины. Альбумины составляют относительно однородную группу, состоящую из альбумина и преальбумина. Больше всего в крови альбумина (около 60% всех белков). При содержании альбумина ниже 3% развиваются отеки. Определенное клиническое значение имеет отношение суммы альбуминов (более растворимых белков) к сумме глобулинов (менее растворимых)- так называемый Альбумин-глобулиновый коэффициент, уменьшение которого служит показателем воспалительного процесса.

Глобулины неоднородны по химической структуре и функциям. В группу α1-глобулинов входят следующие белки: орозомукоид (α1-гликопротеид), α1-антитрипсин, α1-липопротеид и др. К числу α2-глобулинов относятся α2-макроглобулин, гаптоглобулин, церулоплазмин (медьсодержащий белок, обладающий свойствами фермента оксидазы), α2-липопротеид, тироксинсвязывающий глобулин и др. β-Глобулины очень богаты липидами, в них входят также трансферин, гемопексин, стероидсвязывающий β-глобулин, фибриноген и др. γ-Глобулины - белки, ответственные за гуморальные факторы иммунитета, в их составе различают 5 групп иммуноглобулинов: lgA, lgD, lgE, lgM, lgG. В отличие от других белков, они синтезируются в лимфоцитах. Многие из перечисленных белков существуют в нескольких генетически обусловленных вариантах. Их присутствие в К. в одних случаях сопровождается заболеванием, в других - является вариантом нормы. Иногда присутствие нетипичного аномального белка приводит к незначительным нарушениям. Приобретенные заболевания могут сопровождаться накоплением специальных белков - парапротеинов, являющихся иммуноглобулинами, которых у здоровых людей значительно меньше. К ним относятся белок Бенс-Джонса, амилоид, иммуноглобулин класса М, J, А, а также криоглобулин. Среди ферментов плазмы К. обычно выделяют органоспецифические и плазмоспецифические. К первым относят те из них, которые содержатся в органах, а в плазму в значительных количествах попадают лишь при повреждении соответствующих клеток. Зная спектр органоспецифических ферментов в плазме, можно установить, из какого органа происходит данная комбинация ферментов и насколько значительно ею повреждение. К плазмоспецифическим относят ферменты, основная функция которых реализуется непосредственно в кровотоке; их концентрация в плазме всегда выше, чем в каком-либо органе. Функции плазмоспецифических ферментов разнообразны.

В плазме К. циркулируют все аминокислоты, входящие в состав белков, а также некоторые родственные им аминосоединения - таурин, цитруллин и др. Азот, входящий в состав аминогрупп, быстро обменивается путем переаминирования аминокислот, а также включения в состав белков. Общее содержание азота аминокислот плазмы (5-6 ммоль/л) примерно в два раза ниже, чем азота, входящего в состав шлаков. Диагностическое значение имеет в основном увеличение содержания некоторых аминокислот, особенно в детском возрасте, которое свидетельствует о недостаточности ферментов, осуществляющих их метаболизм.

К безазотистым органическим веществам относятся липиды, углеводы и органические кислоты. Липиды плазмы не растворимы в воде, поэтому переносятся К. только в составе липопротеинов (Липопротеины). Это вторая по величине группа веществ, уступающая белкам. Среди них больше всего триглицеридов (нейтральных жиров), затем идут фосфолипиды - главным образом лецитин, а также кефалин, сфингомиелин и лизолецитии. Для выявления и типирования нарушений жирового обмена (гиперлипидемий) большое значение имеет исследование содержания в плазме холестерина и триглицеридов.

Глюкоза К. (иногда ее не совсем правильно идентифицируют с сахаром крови) - основной источник энергии для многих тканей и единственный для головного мозга, клетки которого очень чувствительны к уменьшению ее содержания. Помимо глюкозы в К. присутствуют в небольших количествах другие моносахариды: фруктоза, галактоза, а также фосфорные эфиры сахаров - промежуточные продукты гликолиза.

Органические кислоты плазмы К. (не содержащие азота) представлены продуктами гликолиза (большая часть их фосфорилирована), а также промежуточными веществами цикла трикарбоновых кислот (см. Обмен веществ и энергии). Среди них особое место занимает молочная кислота, которая накапливается в больших количествах, если организм совершает более значительный объем работы, чем получает для этого кислорода (кислородный долг). Накопление органических кислот происходит также при различных видах гипоксии. β-Оксимасляная и ацетоуксусная кислоты, которые вместе с образующимся из них ацетоном относятся к кетоновым телам, в норме вырабатываются в сравнительно небольших количествах как продукты обмена углеводородных остатков некоторых аминокислот. Однако при нарушении углеводного обмена, например при голодании и сахарном диабете, вследствие недостатка щавелевоуксусной кислоты изменяется нормальная утилизация остатков уксусной кислоты в цикле трикарбоновых кислот, и поэтому кетоновые тела могут накапливаться в К. в больших количествах.

Печень человека продуцирует холевую, уродезоксихолевую и хенодезоксихолевую кислоты, которые выделяются с желчью в двенадцатиперстную кишку, где, эмульгируя жиры и активируя ферменты, способствуют пищеварению. В кишечнике под действием микрофлоры из них образуются дезоксихолевая и литохолевая кислоты. Из кишечника желчные кислоты (Жёлчные кислоты) частично всасываются в К., где большая часть их находится в виде парных соединений с таурином или глицином (конъюгированные желчные кислоты).

Все продуцируемые эндокринной системой Гормоны циркулируют в К. Их содержание у одного и того же человека в зависимости от физиологического состояния может очень значительно изменяться. Для них характерны также суточные, сезонные, а у женщин и месячные циклы. В К. всегда присутствуют продукты неполного синтеза, а также распада (катаболизма) гормонов, которые часто обладают биологическим действием, поэтому в клинической практике широкое распространение имеет определение сразу целой группы родственных веществ, например 11-оксикортикостероидов, йодсодержащих органических веществ. Циркулирующие в К. гормоны быстро выводятся из организма; период их полувыведения обычно измеряется минутами, реже часами.

В крови содержатся минеральные вещества и микроэлементы. Натрий составляет 9/10 всех катионов плазмы, концентрация его поддерживается с очень большим постоянством. В составе анионов доминируют хлор и бикарбонат; их содержание менее постоянно, чем катионов, поскольку выделение угольной кислоты через легкие приводит к тому, что венозная кровь бывает богаче бикарбонатом, чем артериальная. В процессе дыхательного цикла хлор перемещается из эритроцитов в плазму и обратно. В то время как все катионы плазмы представлены минеральными веществами, примерно 1/6 часть всех содержащихся в ней анионов приходится на белок и органические кислоты. У человека и почти у всех высших животных электролитный состав эритроцитов резко отличается от состава плазмы: вместо натрия преобладает калий, содержание хлора также значительно меньше.

Железо плазмы К. полностью связано с белком трансферрином, в норме насыщая его на 30-40%. Поскольку одна молекула этого белка связывает два атома Fe3+, образовавшихся при распаде гемоглобина, двухвалентное железо предварительно окисляется до трехвалентного. В плазме содержится кобальт, входящий в состав витамина В12. Цинк находится преимущественно в эритроцитах. Биологическая роль таких микроэлементов, как марганец, хром, молибден, селен, ванадий и никель, полностью не ясна; количество этих микроэлементов в организме человека во многом зависит от содержания их в растительной пище, куда они попадают из почвы или с промышленными отходами, загрязняющими окружающую среду.

В крови могут появиться ртуть, кадмий и свинец. Ртуть и кадмий в плазме К. связаны с сульфгидрильными группами белков, в основном альбумина. Содержание свинца в К. служит показателем загрязненности атмосферы; согласно рекомендациям ВОЗ, оно не должно превышать 40 мкг%, то есть 0,5 мкмоль/л.

Концентрация гемоглобина в К. зависит от общего количества эритроцитов и содержания в каждом из них гемоглобина. Различают гипо-, нормо- и гиперхромную анемию в зависимости от того, сопряжено понижение гемоглобина К. с уменьшением или увеличением его содержания в одном эритроците. Допустимые концентрации гемоглобина, при изменении которых можно судить о развитии анемии, зависят от пола, возраста и физиологического состояния. Большую часть гемоглобина у взрослого человека составляет HbA, в небольших количествах присутствуют также HbA2 и фетальный HbF, который накапливается в К. у новорожденных, а также при ряде заболеваний крови. У некоторых людей генетически обусловлено наличие в К. аномальных гемоглобинов; всего их описано более сотни. Часто (но не всегда) это сопряжено с развитием заболевания (см. Анемии). Небольшая часть гемоглобина существует в виде его дериватов - карбоксигемоглобина (связанного с СО) и метгемоглобина (в нем железо окислено до трехвалентного); при патологических состояниях появляются цианметгемоглобин, сульфгемоглобин и др. В небольших количествах в эритроцитах присутствуют лишенная железа простетическая группа гемоглобина (протопорфирин IX) и промежуточные продукты биосинтеза - копропорфирин, аминолевуленовая кислота и др.

Физиология. Основной функцией К. является перенос различных веществ, в т.ч. тех, с помощью которых организм защищается от воздействия окружающей среды или регулирует функции отдельных органов. В зависимости от характера переносимых веществ различают следующие функции крови.

Дыхательная функция включает транспорт кислорода от легочных альвеол к тканям и углекислоты от тканей к легким. Питательная функция - перенос питательных веществ (глюкозы, аминокислот, жирных кислот, триглицеридов и др.) от органов, где эти вещества образуются или накапливаются, к тканям, в которых они подвергаются дальнейшим превращениям, этот перенос тесно связан с транспортом промежуточных продуктов обмена веществ. Экскреторная функция состоит в переносе конечных продуктов обмена веществ (мочевины, креатинина, мочевой кислоты и др.) в почки и другие органы (например, кожу, желудок) и участии в процессе образования мочи. Гомеостатическая функция - достижение постоянства внутренней среды организма благодаря перемещению К., омыванию ею всех тканей, с межклеточной жидкостью которых ее состав уравновешивается (см. Гомеостаз). Регуляторная функция заключается в переносе гормонов, вырабатываемых железами внутренней секреции, и других биологически активных веществ, с помощью которых осуществляется регуляция функций отдельных клеток тканей, а также удаление этих веществ и их метаболитов после того, как их физиологическая роль выполнена. Терморегуляторная функция реализуется путем изменения величины кровотока в коже, подкожной клетчатке, мышцах и внутренних органах под влиянием изменения температуры окружающей среды (см. Терморегуляция): перемещение К благодаря ее высокой теплопроводности и теплоемкости увеличивает потери тепла организмом, когда существует угроза перегревания, или, наоборот, обеспечивает сохранение тепла при понижении температуры окружающей среды. Защитную функцию выполняют вещества обеспечивающие гуморальную защиту организма от инфекции и попадающих в К. токсинов (например, лизоцим), а также лимфоциты, участвующие в образовании антител. Клеточную защиту осуществляют лейкоциты (нейтрофилы, моноциты), которые переносятся током К. в очаг инфекции, к месту проникновения возбудителя, и совместно с тканевыми макрофагами формируют защитный барьер (см. Иммунитет). Током К. удаляются и обезвреживаются образующиеся при повреждении тканей продукты их деструкции. К защитной функции К. относится также ее способность к свертыванию, образованию тромба и прекращению кровотечения. В этом процессе принимают участие факторы свертывания крови и тромбоциты. При значительном снижении количества тромбоцитов (тромбоцитопении) наблюдается замедленное свертывание крови.

Группы крови. Количество К. в организме - величина довольно постоянная и тщательно регулируемая. В течение всей жизни человека не меняется также его группа крови - иммуногенетические признаки К. позволяющие объединять К. людей в определенные группы по сходству антигенов (см. Группы крови). Принадлежность К. к той или иной группе и наличие нормальных или изоиммунных антител предопределяют биологически благоприятное или, наоборот, неблагоприятное совместимое сочетание К. различных лиц. Это может иметь место при поступлении эритроцитов плода в организм матери во время беременности или при переливании крови. При разных группах К. у матери и плода и при наличии у матери антител к антигенам К. плода у плода или новорожденного развивается гемолитическая болезнь (см. Гемолитическая болезнь плода и новорожденного (Гемолитическая болезнь плода и новорождённого)).

Переливание реципиенту К. не той группы в связи с наличием у него антител к вводимым антигенам донора приводит к несовместимости и повреждению перелитых эритроцитов с тяжелыми последствиями для реципиента (см. Переливание крови). Поэтому основным условием при переливании К. является учет групповой принадлежности и совместимости К. донора и реципиента.

Генетические маркеры К. - свойственные форменным элементам и плазме К. признаки, используемые в генетических исследованиях для типирования индивидов. К генетическим маркерам К. относят групповые факторы эритроцитов, антигены лейкоцитов, ферментные и другие белки. Различают также генетические маркеры клеток К. - эритроцитов (групповые антигены эритроцитов, кислая фосфатаза, глюкозо-6-фосфатдегидрогеназа и др.), лейкоцитов (антигены HLA) и плазмы (иммуноглобулины, гаптоглобин, трансферрин и др.). Изучение генетических маркеров К. оказалось весьма перспективным при разработке таких важных проблем медицинской генетики, молекулярной биологии и иммунологии, как выяснение механизмов мутаций (см. Мутагенез) и генетического кода (см. Ген), молекулярной организации.

Особенности крови у детей. Количество К. у детей изменяется в зависимости от возраста и массы ребенка. У новорожденного на 1 кг массы тела приходится около 140 мл крови, у детей первого года жизни - около 100 мл. Удельный вес К. у детей, особенно раннего детского возраста, выше (1,06-1,08), чем у взрослых (1,053-1,058).

У здоровых детей химический состав К. отличается определенным постоянством и сравнительно мало меняется с возрастом. Между особенностями морфологического состава К. и состоянием внутриклеточного обмена существует тесная связь. Содержание таких ферментов К., как амилаза, каталаза и липаза, у новорожденных понижено, у здоровых детей первого года жизни отмечается повышение их концентраций. Общий белок сыворотки К. после рождения постепенно уменьшается до 3-го месяца жизни и после 6-го месяца достигает уровня подросткового возраста. Характерны выраженная лабильность глобулиновых и альбуминовых фракций и стабилизация белковых фракций после 3-го месяца жизни. Фибриноген в плазме К. обычно составляет около 5% общего белка.

Антигены эритроцитов (А и В) достигают активности только к 10-20 годам, а агглютинабельность эритроцитов новорожденных составляет 1/5 часть агглютинабельности эритроцитов взрослых. Изоантитела (α и β) начинают вырабатываться у ребенка на 2-3-м месяце после рождения, и титры их остаются низкими до года. Изогемагглютинины обнаруживаются у ребенка с 3-6-месячного возраста и только к 5-10 годам достигают уровня взрослого человека.

У детей средние лимфоциты в отличие от малых в 11/2 раза больше эритроцита, цитоплазма их шире, в ней чаще содержится азурофильная зернистость, ядро менее интенсивно окрашивается. Большие лимфоциты почти вдвое больше малых лимфоцитов, ядро их окрашивается в нежные тона, располагается несколько эксцентрично и имеет часто почковидную форму из-за вдавления сбоку. В цитоплазме голубого цвета могут содержаться азурофильная зернистость и иногда вакуоли.

Изменения К. у новорожденных и детей первых месяцев жизни обусловлены наличием красного костного мозга без очагов жирового, большой регенераторной способностью красного костного мозга и при необходимости мобилизацией экстрамедуллярных очагов кроветворения в печени и селезенке.

Снижение у новорожденных содержания протромбина, проакцелерина, проконвертина, фибриногена, а также тромбопластической активности К. способствует изменениям в свертывающей системе и склонности к геморрагическим проявлениям.

Страница 1

Кровь

Жидкая ткань, осуществляющая в организме транспорт химических веществ (в том числе кислорода), благодаря которому происходит интеграция биохимических процессов, протекающих в различных клетках и межклеточных пространствах, в единую систему. Это реализуется благодаря сокращениям сердца, поддержанию тонуса сосудов и большой суммарной поверхности стенок капилляров, обладающих избирательной проницаемостью. Кроме того, кровь выполняет защитную, регуляторную, терморегуляторную и другие функции.

Кровь состоит из жидкой части - плазмы и взвешенных в ней клеточных (форменных) элементов. Не растворимые жировые частицы клеточного происхождения, присутствующие в плазме, называются гемокониями (кровяная пыль).

Физико-химические свойства

Плотность цельной крови зависит главным образом от содержания в ней эритроцитов, белков и липидов.

Цвет крови меняется от алого до тёмно-красного в зависимости от соотношения оксигенированной (алой) и неоксигенированной форм гемоглобина. От присутствия дериватов гемоглобина - метгемоглобина, карбоксигемоглобина и т.д. Окраска плазмы зависит от присутствия в ней красных и жёлтых пигментов - главным образом каротиноидов и билирубина, большое кол-во которого при патологии придаёт плазме жёлтый цвет.

Кровь представляет собой коллоидно-полимерный раствор, в котором вода является растворителем, соли и низкомолекулярные органические о-ва плазма - растворёнными веществами, а белки и их комплексы - коллоидным компонентом. На поверхности клеток крови существует двойной слой электрических зарядов, состоящий из прочно связанных с мембраной отрицательных зарядов и уравновешивающего их диффузного слоя положительных зарядов. За счёт двойного электрического слоя возникает электрокинетический потенциал, который играет важную роль стабилизации клеток, предотвращая их агрегацию. При увеличении ионной силы плазмы в связи с попаданием в неё многозарядных положительных ионов диффузный слой сжимается и барьер, препятствующий агрегации клеток, снижается.

Одним из проявлений микрогетерогенности крови является феномен оседания эритроцитов. Он заключается в том, что в крови вне кровеносного русла (если предотвращено её свёртывание), клетки оседают (седементируют), оставляя сверху слой плазмы. Скорость оседания эритроцитов (СОЭ) возрастает при различных заболеваниях, в основном воспалительного характера, в связи с изменением белкового состава плазмы. Оседанию эритроцитов предшествует их агрегация с образованием определённых структур типа монетных столбиков. От того, как проходит их формирование, и зависит СОЭ.

К форменным элементам крови относятся эритроциты, лейкоциты, представленные гранулоцитами (полиморфно-ядерные нейтрофильные, эозинофильные и базофильные гранулоциты) и агранулоцитами (лимфоциты и моноциты), а также тромбоциты - кровяные пластинки. В крови также определяется незначительное число плазматических и так наз. ДНК-синтезирующих клеток.

Мембрана клеток крови является местом, где происходят важнейшие ферментативные процессы и осуществляются иммунные реакции. Мембраны клеток крови несут информацию о группе крови и тканевых антигенах.

Эритроциты в зависимости от размера называют микро - и макроцитами, основная масса их представлена нормоцитами. Эритроциты представляют собой в норме безъядерную двояковогнутую клетку диаметром 7-8мкм. Ультраструктура эритроцита однообразна. Его содержимое наполнено нежной грануляцией, к-рая идентифицируется с гемоглобином. Наружная мембрана эритроцита представлена в виде плотной полоски на периферии клетки. На более ранних стадиях развития эритроцита (ретикулоцит) в цитоплазме можно обнаружить остатки структур клеток-предшественников (митохондрии и др.)

Мембрана эритроцита на всём протяжении одинакова. Впадины и выпуклости могут возникать при изменении давления с наружи или изнутри, не вызывая при этом сморщивания клетки. Если клеточная мембрана эритроцита нарушается, то клетка принимает сферическую форму и может гемолизироваться.

Тромбоциты (кровяные пластинки) представляют собой полиморфные безъядерные образования, окружённые мембраной. В кровяном русле тромбоциты имеют округлую и овальную форму. В норме различают 4 основных вида тромбоцитов: 1 - нормальные (зрелые) тромбоциты - круглой или овальной формы.2 - юные (незрелые) тромбоциты - несколько больших по сравнению со зрелыми размеров с базофильным содержимым.3 - старые тромбоциты - различной формы с узким ободком и обильной грануляцией, содержат много вакуолей.4 - прочие формы.

Лейкоциты. Гранулоциты - нейтрофильные ацидофильные (эозинофильные), базофильные полиморфно-ядерные лейкоциты - крупные клетки от 9 до12 мкм, циркулируют в периферической крови несколько часов, а затем перемещаются в ткани. В процессе дифференциации гранулоциты проходят стадии метамиелоцитов палочкоядерных форм. Все гранулоциты характеризуются наличием в цитоплазме зернистости, которую подразделяют на азурофильную и специальную.

1. Морфологический состав крови

2. Химический состав крови и ее фракций

3. Свойства крови

4. Пищевая и промышленная ценность крови

^ 1. Морфологический состав крови

Кровь является внутренней средой организма, которая объединяет между собой органы и ткани и выполняет дыхательную, питательную, выделительную, регуляторную и защитную функции.

Кровь животных - это однородная густая жидкость красного цвета, состоящая из жидкой части - плазмы - и форменных элементов (клеток): эритроцитов, лейкоцитов и тромбоцитов.

Плазма - это жидкость соломенно-желтого цвета. Форменные элементы представляют собой густую массу темно-красного цвета, который обусловлен наличием в эритроцитах белка гемоглобина. Эритроциты составляют основную массу форменных элементов (около 99 %).

Общее количество крови у крупного и мелкого рогатого скота составляет в среднем 7,6-8,3 %, у свиней - 4,5-6,0 %, у птицы - 7,6-10 % к живому весу. При обескровливании извлекается около 50-60 % этого количества.

^ 2. Химический состав крови и ее фракций

Химический состав крови зависит от вида, возраста, упитанности, условий содержания животных. Средние данные по химическому составу крови и ее фракций приведены в табл. 7.

Таблица 7

Основную массу белков крови составляют альбумины, глобулины, фибриноген и гемоглобин . Их примерное содержание в крови животных показано в табл. 8.

Таблица 8

Органические небелковые вещества крови разнообразны по химическому составу. Из их общего количества около 75 % приходится на долю липидов.

Неорганические вещества крови находятся в виде минеральных соединений и в органически связанной форме с белками (железо, медь).

В крови содержится большое число физиологически активных веществ: ферменты, гормоны, витамины. Весьма разнообразный и сложный химический состав крови связан с ее прижизненными биологическими функциями.

Важнейшим и количественно преобладающим компонентом крови с технологической точки зрения являются белки. По содержанию белка кровь практически не отличается от мяса.

Сывороточные альбумины, сывороточные глобулины и фибриноген - основные фракции белков плазмы. Это полноценные, легкоперевариваемые белки. Фибриноген является главным компонентом системы свертывания крови. В плазме он находится в растворенном состоянии, но в определенных условиях под действием ферментов плазмы может переходить в нерастворимый нитевидный белок фибрин . Оставшаяся жидкость называется сывороткой; по сравнению с плазмой в ней содержится меньше белка на 0,3-0,4 %.

Свыше 80 % белковых веществ эритроцитов приходится на долю гемоглобина. Гемоглобин - сложный белок, придающий крови красную окраску. По строению и свойствам он близок к мышечному пигменту миоглобину, но более сложен. Молекула гемоглобина состоит из четырех субъединиц, каждая из которых включает полипептидную цепь, соединенную с гемом . В гемоглобине нет изолейцина, поэтому он является неполноценным белком. Гемоглобин растворим в воде, переваривается пепсином и трипсином.

В крови гемоглобин может находиться в трех формах:


  • нативный гемоглобин (красный цвет);

  • оксигемоглобин (ярко красный цвет);

  • метгемоглобин (красно-бурый цвет).
Метгемоглобин образуется при окислении гемоглобина, в его состав входит трехвалентное железо.

^ 3. Свойства крови

Плотность крови и ее фракций различна и составляет в среднем:


  • для крови - 1050-1065;

  • плазмы - 1020-1030;

  • форменных элементов - 1080-1090 кг/м 3 .
Это свойство используют в технологической практике для разделения крови на фракции: плазму или сыворотку и форменные элементы.

При определенных условиях гемоглобин крови может переходить из эритроцитов в плазму и, растворяясь в ней, окрашивать ее в красный цвет. Это явление называется гемолизом . Гемолиз происходит под действием различных факторов, приводящих к разрушению оболочки эритроцитов. Это может быть снижение осмотического давления окружающей среды (например, за счет разбавления крови водой), механическое воздействие, воздействие органических растворителей и др. В технологической практике гемолиза следует избегать при получении плазмы или сыворотки крови. При получении красителей пищевых, наоборот, проводят гемолиз для освобождения пигмента - гемоглобина из эритроцитов.

При температуре около 60 о С начинается денатурация гемоглобина, сопровождающаяся изменением цвета крови за счет образования бурых ге-матинов.

Изъятая кровь является хорошей питательной средой для микрофлоры и легко подвергается микробиальной порче. Поэтому кровь, предназначенную для пищевых и медицинских целей необходимо перерабатывать очень быстро или консервировать.

Через несколько минут после изъятия кровь свертывается (6,5-10 мин -для КРС, 3,5-5 мин - для свиней, 4-8 мин - для МРС, менее 1-й мин - для птицы). Это свойство крови является важным защитным приспособлением животного организма. В технологии переработки крови процесс свертывания нежелателен, так как затрудняет транспортирование и переработку крови.

Свертывание крови обусловлено превращением растворимого белка плазмы фибриногена в нерастворимый белок фибрин . Это сложный многоступенчатый процесс, заключительным этапом которого является образование сгустка из сетки нитей фибрина, заполненной форменными элементами и сывороткой. Образованию сгустка предшествует ряд превращений ферментативной и неферментативной природы, связанных с взаимодействием многих компонентов крови. Реакции, протекающие при свертывании, находятся в тесной взаимосвязи, для осуществления каждой последующей реакции необходимо, чтобы произошли все предыдущие реакции.

В процессе свертывания крови участвуют ферменты, белки, ионы кальция, называемые факторами свертывания.

Торможение или предотвращение процесса свертывания крови бази-руется на знании механизма свертывания . Рассмотрим упрощенную схему свертывания крови. Процесс свертывания крови можно условно разделить на три стадии.

1. При повреждении кровеносных сосудов происходит активация белковых факторов плазмы крови. Один из них способствует разрушению мембраны оболочки тромбоцитов и выделению важных компонентов свертывания. При травмировании тканей в плазму попадает тканевый фактор свертывания. Под влиянием белковых факторов и ионов кальция происходит образование активного фермента тромбопластина .

2. С участием тромбопластина, кальция и других факторов из неактивного протромбина образуется активный фермент тромбин .

3. Образовавшийся активный тромбин воздействует на фибриноген, превращая его в фибрин - мономер , который под влиянием кальция и других факторов полимеризуется в нерастворимый фибрин - полимер с образованием трехмерной белковой сети, захватывающей в свою структуру форменные элементы и образуя сгусток. Нити фибрина сокращаются под влиянием АТФазы тромбоцитов, что сопровождается уплотнением сгустка и отделением сыворотки. Нити фибрина бесцветны. Окраска сгустка объясняется наличием окрашенных эритроцитов крови.

Для торможения или предотвращения процесса свертывания при переработке крови ее подвергают стабилизации , используя вещества различной химической природы, получившие название стабилизаторов или анти-коагулянтов .

Принцип действия стабилизаторов первого типа связан с выведением из системы свертывания отдельных компонентов, необходимых для превращения неактивных ферментов в их активные формы (например, декальцинирование крови за счет связывания ионов кальция в нерастворимые или малорастворимые комплексы). Для этого используют фосфаты, оксалаты, цитраты и другие соединения.

Стабилизаторы второго типа ингибируют образование активного тромбина. К этой группе стабилизаторов относятся поваренная соль, физиологические стабилизаторы (гепарин) и др.

Эффективность действия стабилизатора зависит от его свойств и вида стабилизируемой крови.

Полностью исключить свертывание крови можно путем ее дефибринирования - отделение нитей образующего при свертывании фибрина.

После внесения стабилизатора кровь называют стабилизированной , а после удаления фибрина - дефибринированной .

^ 4. Пищевая и промышленная ценность крови

Кровь сельскохозяйственных животных является ценным сырьем для производства пищевой, медицинской, кормовой и технической продукции благодаря особенностям химического состава и свойствам.

Пищевая ценность крови определяется достаточно высоким содержанием белка (16-18 %), по которому она близка к мясу. Однако более 60 % белков крови составляет неполноценный гемоглобин, поэтому биологическая ценность крови ниже, чем у мяса.

Цельная кровь и ее фракции используют для производства мясных продуктов: кровяных колбас, зельцев, консервов, паштетов, вареных колбас и др.

Целесообразность использования крови на пищевые цели определяется не только высоким содержанием белка, но и высокими функционально - технологическими свойствами крови и плазмы.

Основой лечебной продукции, вырабатываемой из крови, являются белки, содержащие металлы (например, железо) в органически связанной форме. Из форменных элементов и цельной крови вырабатывают гематоген, гемостимулин и другие препараты.

Наличие в крови хорошо растворимых белков делает ее пригодной для выработки пищевого и технического темного и светлого альбуминов, пенообразователя. Из крови и ее фракций, не используемых по тем или иным причинам на пищевые и лечебные цели, вырабатывают белковые корма.

Кровь убойных животных является ценным белковым сырьем. Содержание и свойства белков крови позволяют использовать ее для производства пищевой, медицинской, кормовой и технической продукции. Пищевая ценность крови определяется высоким содержанием белка (16-18 %), содержанием железа в органической форме. По пищевой и биологической ценности кровь уступает мясу, так как основной белок крови - гемоглобин, является неполноценным. Использование крови на пищевые цели ограничивается ее цветом, обусловленным гемоглобином. Разделение крови на фракции позволяет получить плазму и форменные элементы. Содержание белка в плазме - 7-8 %. Все белки плазмы полноценны. После изъятия кровь подвергается свертыванию. Для торможения и предотвращения этого явления в технологической практике производят стабилизацию или дефибринирование крови.

Тема 7. Характеристика мяса как объекта технологии

1. Промышленное понятие о мясе

2. Показатели качества мяса

3. Факторы, определяющие качество мяса

4. Роль мяса в питании человека

^ 1. Промышленное понятие о мясе

Под мясом в промышленном значении понимают тушу или ее часть, полученную при убое сельскохозяйственных животных и птицы и представляющую совокупность различных тканей в их естественном соотношении. Кроме мышечной ткани, являющейся необходимым признаком мяса, в его состав в разном количестве могут входить соединительная, жировая, хрящевая ткани, кость, кровь.

Количественное соотношение тканей в составе мяса зависит от вида, возраста, породы, пола, условий откорма и упитанности животных, от анатомического происхождения части туши. В промышленной практике природное соотношение тканей в мясе направленно изменяют за счет освобождения его от малоценных тканей: хрящей, соединительной ткани, кости.

Количественное соотношение тканей в мясе определяет его качество: химический состав, пищевую ценность и свойства мяса.

^ 2. Показатели качества мяса

Качество мяса характеризуется пищевой и биологической ценностью, санитарно-гигиеническими показателями и функционально-технологически-ми свойствами.

^ Пищевая ценность мяса определяется химическим составом: содержанием белков, жиров, экстрактивных веществ, витаминов группы В, макро- и микроэлементов; энергетической ценностью и органолептическими свой-ствами.

^ Биологическая ценность мяса характеризует качество белковых веществ по содержанию и сбалансированности незаменимых аминокислот и перевариваемости белка, а также качество жиров по содержанию полиненасыщенных жирных кислот и по перевариваемости жиров.

Важными показателями качества мяса легко воспринимаемыми органами чувств (органолептическими ) являются цвет, вкус, аромат, консистенция. Эти показатели зависят от химического состава и состояния мяса. Они играют важную роль в формировании качества мясных продуктов и их усвоении организмом.

Цвет мяса - один из основных показателей качества, оцениваемый потребителем, по которому судят о товарном виде мяса, о некоторых химических превращениях в нем. Цвет мяса зависит от количественного содержания и состояния пигмента мышечной ткани - миоглобина. Окраска жировой ткани в составе мяса определяется содержанием в ней пигментов - каротиноидов.

^ Вкус и аромат мяса. В их формировании решающую роль играют экстрактивные вещества, содержащиеся в незначительных количествах и являющиеся, так называемыми, предшественниками вкуса и аромата. Экстрактивные вещества формируются после тепловой обработки мясного сырья. Основным источником этих соединений является мышечная ткань, а также жировая ткань, так как низкомолекулярные продукты превращения жиров обуславливают специфические видовые особенности вкуса и аромата мяса.

^ Консистенция мяса. К показателям консистенции мяса относят нежность, мягкость, сочность. Консистенция мяса определяется рядом факторов:


  • диаметром мышечных волокон;

  • содержанием соединительной ткани, в том числе и межмышечной;

  • соотношением в составе соединительной ткани коллагеновых и эластиновых волокон;

  • состоянием мышечных белков: степенью их гидратации, степенью сокращения миофибрилл, уровнем гидролитических изменений;

  • содержанием жира внутри мышечных волокон, между мышцами и группами мышц (мраморностью мяса).
Определение санитарно-гигиенических показателей качества мяса позволяет оценить его безопасность для человека. В мясе контролируется содержание микробиологических и химических загрязнителей, которые могут попадать в мясо при жизни животного из окружающей среды, с кормом и водой. Химические загрязнители мяса контролируют по содержанию токсичных элементов (свинец, кадмий, ртуть, мышьяк), пестицидов, антибиотиков, радионуклидов.

Для мяса, являющегося сырьем для изготовления широкого ассортимента мясных продуктов, важное значение имеют функционально-технологические свойства (ФТС). Они определяют поведение белка как основного компонента в сложных мясных системах во взаимодействии с другими составляющими (жир, вода, минеральные вещества и др.) под влиянием различных технологических факторов.

Под ФТС понимают совокупность показателей: величину рН, водосвязывающую, эмульгирующую, жиросвязывающую, гелеобразующую способности; растворимость в воде, солевых растворах и другие свойства мяса.

По ФТС можно судить о степени приемлемости мяса для производства мясных продуктов определенной ассортиментной группы.

^ 3. Факторы, определяющие качество мяса

Важно отметить, что качество получаемого при убое и переработке животных мяса может существенно изменятся под влиянием различных факторов, которые могут быть объединены в следующие группы:


  • природные факторы : вид, возраст, порода, пол, упитанность животных, анатомическое происхождение отруба;

  • послеубойные биохимические и физико-химические факторы : - автолитические и микробиологические изменения, окислительные процессы;

  • технологические факторы : условия выращивания и транспортирования, предубойного содержания животных; условия убоя и первичной обработки; параметры холодильной обработки и хранения мяса; условия посола, тепловой обработки, копчения, сушки и др.
Качество мяса, а значит, и характеризующие его показатели, связаны со свойствами и количественным соотношением тканей в мясе, которые, в свою очередь, зависят от таких природных факторов как вид, возраст, пол, порода, упитанность и анатомическое происхождение мяса. При этом влияние этих факторов на качество мяса взаимосвязано.

^ Видовые особенности мяса. Тканевый состав мяса животных разного вида приведен в табл. 9.

Таблица 9

Средние данные о химическом составе мяса животных и птицы представлены в табл. 10.

Таблица 10

Как видно из табл. 9 и 10 химический состав мяса различных животных различается, что связано с разным количественным соотношением тканей, определяемым активностью прижизненных движений животных.

Видовые различия мяса проявляются в окраске, консистенции, запахе и вкусе. Из промышленно значимых видов мяса наиболее интенсивно окрашена говядина. Содержание миоглобина в говядине составляет 0,25-0,37 % к массе мышечной ткани, для свинины - 0,08-0,23 %.

Для свинины характерна более нежная консистенция. В ней меньше, чем у говядины соединительной ткани, и она менее грубая, легче разваривается.

Свинина имеет повышенное содержание жира, который содержит больше полиненасыщенных жирных кислот и лучше усваивается, чем говяжий и бараний. Благодаря этому промышленное значение свинины определяется содержанием как мышечной, так и жировой ткани. Технологическое значение говядины заключается в наличии водо- и солерастворимых белков.

Различные виды мяса отличаются содержанием и составом экстрактивных веществ, что оказывает влияние на специфичность вкуса и аромата мяса.

Особенности количественного соотношения мягких тканей говядины, свинины, баранины определяют некоторые различия в аминокислотном составе мяса.

Существенной разницы в перевариваемости белков разных видов мяса не установлено. Коэффициент усвояемости организмом человека мяса говядины в среднем составляет 82-83 %.

Мясо птицы содержит меньше соединительной ткани, чем мясо животных. Его биологическая ценность выше, оно легче переваривается, чем мясо животных. В жире птицы больше полиненасыщенных жирных кислот, чем в жире животных.

Таким образом, можно отметить, что видовой фактор оказывает существенное влияние на качество мяса.

^ Влияние возраста. С возрастом изменяется морфологический и химический состав мяса, его физико-химические и органолептические свойства.

В процессе роста животных и птицы в мясе повышается содержание жира и уменьшается количество влаги. Нарастает жесткость мяса вследствие утолщения мышечных волокон, увеличения доли эластиновых волокон в соединительной ткани и упрочнения коллагеновых волокон, что снижает степень гидротермического распада коллагена. По этой причине мясо молодых животных отличается более нежной консистенцией после тепловой обработки.

Мясо молодых животных отличается также более светлой окраской.

У свиней максимальные качественные характеристики формируются в основном к 8-ми месяцам, у КРС - в возрасте от 12 до 18 месяцев.

Для обеспечения относительной идентичности в качественных показателях мяса КРС при убое подразделяют в зависимости от возраста на 2 группы: животные старше 3-х лет (мясо взрослых животных) и с возрастом от 3-х месяцев до 3-х лет (мясо молодых животных).

^ Влияние породы. Животные различных пород имеют различия по живой массе, выходу и качеству мяса. Мясные породы КРС имеют хорошо развитые мускульную и жировую ткани, такое мясо более сочное, нежное, вкусное. Для мяса, полученного от молочных и мясомолочных пород, характерны повышенное содержание соединительной ткани и кости, меньшее содержание внутримышечного жира, худшие органолептические показатели.

У животных мясных пород мышечная ткань развивается преимущественно в частях туши, дающих наиболее ценное мясо, - в области спины, поясницы, в тазобедренной части.

^ Влияние пола. Пол животных влияет на качество и количество получаемого мяса. Половые различия в мясе молодых животных почти не влияют на качество мяса, но они заметно проявляются у взрослых и старых животных. Мясо самок более жирное, нежное, светлое. Мясо кастрированных животных имеет рисунок «мраморности». Мясо некастрированных самцов отличается специфическим неприятным запахом. По этой причине мясо быков, хряков в реализацию не допускают, а используют для промышленной переработки.

В колбасном производстве особое значение придается мясу быков, содержащему больше мышечной ткани, чем мясо волов и коров, и отличающемуся темно-красным цветом.

^ Влияние упитанности. При прочих равных условиях упитанность животных оказывает решающее влияние на выход, тканевый и химический состав мяса. Упитанность животных определяют степенью развития мышечной и жировой тканей и их соотношением.

С повышением упитанности животных и птицы увеличивается содержание в туше мякотной части и наиболее ценных мышечной и жировой тканей. При этом в общем количестве белков мяса падает доля коллагена и эластина и повышается содержание полноценных белков.

Упитанность влияет также на содержание в мясе многих других веществ. Например, содержание гликогена в мясе КРС средней упитанности составляет около 460мг %, а в мясе тощих животных - лишь около 190 мг%.

В зависимости от упитанности говядину, баранину, свинину делят на категории.

Следует отметить, что упитанность животных напрямую зависит от условий их содержания и рациона кормления.

^ Влияние анатомического происхождения. Для розничной торговли и промышленной переработки говяжьи, свиные полутуши, бараньи туши и тушки птицы разделяют на части. Различные части одной и той же туши различаются по количественному соотношению тканей, так как при жизни животного эти части несут разную нагрузку. Чем выше нагрузка, тем больше в мясе соединительной ткани, тем толще и прочнее мышечные и коллагеновые волокна, и следовательно, жестче мясо. Мышцы шейной, грудной, брюшной частей туши и конечности относятся к усиленно работающим мышцам, и поэтому содержат больше соединительной ткани, чем мышцы задних и верхних частей туши. Лучшие сорта мяса расположены в спинной части животного; чем ближе к голове и ниже от спины, тем хуже сорт мяса.

Прочностные свойства тех или иных мускулов связаны со строением и содержанием в них соединительной ткани, с диаметром мышечных волокон.

Например, в поясничном мускуле соединительная ткань представлена тонкими коллагеновыми волокнами, расположенными между мышечными пучками в виде параллельных нитей. Эластиновых волокон мало. В результате эта мышца отличается высокой нежностью.

Соединительная ткань наружного грудного мускула имеет ромбовидное плетение и образует сильно развитый перимизий, коллагеновые волокна значительной толщины и сложного переплетения, много эластиновых волокон. Все эти факторы в совокупности определяют повышенную жесткость данного мускула.

Чем выше диаметр мышечных волокон, тем выше жесткость мяса, так как сарколемма более толстых волокон сильнее развита и более прочна. С увеличением диаметра волокна на 10 % сопротивление резанию возрастает на 20-30 %.

Различия частей туши животного в анатомическом плане определяют разницу в их тканевом и химическом составе, а значит и в пищевой ценности, что диктует целесообразность комбинированного использования мясных полутуш при их переработке и реализации.

^ 4. Роль мяса в питании человека

Значение мяса в питании человека определено его пищевой ценностью, которая в первую очередь связана с содержанием биологически полноценных и легкоусвояемых белков. Кроме того, мясо - хороший источник витаминов группы В и некоторых минеральных веществ, например, железа в органически связанной форме. Свинина является также поставщиком высококачественных жиров.

Благодаря наличию экстрактивных веществ и их трансформации при тепловой обработке мясо отличается высокими вкусо-ароматическими характеристиками, что повышает его усвояемость организмом человека вследствие влияния на секрецию пищеварительных соков.

Уникальный состав и свойства мяса в совокупности обеспечивают нормальную физическую и умственную деятельность человека при употреблении в пищу мяса и мясных продуктов. Физиологически обоснованная норма потребления мяса и мясных продуктов по данным института питания АМН РФ должна составлять не менее 70 кг на одного человека в год.

Тема 8. Автолитические изменения мяса

1. Понятие об автолизе, стадии автолиза

2. Автолитические изменения углеводов, их значение

3. Изменения в белковой системе мяса, их значение

4. Характеристика потребительских и технологических свойств мяса на разных

Стадиях автолиза

5. Влияние различных факторов на скорость автолитических изменений мяса

6. Понятие о мясе с нетрадиционным характером автолиза

^ 1. Понятие об автолизе, стадии автолиза

Автолитическими процессами называют процессы распада компонентов тканей мяса под влиянием находящихся в них ферментов, которые сохраняют свою каталитическую активность долгое время. Автолиз (греч. autos - сам и lysis - растворение) начинается в тканях животного сразу же после убоя в связи с прекращением поступления кислорода, отсутствием окислительных изменений и кровообращения, прекращением синтеза и выработки энергии, накопления в тканях продуктов обмена.

В ходе автолиза существенно изменяются качественные характеристики мяса: механическая прочность, органолептические и технологические свойства, устойчивость к микробиологическим процессам.

Изменение свойств мяса развивается в определенной последовательности в соответствии с основными стадиями автолиза : парное состояние - посмертное окоченение (rigor mortis) - разрешение посмертного окоченения - созревание - глубокий автолиз.

Основным внешним признаком автолиза является изменение прочностных свойств мяса.

Парное мясо (3-4 час после убоя) характеризуется нежной кон-систенцией.

В течение первых суток после убоя развитие посмертного окоченения (при 0-4 о С) приводит к росту механической прочности мяса.

На стадии разрешения окоченения (после 2-х суток автолиза при 0-4 о С), а также при созревании происходит улучшение консистенции мяса.

Изменение прочностных свойств мяса в ходе автолиза связано с изменением состояния миофибриллярных белков мышечной ткани, входящих в систему сокращения-расслабления мышц. Но в основе автолитических превращений мяса лежат изменения углеводной системы.

^ 2. Автолитические изменения углеводов, их значение

После убоя ресинтез гликогена в мясе не осуществляется в связи с отсутствием поступления кислорода, и начинается его анаэробный распад по пути фосфоролиза и амилолиза (рис. 6) с образованием молочной кислоты и глюкозы.

Через 24 часа гликолиз приостанавливается вследствие исчерпания запасов АТФ и накопления молочной кислоты, подавляющей фосфоролиз.

Важнейшим следствием гликолиза является сдвиг рН мышечной ткани в кислую сторону за счет накопления органических кислот (рис. 7).

К моменту максимального развития посмертного окоченения (около 24 час автолиза при 0-4 о С) величина рН достигает минимального значения (5,5-5,6). По мере развития окоченения медленно возрастает на 0,1-0,2, не достигая величины рН парного мяса, и стабилизируется на уровне 5,6-5,8.

Сдвиг рН в кислую сторону зависит от содержания гликогена в мышечной ткани в момент убоя животного, поэтому у здоровых и отдохнувших животных конечная величина рН всегда ниже, чем у утомленных, истощенных.

Глюкоза

Мальтоза

Полисахариды

Молочная кислота

Пировиноградная кислота

АТФ - H 3 PO 4

В течении

6-8 суток, 10 % гликогена

В течении

90 % гликогена

Гликоген

Фосфоролиз (гликолиз)

Амилолиз

Рис. 6. Анаэробный распад гликогена


Рис. 7. Изменение свойств мышечной ткани в процессе автолиза (при 0-4 о С);

Величину рН мяса можно достаточно точно и просто замерить с помощью рН-метров, что позволяет отслеживать стадии автолиза, выявлять мясо с нетрадиционным характером автолитических изменений.

Величина рН мяса является важнейшим показателем его качества, так как изменения в процессе автолиза влекут за собой существенные практические последствия, а именно:


  • увеличивается устойчивость мяса к действию гнилостных микроорганизмов;

  • снижается растворимость мышечных белков, уровень их гидратации, водосвязывающая способность за счет приближения рН мяса к изоэлектрической точке белков (4,7-5,4);

  • происходит набухание коллагена соединительной ткани;

  • повышается активность катепсинов (оптимальное рН 5,3), вызывающих гидролиз белков на более поздних стадиях автолиза.
Ферментативный распад гликогена является пусковым механизмом для развития последующих физико-химических и биохимических процессов.

^ 3. Изменения в белковой системе мяса, их значение

Накопление органических кислот в мясе оказывает существенное влияние на состояние мышечных белков, что в свою очередь предопределяет технологические свойства мяса: консистенцию, ВСС, растворимость белков, их эмульгирующую способность и др.

На первой стадии автолиза важное значение имеет уровень содержания в мясе энергоемкой АТФ, вследствие десфосфорилирования (распада) которой осуществляется процесс фосфоролиза гликогена. Одновременно энергия дефосфорилирования обеспечивает сокращение миофибриллярных белков.

Сущность изменений в белковой системе мяса на начальных этапах послеубойного периода, в основном, связана с процессом образования актомиозинового комплекса и зависит от наличия в системе энергии и ионов кальция (Са 2+). Непосредственно после убоя количество АТФ в мясе велико, Са 2+ связан в саркоплазматическом ретикилуме мышечного волокна, актин находится в глобулярной форме и не связан с миозином, что обуславливает расслабленное состояние волокон, большое количество гидрофильных центров и высокую ВСС белков. Сдвиг рН мяса в кислую сторону запускает механизм превращения миофибриллярных белков:


  • ионы кальция выделяются из каналов саркоплазматического ретикулума, концентрация их возрастает;

  • ионы кальция повышают АТФазную активность миозина;

  • глобулярный актин (G-актин) переходит в фибриллярный (F-актин), способный вступать во взаимодействие с миозином в присутствии энергии распада АТФ;

  • энергия распада АТФ инициирует взаимодействие миозина с фибриллярным актином с образованием актомиозинового комплекса и сокращения миофибрилл и мышечных волокон.
Результатом сокращения волокон является нарастание жесткости мяса, уменьшение эластичности и ВСС.

Таким образом, снижение ВСС в период посмертного окоченения обусловлено не только сдвигом рН среды к изоэлектрической точке мышечных белков, но и уменьшением числа гидрофильных центров сократительных белков в связи с образованием актомиозина. Динамика изменения ВСС и прочностных свойств мышечной ткани в ходе автолиза показана на рис. 7 (стр. 45).

Послеубойные сокращения волокон начинаются сразу после убоя, но в отличие от прижизненного синхронного сокращения они растянуты во времени и происходят беспорядочно. Первые признаки окоченения становятся заметны через 2-3 час после убоя. В процессе окоченения число волокон, переходящих в сокращенное состояние, постепенно возрастает, достигая наибольшего количества к моменту максимального развития окоченения (к 18-24 час - автолиза свинины, говядины при 0-4 о С), что согласуется с наибольшим нарастанием жесткости мяса на этом этапе автолиза (см. рис. 7 на стр. 45).

Таким образом, важнейшими последствиями окоченения мышц являются:


  • значительное увеличение механической прочности (жесткости) мяса;

  • снижение растворимости мышечных белков, а значит их эмульгирующей способности;

  • снижение степени гидратации белков и ВСС;

  • снижение перевариваемости мышечных белков пищеварительными ферментами;

  • ухудшение развариваемости коллагена.
Посмертное окоченение мяса сопровождается снижением его качества за счет ухудшения органолептических, технологических свойств и биологической ценности.

Механизм дальнейших изменений миофибриллярных белков, приводящий к разрешению окоченения, еще не полностью изучен. Однако установлено, что на первых стадиях созревания происходит частичная диссоциация актомиозина, сопровождающаяся расслаблением мышц и ростом ВСС (см. рис. 7 на стр. 48).

Кроме того, на этапе разрешения окоченения возможно начинаются процессы протеолиза белков с участием катепсинов , что также способствует снижению прочности мышечных волокон.

Далее в процессе созревания мяса процессы протеолиза выступают на первый план и их интенсивность определяется количеством протеолитических ферментов в мышечной ткани и их активностью, на которую положительно влияет подкисление ткани в ходе автолиза и частичное разрушение мембран лизосом.

Процесс созревания мяса - это совокупность изменений его свойств, обусловленных развитием автолиза, в результате которых мясо приобретает хорошо выраженный аромат, вкус, становится мягким и сочным, более доступным действию пищеварительных ферментов по сравнению с мясом на стадии окоченения.

Важно отметить, что превращение белков от момента убоя до стадии разрешения окоченения несет в основном конформационный характер (изменяется пространственная структура белка). Созревание мяса связано с процессом гидролиза белков.

Основными последствиями созревания мяса являются:


  • снижение жесткости мяса, улучшение консистенции;

  • повышение растворимости, уровня гидратации и ВСС белков;

  • повышение степени перевариваемости белков за счет разрушения актомиозинового комплекса;

  • улучшение разваривания коллагена;

  • формирование вкуса и аромата мяса за счет ферментативных превращений белков и других веществ мяса.
Парное мясо имеет слабо выраженный вкус и аромат. В ходе созревания происходит образование и накапливание продуктов ферментативного распада белков и пептидов (глютаминовая кислота, серосодержащие аминокислоты), нуклеотидов (инозин, гипоксантин и др.), углеводов (глюкоза, фруктоза, пировиноградная и молочная кислоты), липидов (низкомолекулярные жирные кислоты), а также креатина, креатинина и других азотистых экстрактивных веществ, - предшественников вкуса и аромата мяса.

Таким образом, в процессе созревания мяса происходит существенное улучшение органолептических и технологических характеристик, пищевой ценности по сравнению с мясом на стадии окоченения.

^ 4. Характеристика потребительских и технологических

свойств мяса на разных стадиях автолиза

Парное мясо характеризуется высокими технологическими свойствами: водосвязывающей, эмульгирующей способностью, максимальной развариваемостью коллагена, поэтому парное мясо целесообразно использовать при производстве эмульгированных (вареных) колбас и вареных штучных изделий из мяса. При этом обеспечивается высокий выход продукции и снижается вероятность образования дефектов при тепловой обработке.

Использование парного мяса дает существенные преимущества и с экономических позиций вследствие исключения потерь и энергозатрат на холодильную обработку.

Однако следует помнить, что работа с парным мясом требует оперативности (интервал времени от убоя животного до термообработки продуктов не должен превышать 3 час). В противном случае необходимо использование специальных приемов, направленных на торможение гликолиза и образование актомиозинового комплекса, а именно:


  • быстрое замораживание обваленного измельченного или неизмельченного парного мяса;

  • быстрая обвалка и измельчение парного мяса и посол с введением 2-4 % соли;

  • шприцевание рассола в отруба сразу после разделки парных туш и др.
Парное мясо отличается нежной консистенцией, высокой перевариваемостью белков. Вкус и аромат слабо выражены вследствие малого количества предшественников вкуса и аромата. По этой причине парное мясо мало пригодно для изготовления натуральных полуфабрикатов.

^ Мясо на стадии посмертного окоченения характеризуется минимальными потребительскими и технологическими свойствами (см. рис. 7 на стр. 48) и по этим причинам не пригодно для переработки и употребления, и оно должно быть выдержано до разрешения посмертного окоченения (около 48 час при 0-4 о С - средней температуре охлаждения и хранения охлажденного мяса).

^ Разрешение окоченения сопровождается улучшением свойств автолизирующего мясного сырья. Оно становится пригодным для промышленной переработки. Однако кулинарные кондиции еще не достигли оптимальных значений и продолжают улучшаться в процессе созревания при хранении и переработке мяса.

Сроки созревания мяса зависят от его вида, части туши, упитанности животного, температуры хранения.

Как правило, в мясе с нормальным развитием автолиза его нежность и ВСС достигают оптимума через 5-7 суток хранения при 0-4 о С, вкус и аромат - к 10-14 суткам. В связи с этим продолжительность созревания мяса выбирают в зависимости от способа дальнейшего технологического использования сырья. При этом необходимо учитывать возможность микробиальной порчи охлажденного мяса в процессе его хранения.

^ 5. Влияние различных факторов

на скорость автолитических изменений мяса

Скорость автолитических процессов зависит от особенностей животного организма и окружающих условий.

^ Влияние вида, возраста, упитанности, анатомического участка, состояния животного перед убоем.

В говядине полное развитие окоченения наступает через 18-24 час при температуре 0-4 о С. В свинине посмертное окоченение происходит быстрее - через 16-18 час автолиза вследствие замедленного теплоотвода за счет наличия слоя шпига; в мясе кур - через 5 час, индеек - через 8 час.

Различиями в концентрации и активности мышечных ферментов объясняется более быстрое развитие окоченения в мясе молодых животных, чем в старых.

Посмертное окоченение происходит интенсивнее в отрубах, несущих активную прижизненную мышечную нагрузку и имеющих больше мышечных ферментов (скелетные мышцы конечностей и др.).

В мышцах упитанных, отдохнувших животных максимум развития окоченения наступает позже, чем у больных, уставших, по причине более высокого содержания гликогена в мышечной ткани.

Важнейшим внешним фактором, определяющим скорость биохимических процессов, является температура окружающей среды: в мышцах животных при температуре 15-18 о С максимум окоченения наступает через 10-12 час, а при 0-4 о С - через 18-24 час.

Резко тормозится развитие окоченения при введении в парное мясо поваренной соли, ингибирующей АТФазную активность миозина и образование актомиозинового комплекса.

Быстрое замораживание парного мяса также тормозит скорость ферментативных автолитических процессов.

Эти технологические приемы дают возможность устранить или свести к минимуму последствия посмертного окоченения, т.е. стабилизировать свойства парного мяса.

Повышение скорости автолиза мяса можно достигнуть электростимуляцией парных туш, в результате чего ускоряются реакции гликолиза, сокращается длительность выдержки сырья на созревании.

^ 6. Понятие о мясе с нетрадиционным характером автолиза

При производстве мяса приходится сталкиваться с сырьем, в котором характер автолитических процессов (закономерности изменения свойств мяса при автолизе) существенно отличается от нормального развития автолиза (рассмотрено выше). В отдельных регионах количество такого сырья составляет более 50 % от общего количества перерабатываемых животных. Такое мясо называют мясом с нетрадиционным характером автолиза.

На основании имеющихся научных данных в настоящее время считается, что основной причиной появления мяса с отклонениями в свойствах является промышленная технология выращивания животных. Ее основные признаки: гиподинамия, интенсивный откорм, селекция на скороспелость и мясность. В этих условиях формируется повышенная подверженность животных к стрессовым воздействиям, в результате чего нарушаются биохимические про-цессы автолиза.

Мясо с отклонениями в ходе автолиза отличается от нормального по органолептическим (цвет, консистенция) и технологическим свойствам (рН, ВСС и др.), с учетом которых различают группы двух видов:

P - Pale (бледное) D - Dark (темное)

S - Soft (мягкое) F - Firm (твердое)

E - Exudative (водянистое) D - Dry (сухое)

Мясо с признаками DFD имеет через 24 час после убоя величину рН выше 6,3, темную окраску, грубую структуру волокон, обладает высокой ВСС, повышенной липкостью и обычно бывает характерным для молодняка КРС, подвергавшегося различным видам длительного стресса до убоя. Вследствие прижизненного распада гликогена количество образовавшейся после убоя молочной кислоты в мясе таких животных невелико, миофибриллярные белки имеют хорошую растворимость и ВСС.

Высокие значения рН снижают микробиологическую стабильность DFD мяса и ограничивают сроки его хранения в охлажденном виде.

Экссудативное PSE мясо характеризуется светлой окраской, мягкой рыхлой консистенцией, низкой ВСС, кислым привкусом.

Признаки PSE чаще всего имеет свинина, полученная от убоя животных с интенсивным откормом и ограниченной подвижностью при содержании. Появление мяса PSE - качества может быть обусловлено также генетичес-кими последствиями, воздействием кратковременных стрессов перед убоем животных.

После убоя в мышечной ткани происходит интенсивный распад гликогена, посмертное окоченение наступает быстрее. В течение часа величина рН мяса понижается до 5,3-5,5. Температура сырья в это время сохраняется на высоком уровне. В итоге происходит денатурация саркоплазматических белков и их взаимодействие с миофибриллярными белками, что приводит к снижению ВСС мяса. Мясо PSE более устойчиво при хранении, чем DFD, но отличается более высокой усушкой при холодильной обработке.

Существенные различия в свойствах мяса с разным характером автолиза определяют целесообразность его сортировки. Сортировку сырья удобно вести по величине рН, измеряемой через 1-2 часа после убоя.

Применение электростимуляции туш определяет три группы качества: 1) рН 1 5,3-5,5 PSE; 2) рН 1 5,6-6,2 NOR; 3) рН 1 больше 6,2 DFD.

Сортировка сырья по характеру автолиза способствует рациональному использованию мяса при его переработке в мясные продукты.

Анализ крови, как правило, является одним из первых проводимых врачом, когда мы посещаем его кабинет из-за беспокоящих нас болезней. Чаще всего он состоит из таких элементов, как общий анализ, СОЭ , исследование уровня глюкозы , исследование ферментов печени, параметров функции почек, а также, в зависимости от проблем, которые побудили нас к посещению врача - другие анализы.

Состав периферической крови

Кровь состоит из морфотических элементов, в просторечии называемых красными клетками крови и плазмы, то есть жидкости, в которой они плавают. Морфология берет свое название именно от морфотических элементов, которые в данном исследовании подвергаются анализу.

Это исследование крови позволяет предварительно оценить состояние нашего здоровья, а в случае обнаружения аномалий - подсказать причину симптомов и сориентировать врача в принятии дальнейших мер в диагностических или лечебных целях.

В состав крови входят эритроциты, белые клетки и тромбоциты. Транспортеры кислорода, то есть эритроциты (красные кровяные тельца), своему цвету обязаны содержащемуся в них гемоглобину - веществу, которое способно связывать и отдавать кислород, транспортируя его по всему организму.

Вторым важным элементом крови являются лейкоциты (белые кровяные тельца). Они служат защите перед бактериями, вирусами, простейшими и т.д. Состоят из нескольких подгрупп - гранулоцитов , лимфоцитов и моноцитов.

Третьей важной группой являются тромбоциты - специализированные клетки, которые способны в нужный момент соединяться и образовывать сгусток, предотвращающий вытекание крови из поврежденного сосуда.

Ниже приводятся объяснения основных комбинаций, указываемых в традиционном результате исследования крови, наряду с нормами для взрослых, отдельно для женщин и для мужчин.

Венозная кровь (такая, на которой проводят морфологическое исследование) обычно берется из вены, расположенной на локтевом сгибе. У маленьких детей может быть использована кровь из пальца. Когда для исследования нужна артериальная кровь (например, в случае газометрии), её берут из бедренной артерии, а иногда из мочки уха.

Неправильные результаты морфологии

Общий анализ крови выполняется автоматом, который подсчитывает морфотические элементы крови, определяя их параметры, такие как размер или объем. Часто, вместе с автоматическим исследованием, врач поручает выполнение, так называемого, ручного мазка крови . Он заключается в оценке под микроскопом образцы крови для определения количества и вида белых кровяных клеток.

Белые кровяные тельца, иначе лейкоциты (WBC) - рост их числа может быть вызван воспалением, инфекцией, опухолью, но встречается также в состоянии полного здоровья, беременности, после физических нагрузок или когда повышается температура окружающей среды. Слишком маленькое количество лейкоцитов может свидетельствовать о недостатке иммунитета, инфекции, раке.

Красные кровяные тельца, иначе эритроциты (RBC) - очень большое увеличение их числа встречается в ходе редкой болезни - истинной полицитемии, но чаще возникает вследствие хронической гипоксии тканей организма (например, при заболеваниях сердца или легких).

Снижение количества эритроцитов происходит вследствие кровотечения, дефицита железа , дефицита витамина B12 или фолиевой кислоты, разрушения красных кровяных клеток, вызванного инфекционными факторами или врожденными заболеваниями. Снижение количества эритроцитов может свидетельствовать о заболевании почек или раке. Встречается также в период беременности.

Гемоглобин (HGB) - присутствует в крови в красных клетках крови, поэтому, как правило, неправильная его концентрация сопровождает количественные или качественные нарушения эритроцитов. Когда концентрация гемоглобина ниже, чем должно быть, речь идет об анемии , то есть малокровия. Она может быть вызвана потерей крови, распадом эритроцитов, дефицитом железа, фолиевой кислоты, витамина B12 и всеми другими факторами, влияющими на красные кровяные тельца.

Средний объем эритроцитов (MCV) - этот параметр имеет значение в поисках причины анемии. При потере крови или дефиците железа в организме MCV снижается, когда причиной анемии является дефицит витамина В12 или фолиевой кислоты происходит рост MCV выше допустимых.

Тромбоциты - увеличение их количества происходит после физической нагрузки, беременности, а также в ходе хронических воспалительных заболеваний и некоторых видов рака. Слишком низкое количество тромбоцитов может быть вызвано, например, приёмом определенных лекарственных препаратов, дефицитом витаминов, инфекциями и опухолями.

Имейте в виду, что каждый результат анализа в лаборатории, а также морфологии, связан с риском ошибки, вызванной ошибкой сотрудника лаборатории или камеры, выполняющей измерения. В случаях, когда обнаруживается большое отклонение от нормы, исследование часто повторяется, чтобы устранить риск ошибки.

Если речь идет об интерпретации полученных результатов, лучше всего проконсультироваться с врачом. Не всегда результат выходящий за пределы нормы свидетельствует о болезни, как и не всегда правильный результат является доказательством полного здоровья.

Другие исследования крови

Кроме морфологию периферической крови каждый из нас хотя бы раз в жизни имел или будет выполнять другие исследования. Многие из них, осуществляемые регулярно, позволяют обнаружить грозные заболевания, такие как сахарный диабет , ишемическая болезнь сердца , хроническая болезнь почек.

В крови могут исследовать:

  • уровень глюкозы - позволяет обнаружить сахарный диабет;
  • холестерин и триглицериды - говорят, в частности, о степени угрозы развития атеросклероза;
  • концентрация креатинина в крови - осуществляется, прежде всего, с целью оценки функции почек;
  • ферменты печени ;
  • ТТГ и гормоны щитовидной железы .

Очень часто исследуются показатели воспаления, особенно скорость оседания эритроцитов. У женщин она не должна превышать 12, а у мужчин - 8 мм/час. Повышенные значения СОЭ могут свидетельствовать об инфекции, раке, обострении некоторых хронических заболеваний.

Газометрическое исследование позволяет оценить уровень углекислого газа и кислорода в крови. Кроме того, могут быть исследованы электролиты (такие как натрий, калий, магний, кальций), гормоны, антитела, маркеры опухоли (белки, концентрация которых в крови повышается при онкологических заболеваниях). Эти анализы, обычно, выполняются только по направлению врача.

Большинство исследований крови должно выполняться на пустой желудок, минимум через 8 часов после последнего приема пищи.