Инволюционная теория канцерогенеза. Мутационная теория канцерогенеза

Теории канцерогенеза

Изучение механизмов опухолевой трансформации клетки имеет давнюю историю. До настоящего времени было предложено множество концепций, пытающихся объяснить канцерогенез и механизмы превращения нормальной клетки в раковую. Большая часть этих теорий имеют лишь исторический интерес или входят как составная часть в принятую в настоящее время большинством патологов универсальную теорию канцерогенеза - теорию онкогенов. Онкогенная теория канцерогенеза позволила приблизиться к пониманию того, почему различные этиологические факторы вызывают одно по своей сути заболевание. Она явилась первой единой теорией возникновения опухолей, включившей в себя достижения в области химического, радиационного и вирусного канцерогенеза.

Основные положения теории онкогенов были сформулированы в начале 1970-х гг. Р. Хюбнером и Г. Тодаро (R. Huebner и G.Todaro), которые высказали предположение, что в генетическом аппарате каждой нормальной клетки присутствуют гены, при несвоевременной активации или нарушении функции которых нормальная клетка может превратиться в раковую.

В течение десяти последних лет онкогенная теория канцерогенеза и рака обрела современный вид и может быть сведена к нескольким принципиальным постулатам:

  • онкогены - гены, которые активируются в опухолях, вызывая усиление пролиферации и размножения и подавление гибели клеток; онкогены проявляют трансформирующие свойства в экспериментах по трансфекции;
  • немутированные онкогены действуют на ключевых этапах реализации процессов пролиферации, дифференцировки и программированной гибели клеток, находясь под контролем сигнальных систем организма;
  • генетические повреждения (мутации) в онкогенах приводят к высвобождению клетки от внешних регулирующих влияний, что лежит в основе ее неконтролируемого деления;
  • мутация в одном онкогене практически всегда компенсируется, поэтому процесс злокачественной трансформации требует сочетанных нарушений в нескольких онкогенах.

Канцерогенез имеет и другую сторону проблемы, которая касается механизмов сдерживания злокачественной трансформации и связана с функцией так называемых антионкогенов (супрессорных генов), оказывающих в норме инактивирующее действие на пролиферацию и благоприятствующих индукции апоптоза. Антионкогены способны вызывать реверсию злокачественного фенотипа в опытах по трансфекции. Практически каждая опухоль содержит мутации в антионкогенах как в форме делеций, так и микромутаций, причем инактивирующие повреждения супрессорных генов встречаются гораздо чаще, чем активирующие мутации в онкогенах.

Канцерогенез имеет молекулярно-генетических изменения, которые составляют следующие три основных компонента: активирующие мутации в онкогенах, инактивирующие мутации в антионкогенах, а также генетическая нестабильность.

В общем плане канцерогенез рассматривают на современном уровне как следствие нарушения нормального клеточного гомеостаза, выражающегося в потере контроля над размножением и в усилении механизмов защиты клеток от действия сигналов апоптоза, то есть запрограммированной смерти клетки. В результате активации онкогенов и выключения функции генов-супрессоров раковая клетка приобретает необычные свойства, проявляющиеся в иммортализации (бессмертности) и способности преодолевать так называемое репликативное старение. Мутационные нарушения в раковой клетке касаются групп генов, ответственных за контроль над пролиферацией, апоптозом, ангиогенезом, адгезией, трансмембранными сигналами, репарацией ДНК и стабильностью генома.

Какие стадии имеет канцерогенез?

Канцерогенез, то есть развитие рака проходит в несколько стадий.

Канцерогенез первой стадии - стадия трансформации (инициации) - процесс превращения нормальной клетки в опухолевую (раковую). Трансформация является результатом взаимодействия нормальной клетки с трансформирующим агентом (канцерогеном). В течение I стадии канцерогенеза происходят необратимые нарушения генотипа нормальной клетки, вследствие чего она переходит в предрасположенное к трансформации состояние (латентная клетка). В течение стадии инициации канцероген или его активный метаболит взаимодействует с нуклеиновыми кислотами (ДНК и РНК) и белками. Повреждения в клетке могут иметь генетический или эпигенетический характер. Под генетическими изменениями понимают любые модификации в последовательностях ДНК или числе хромосом. К ним относят повреждения или перестройку первичной структуры ДНК (например, генные мутации или хромосомные аберрации), или изменения в количестве копий генов либо целостности хромосом.

Канцерогенез второй стадии - стадия активации, или промоции, суть которой заключается в размножении трансформированной клетки, образовании клона раковых клеток и опухоли. Эта фаза канцерогенеза в отличие от стадии инициации обратима, по крайней мере, на раннем этапе неопластического процесса. В течение промоции инициированная клетка приобретает фенотипические свойства трансформированной клетки в результате измененной генной экспрессии (эпигенетический механизм). Появление в организме раковой клетки не приводит с неизбежностью к развитию опухолевой болезни и гибели организма. Для индукции опухоли необходимо длительное и относительно непрерывное воздействие промотора.

Промоторы оказывают многообразное влияние на клетки. Они влияют на состояние клеточных мембран, имеющих специфические рецепторы к промоторам, в частности активируют мембранную протеинкиназу, влияют на клеточную дифференцировку и блокируют межклеточные связи.

Растущая опухоль не является застывшим, стационарным образованием с неизменными свойствами. В процессе роста ее свойства постоянно изменяются: какие-то признаки теряются, какие-то возникают. Эта эволюция свойств опухоли получила название «опухолевая прогрессия». Прогрессия - это третья стадия опухолевого роста. Наконец, четвертая стадия - исход опухолевого процесса.

Канцерогенез не только вызывает стойкие изменения генотипа клетки, но и оказывает многообразное влияние на тканевом, органном и организменном уровнях, создавая в ряде случаев условия, способствующие выживанию трансформированной клетки, а также последующему росту и прогрессии новообразований. По мнению некоторых ученых, эти условия возникают в результате глубоких нарушений функций нейроэндокринной и иммунной систем. Некоторые из таких сдвигов могут варьировать в зависимости от особенностей канцерогенных агентов, что может быть обусловлено, в частности, различиями в их фармакологических свойствах. Наиболее общими реакциями на канцерогенез, существенными для возникновения и развития опухоли, являются изменения в уровне и соотношении биогенных аминов в центральной нервной системе, в частности в гипоталамусе, сказывающиеся, среди прочего, на гормонально-опосредованном усилении клеточной пролиферации, а также нарушения углеводного и жирового обмена, изменения функции различных звеньев иммунной системы.

Онкология - наука, которая занимается изучением раковых заболеваний (диагностикой, происхождением, лечением и профилактикой рака).

Канцерогенез (в переводе с лат. cancerogenesis; cancero - рак, и с греч. genesis, зарождение, развитие) - сложный патофизиологический процесс зарождения и развития опухоли.

Теории возникновения рака

На данный момент в науке выделяют несколько теорий канцерогенеза, но основной, общепринятой является мутационная теория. В большинстве случаев рак (злокачественные новообразования) развиваются из одной опухолевой клетки.

Мутационная теория происхождения рака

Согласно этой теории рак в организме человека возникает вследствие накопления мутаций в специфических участках клеточной ДНК, которые приводят к образованию дефектных белков.

Основоположник теории - немецкий биолог Теодор Бовери. Ещё в 1914 году он высказал предположение о том, что нарушения в хромосомах могут привести к возникновению рака. Также в поддержку этой теории выступали следующие учёные: Герман Мюллер, Альфред Кнудсон, Роберт Уэйнберг, Берт Фогельштейн, Эрик Фэрон, котрые в разное время на протяжение 1914 – 2003 гг. находили подтверждения, доказательства того факта, что рак является следствием генетических мутаций.

Теория случайных мутаций

Генетики утверждают,что в любой клетке за время её жизни случайная мутация возникает в среднем всего в одном гене. По предположению Лоренса Леба иногда под действием канцерогенов, оксидантов, или же в результате нарушения системы репликации и репарации ДНК частота мутаций резко возрастает. Вывод – рак возникает вследствие огромного числа мутаций - от 10 000 до 100 000 на клетку. Но Лоренс Леб признаёт, что подтвердить или опровергнуть это предположение очень трудно.

Таким образом, канцерогенез – как следствие возникновения мутаций, обеспечивающих клетке преимущества при делении. Хромосомные перестройки в рамках этой теории рассматриваются лишь как случайный побочный продукт канцерогенеза.

Теория ранней хромосомной нестабильности

Основоположники - Кристоф Лингаур и Берт Фогельштейн. В 1997 г. они обнаружили, что в злокачественной опухоли прямой кишки очень много клеток с изменённым числом хромосом и выдвинули идею, что ранняя хромосомная нестабильность приводит к появлению мутаций в онкогенах и генах-онкосупрессорах.

Основная идея теории - нестабильность генома. Этот генетический фактор вместе с давлением естественного отбора может привести к появлению доброкачественной опухоли, которая иногда трансформируется в злокачественную опухоль, дающую метастазы.

Теория анеуплоидии

Автор - Питер Дюсберг (учёный из Калифорнийского университета в Беркли) создал теорию, согласно которой рак является следствием исключительно анеуплоидии, а мутации в специфических генах не играют абсолютно никакой роли в канцерогенезе.

Анеуплоидия - изменения, вследствие которых клетки содержат число хромосом, некратное основному набору хромосом. В последнее время под анеуплоидией понимают также укорочение и удлинение хромосом, перемещение их крупных участков (транслокации).

Большинство анеуплоидных клеток сразу же погибают, но у немногих выживших доза тысяч генов оказывается не такой, как у нормальных клеток. Слаженная команда ферментов, обеспечивающих синтез ДНК и её целостность, распадается, в двойной спирали появляются разрывы, ещё больше дестабилизирующие геном. Чем выше степень анеуплоидии, тем нестабильнее клетка и тем больше вероятность того, что появится клетка, способная расти где угодно.

Гипотеза изначальной анеуплоидии в этой теории полагает, что зарождение и рост опухоли в большей степени связаны с ошибками в распределении хромосом, чем с возникновением в них мутаций.

Теория эмбриональных клеток

В разные годы разные учёные выдвигали гипотезы насчёт развития рака из эмбриональных клеток.

В 1875 году Конгейм (J.Cohnheim) высказал гипотезу о том, что раковые опухоли развиваются из эмбриональных клеток, оказавшихся ненужными в процессе эмбрионального развития.

В 1911 году Рипперт (V.Rippert) предположил, что измененная окружающая среда позволяет эмбриональным клеткам ускользать от контроля со стороны организма над их размножением.

В 1921 году Роттер (W.Rotter) высказал предположение о том, что примитивные зародышевые клетки «поселяются» в других органах в процессе развития организма.

Тканевая теория онкогенеза

Причиной появления раковых клеток по это теории является нарушение тканевой системы контроля пролиферации клоногенных клеток, обладающих активизированными онкогенами.

Основным фактом, который подтверждает механизм, основанный на нарушении тканевого гомеостаза, является способность опухолевых клеток нормализоваться при дифференцировке. Лабораторные исследования на мышах показали, что даже клетки с хромосомными нарушениями при дифференцировке нормализуются.

В своих работах Ю.М.Васильев исследует обратимость трансформации на молекулярно-генетическом уровне. Делая заключение, Ю.М.Васильев (1986) пишет: «Таким образом, между нормальным и трансформированным фенотипом клетки возможны обратимые переходы, вызываемые внешними факторами. Достижения последних лет привели к появлению принципиально новых взглядов на механизм автономии опухолевых клеток. Теперь известно, что такая независимость возникает не как следствие необратимой утраты клеткой способности реагировать на воздействие внешней среды, но как результат чрезмерной стимуляции клетки эндогенными онкобелками, имитирующими один из нормальных типов клеточной реакции, а именно реакции мембраны на молекулы - лиганды, не связанной с субстратом».

При повышенном режиме пролиферации нарушение структуры тканевого гомеостаза определяет сдвиг в сторону эмбрионализации, что меняет соотношение между стимуляторами и ингибиторами митоза, в результате возникает «сверхстимуляция». Таким образом в тканевой модели связываются канцерогенный профиль, режим пролиферации, степень омоложения, искажение структуры и функции гомеостаза, а также неконтролируемый рост клоногенных клеток. В конечном итоге это может привести к злокачественным новообразованиям – раковым клеткам.

Статья подготовлена по данным из Википедии.

ВНИМАНИЕ! ВАЖНО! Информация предоставляется исключительно для ознакомления и не должна использоваться как руководство к самолечению. Самолечение может быть опасным для Вашего здоровья! Пожалуйста, перед применением, проконсультируйтесь с лечащим врачом! Необходимость назначения, способы и дозы применения средства (или метода) определяются исключительно лечащим врачом!

Одним из основных вопросов канцерогенеза является вопрос о том, подвергаются ли онкотрансформации одиночные клетки или первоначальный канцерогенный фактор(ы) воздействует(ют) на большое количество сходных клеток?

Моноклональное происхождение новообразований из клона (потомства) одной перерожденной клетки было показано на примере опухолей, происходящих из B-лимфоцитов (B-клеточные лимфомы и плазмоклеточные миеломы), клетки которых синтезируют определенные иммуноглобулины, а также на некоторых других типах опухолей. При этом по мере прогрессирования опухоли из начального клона опухолевых клеток могут развиваться субклоны в результате дополнительных продолжающихся генетических изменений, так называемые "многократные толчки".

Согласно теории "опухолевого поля", сначала поле образуется потенциально неопластических клеток, а затем, в результате размножения одной или большего количества таких клеток может развиться опухоль. При этом от отдельных клональных предшественников может возникнуть несколько обособленных новообразований. Эта теория объясняет происхождение некоторых новообразований в коже, эпителии мочевыводящих путей, печени, молочной железе и кишечнике. Признание факта существования опухолевого поля имеет практическое значение, так как наличие одного новообразования в любом из этих органов должно насторожить клинициста в отношении возможности наличия других подобных новообразований. Например, развитие рака в одной из молочных желез повышает риск возникновения рака в другой приблизительно в 10 раз.

Для объяснения механизмов возникновения как опухолевого моноклона, так и "опухолевого поля" в настоящее время предложен ряд взаимосвязанных концепций:

Мутационная теория рака;

Эпигенетическая теория рака;

Хромосомная теория рака;

Теория раковых стволовых клеток;

Вирусная теория рака;

Иммунная теория рака;

Теория химического канцерогенеза;

Эволюционная теория рака.

Мутационная теория рака

Согласно мутационной теории, возникновение злокачественных опухолей связано с изменением (мутацией) генома клетки, и в большинстве случаев злокачественное новообразование имеет моноклональное происхождение, т.е. развивается из одной мутировавшей половой или чаще соматической клетки. Доказательством мутационной природы рака является обнаружение мутаций в протоонкогенах и генах-супрессоров опухолей, вызывающих злокачественную трансформацию клеток. Основные классы генов и их белковых продуктов, которые могут выступить в роли онкогенов или генов-супрессоров опухолей представлены в таблице 2.

Что это такое? Молекулярно-биологическими методами было установлено, что ДНК нормальных эукариотических клеток содержит последовательности, гомологичные вирусным онкогенам, которые получили название протоонкогенов. Протоонкогены являются нормальными клеточными генами. Более того, они участвуют в регуляции важнейших клеточных процессов - клеточного деления, клеточной смерти, репарации ДНК, и их повреждение в результате мутации приводит к неконтролируемому делению клеток и их повышенной устойчивости к апоптозу. Они обладают высокой эволюционной консервативностью, что также подтверждает их важную роль в жизнедеятельности клеток.

Таблица 2. Основные классы онкогенов и генов-супрессоров опухолей

Природа гена / белка

Ген / белок (примеры)

Локализация опухоли (примеры)

Факторы роста

Глиомы, саркомы

Многие опухоли

Рецепторы

Глиобластомы, рак груди

Рак груди, яичников, слюнных желез

Передача сигнала

Рак легких, яичников, кишечника и другие лейкемии

Факторы активации

Лейкемии, рак груди, желудка, легких

Факторы транскрипции

Нейробластомы, глиобластомы

Факторы блока

Рак кишечника

Передатчики и блокаторы передачи

Рак поджелудочной железы

Лейкемии, рак периферической нервной системы

Контроль клеточного цикла

Рак груди

Разные опухоли

Меланома

Ретинобластома, остеосаркома (наследств.)

Многие опухоли (1/2 всех) (наследств.)

Разные опухоли

Бессмертие

Теломераза

Разные опухоли

Другие гены-супрессоры опухолей

Рак кишечника (наследств.)

Рак груди (наследств.)

Репарация ДНК

Гены репарации

Рак кишечника, ксеродерма (наследств.)

Рак груди (наследств.)

Можно выделить несколько основных типов мутаций, приводящих к превращению протоонкогена в онкоген.

· Мутация протоонкогена с изменением структуры специфического продукта экспрессии гена приводит к образованию изменённого белка.

Рассмотрим, например, мутации в гене-супрессоре опухолей TP53, кодирующем белок р53. Молекулы белка р53 могут находиться в различных конформационных состояниях (рис.3), выполняя разные физиологические функции.

Рисунок 3. Схематическое изображение различных конформационных состояний р53 (эпитопов), распознаваемых специфическими антителами. Онкогенные мутации вызывают необратимый переход молекулы в денатурированное состояние, при котором открывается ранее недоступный эпитоп и, наоборот, исчезают некоторые ранее доступные эпитопы (по: Б.П. Копнин Опухолевые супрессоры и мутаторные гены (avpivnik.ru/works/new/newinf05_doc).

В обычных условиях белок р53 находится в латентной форме со слабой транскрипционной активностью. При этом он связывает белки, участвующие в репарации ДНК, обладает активностью 3"-5"-экзонуклеазы и стимулирует рекомбинацию и репарацию ДНК. При различных стрессах и внутриклеточных повреждениях могут происходить пост-трансляционные модификации р53, в частности, фосфорилирование и ацетилирование определенных аминокислот, что определяет его переход в так называемую стрессовую конформацию. Такой белок значительно более стабилен, резко увеличивается его количество в клетке, и как фактор транскрипции, он эффективно активирует и/или подавляет экспрессию специфических генов-мишеней, следствием чего являются остановка клеточного цикла и апоптоз. Кроме того, активация белка р53 ведет к изменению экспрессии генов некоторых секретируемых факторов, в результате чего может изменяться размножение и миграция не только поврежденной, но и окружающих клеток. При этом, в стрессовой конформации, способность р53 стимулировать рекомбинацию и/или репарацию ДНК в значительной степени снижается. Основные функции активного белка р53 представлены на рисунке 4.

В белке р53 центральный домен (аминокислоты 120-290) непосредственно узнает и связывает специфические последовательности ДНК регулируемых генов, так называемые р53-реактивные элементы, состоящие из расположенных друг за другом последовательностей с общей структурой типа PuPuC(A/T)(A/T)GPyPyPy (Pu - пурин, Py - пиримидин). Именно в этом ДНК-связывающем домене локализуется большинство точечных мутаций, обнаруживаемых в различных опухолях человека.

Характерные для опухолевых клеток бессмысленные мутации приводят к резкому изменению конформации молекулы белка р53, в результате чего происходит потеря или ослабление способности связывать и активировать гены с р53-реактивными элементами, репрессировать другие специфические гены-мишени, ингибировать репликацию ДНК и стимулировать репарацию ДНК. Причем, так как р53 образует тетрамерные комплексы, мутации в одном аллеле гена ТР53 вызывают инактивацию и продукта второго, неповрежденного аллеля.

Мутации в гене TР53, приводящие к инактивации белка р53, являются наиболее универсальными молекулярными изменениями в различных новообразованиях человека.

Более чем в половине всех опухолей человека (50-60% новообразований более чем 50 различных типов) обнаруживаются мутации гена TР53. В отличие от других опухолевых супрессоров, для которых характерны мутации, прекращающие синтез белка (делеции, образование стоп-кодонов, сдвиг рамки считывания, нарушения сплайсинга мРНК), подавляющее большинство (более 90%) мутаций TР53 представляет собой бессмысленные мутации, ведущие к замене одной из аминокислот в белковой молекуле на другую.

Рисунок 4. Охранные функции р53. Факторы, вызывающие транскрипционную активацию р53 и биологические эффекты, вызываемые изменениями их экспрессии.

· Другим типом мутаций, приводящих к онкотрансформации клеток, являются точечные мутации регуляторной последовательности протоонкогенов, вызывающие повышение уровня их экспрессии.

Ярким примером таких мутаций является активация протоокогенов семейств ras и raf. Эти гены участвуют в управлении клеточным циклом и являются центральными регуляторами пролиферации и выживания клеток. Точечные мутации этих генов в онкотрансформированных клетках приводят к постоянной стимуляции пролиферации клеток, что способствует росту и инвазии опухоли и развитию метастазов. Мутации одного из генов семейства ras: H-ras, K-ras или N-ras обнаруживаются примерно в 15% случаев злокачественных новообразований у человека. У 30% клеток аденокарцином лёгкого и у 80% клеток опухолей поджелудочной железы обнаруживается мутация в онкогене ras, что ассоциируется с плохим прогнозом протекания заболевания. Мутации генов ras и raf , например, наблюдаются в более 90% клинических случаев меланомы человека. Существуют 3 основные формы мутаций в гене raf: A-raf, B-raf, C-raf. Формирование B-raf мутации играет ключевую роль в патогенезе меланомы. Мутантный белок BRAF постоянно активирует митоген-активируемые протеинкиназы ERK, которые регулируют клеточный цикл. Это стимулирует пролиферацию клеток. Подобные мутации наблюдаются приблизительно в 60-70% первичных меланом и в 40-70% случаев метастатических меланом. При этом B-raf мутации вовлечены в инициирование, но не в прогрессию меланом. Мутация V600E, при которой глутамат в положении 600 заменяет валин, найдена в 80-90% всех B-raf мутаций в меланоме; тогда как мутации в A-raf и C-raf при меланоме наблюдаются редко. Мутации в генах N-ras и B-raf также регулируют экспрессию субъединиц интегринов, что приводит к повышению инвазии клеток меланомы и васкуляризации опухоли, т.е. развитие в ней капиллярной сети.

· Перенос гена в активно транскрибируемую область хромосомы (хромосомные аберрации).

Потеря участка хромосомы, содержащего гены-супрессоры, ведет к развитию таких заболеваний, как ретинобластома, опухоль Вильмса и др.

Функции генов-супрессоров противоположны функциям протоонкогенов. Гены-супрессоры тормозят процессы клеточного деления и выхода из дифференцировки, а также регулируют апоптоз. В отличие от онкогенов, мутантные аллели генов-супрессоров рецессивны. Отсутствие одного из них, при условии, что второй нормален, не приводит к снятию ингибирования образования опухоли, и в ряде случаев инактивация генов-супрессоров ведет к развитию онкологических заболеваний.

Таким образом, система протоонкогенов и генов-супрессоров формирует сложный механизм контроля темпов клеточного деления, роста, дифференцировки и программируемой гибели.

В настоящее время получены многочисленные подтверждения мутационной (генетической) теории рака. Однако, известно, что частота спонтанных мутаций отдельных генов человека в расчете на один ген крайне низка и составляет около 10-5, т.е. одна мутация на 100 тысяч генов. Суммарно частота доминантных мутаций в популяциях человека равна 1%, рецессивных - 0,25% и мутаций хромосом - 0,34%. Доля людей с врожденными дефектами, которые могут проявляться в разных возрастах, составляет около 11%. При этом для возникновения и дальнейшего развития опухоли недостаточно одной мутации, необходимо несколько разных мутаций.

В большинстве случаев для полного превращения нормальной клетки в опухолевую в ней должно накопиться порядка 5-10 мутаций. Последние исследования показывают, что прогрессия опухоли определяется не только генетическими, но и эпигенетическими изменениями, которые возникают значительно чаще, чем истинные мутации.

Оказалось, что именно ряд эпигенетических изменений во многом способствует дестабилизации генома и большей вероятности возникновения мутаций в генах.

Кафедра онкологии и лучевой терапии

Заведующий кафедрой: д.м.н , профессор Вельшер Леонид Зиновьевич

Преподаватель: к.м.н , доцент Генс Гелена Петровна

Реферат на тему:

Канцерогенез.

Выполнила: студентка 5 курса,

лечебного факультета (дн.отд.),

Меньщикова Е.В.

Москва 2013

Согласно теории Вирхова, патология клетки лежит в основе любой болезни. Канцерогенез - последовательный, многоступенчатый процесс накопления клеткой изменений ключевых функций и характеристик, приводящих к ее озлокачествлению. Клеточные изменения включают нарушения регуляции процессов пролиферации, дифференцировки, апоптоза и морфогенетических реакций. В результате клетка приобретает новые качества: иммортализацию ("бессмертие", т.е. способность к неограниченному делению), отсутствие контактного ингибирования и способность к инвазивному росту. Кроме того, опухолевые клетки получают способность избегать действия факторов специфического и неспецифического противоопухолевого иммунитета организма хозяина. В настоящее время ведущая роль в индукции и промоции канцерогенеза принадлежит генетическим нарушениям. Около 1% генов человека ассоциированы с канцерогенезом.

4 стадии канцерогенеза:

1. Стадия инициации (изменение клеточных онкогенов, выключение генов-супрессоров)

· Фаза метаболической активации(превращение проканцерогенов в канцерогены)

· Фаза взаимодействия с ДНК (прямой и непрямой генотоксический эффект)

· Фаза фиксации индуцированных изменений (повреждения ДНК должны проявиться в потомстве клеток-мишеней, способных давать пролиферативный пул.)

2. Стадия промоции

I(ранняя) фаза- перестройка фенотипа, происходящая вследствие эпигенетических изменений (т.е. генной экспрессии), индуцированных опухолевым промотором.

Изменение генной экспрессии, что дает возможность клетке функционировать в условиях пониженного синтеза генных продуктов.

II (поздняя) фаза - представляет собой качественно-количественные изменения, охватывающие период функционирования клетки в условиях переключения генной активности, завершающийся образованием неопластически трансформированных клеток (неопластическая трансформация - проявление признаков, характеризующих возможность клеток к неограниченной пролиферации и дальнейшей профессии, т.е. накоплению злокачественного потенциала



3. Стадия прогрессии: разработана L.Foulds в 1969 г. Происходит постоянный стадийный прогрессирующий рост опухоли с прохождением ею ряда качественно отличных стадий в сторону повышения ее злокачественности. В ходе прогрессии опухоли может происходить ее клональная эволюция, появляются новые клоны опухолевых клеток, возникающие в результате вторичных мутаций. Опухоль постоянно изменяется: происходит прогрессия, как правило, в сторону повышения ее злокачественности, которая проявляеются инвазивным ростом и развитием метастазов.
Стадияинвазивной опухоли характеризуется возникновением инфильтрирующего роста. В опухоли появляются развитая сосудистая сеть и строма, выраженная в различной степени. Границы с прилежащей неопухолевой тканью отсутствуют из-за прорастания в нее опухолевых клеток. Инвазия опухоли протекает в три фазы и обеспечивается определенными генетическими перестройками.
Первая фаза инвазии опухоли характеризуется ослаблением контактов между клетками, о чем свидетельствуют уменьшение количества межклеточных контактов, снижение концентрации некоторых адгезивных молекул из семейства CD44 и других и, наоборот, усиление экспрессии прочих, обеспечивающих мобильность опухолевых клеток и их контакт с экстрацеллюлярным матриксом. На клеточной поверхности снижается концентрация ионов кальция, что приводит к повышению отрицательного заряда опухолевых клеток. Усиливается экспрессия интегриновых рецепторов, обеспечивающих прикрепление клетки к компонентам экстрацеллюлярного матрикса - ламинину, фибронектину, коллагенам.
Во второй фазе опухолевая клетка секретирует протеолитические ферменты и их активаторы, которые обеспечивают деградацию экстрацеллюлярного матрикса, освобождая тем самым ей путь для инвазии. В то же время продукты деградации фибронектина и ламинина являются хемоаттрактантами для опухолевых клеток, которые мигрируют в зону деградации в ходе третьей фазы инвазии, а затем процесс повторяется снова.

4. Стадия метастазирования - заключительная стадия морфогенеза опухоли, сопровождающаяся определенными гено- и фенотипическими перестройками опухоли. Процесс метастазирования связан с распространением опухолевых клеток из первичной опухоли в другие органы по лимфатическим и кровеносным сосудам, периневрально, имплантационно, что стало основой выделения видов метастазирования. Процесс метастазирования объясняется теорией метастатического каскада, в соответствии с которой опухолевая клетка претерпевает цепь (каскад) перестроек, обеспечивающих распространение в отдаленные органы.
В процессе метастазирования опухолевая клетка должна обладать качествами:

· проникать в прилежащие ткани и просветы сосудов (мелких вен и лимфатических сосудов);

· отделяться от опухолевого пласта в ток крови (лимфы) в виде отдельных клеток или небольших их групп;

· сохранять жизнеспособность после контакта в токе крови (лимфы) со специфическими и неспецифическими факторами иммунной защиты;

· мигрировать в венулы (лимфатические сосуды) и прикрепляться к их эндотелию в определенных органах;

· инвазировать микрососуды и расти на новом месте в новом окружении.

Метастатический каскад условно может быть разделен на четыре этапа:

1. формирование метастатического опухолевого субклона;

2. инвазия в просвет сосуда;

3. циркуляция опухолевого эмбола в кровотоке (лимфотоке);

4. оседание на новом месте с формированием вторичной опухоли.

В настоящее время существует несколько концепций онкогенеза, каждая из которых преимущественно влияет на 1 и(или) 2 этап канцерогенеза

Мутационная теория канцерогенеза
Нормальная клетка превращается в опухолевую в результатеструктурных изменений в генетическом материале, т.е. мутаций. Стало аксиомой представление о многоэтапности процесса канцерогенеза, решающей предпосылкой которого является нерегулируемая экспрессия трансформирующего гена – онкогена, предсуществующего в геноме.

Превращение протоонкогена в активно действующий онкоген обеспечивается следующими механизмами.
1. Присоединение к протоонокгену промотора – участка ДНК, с которым связывается РНК-полимераза, инициирующая транскрипцию гена, в том числе и онкогена, располагающегося непосредственно за ним. Такого рода участки (промоторы) содержатся в больших терминальных повторах (LTR) ДНК-копий РНК-содержащих вирусов. Роль промотора могут выполнять и транспозирующие элементы генома – мобильные генетические элементы, способные перемещаться по геному и встраиваться в различные его участки

2. Вставка в геном клетки энхансера (enchancer – усилитель) – участка ДНК, способного активизировать работу структурного гена, находящегося не только в непосредственной близости от него, но и на расстоянии многих тысяч пар нуклеотидов или даже встроенного в хромосому после него. Свойствами усилителя обладают подвижные гены, LTR ДНК-копий.

3. Хромосомные абберации с явлениями транслокации, роль которых в механизмах опухолевой трансформации клетки можно проиллюстрировать следующим примером.
При лимфоме Беркитта конец q-плеча хромосомы 8, отделившись от нее, переходит к хромосоме 14: гомологичный фрагмент последней перемещается к хромосоме 8; а неактивный гентуc (протоонкоген), находившийся в том ее сегменте, который попадает на хромосому 14, встраивается вслед за активными генами, кодирующими тяжелые цепи молекул иммуноглобулинов, и активизируется. Явления реципрокной транслокации между 9-й и 22-й хромосомами имеют место в 95 % случаев миелоцитарного лейкоза. Хромосома 22 с укороченным в результате такой транслокации одним плечом получила название Филадельфийской.

4.Точечные мутации протоонкогена, к примеру, C-H-raS, согласно имеющимся сведениям, отличается от нормального гена (C-H-raS) всего одной аминокислотой, но, тем не менее обусловливает снижение гуанозинтрифосфатазной активности в клетке, что может вызвать рак мочевого пузыря у человека.

5. Амплификация (умножение) протоонкогенов, обладающих в норме
небольшой следовой активностью, обусловливает увеличение их общей активности до уровня, достаточного для инициации опухолевой трансформации. Известно, что в икринке шпорцевой лягушки около 5 млн копий генатуc. После оплодотворения и дальнейшего деления яйцеклетки число их прогрессирующе уменьшается. В каждой клетке будущего головастика в эмбриональный период развития содержится не более 20-50 копий myc-гена, обеспечивающих быстрое деление клеток и рост эмбриона. В клетках же взрослой лягушки выявляются лишь единичные гены туc, в то время как в раковых клетках той же лягушки число их вновь достигает 20-50.
6. Трансдукция неактивных клеточных генов (протоонкогенов) в геном ретровируса и последующее их возвращение в клетку: считается, что онкоген опухолеродного вируса клеточного происхождения; при инфицировании животных или человека таким вирусом «похищенный» им ген попадает в иной участок генома, что и обеспечивает активизацию некогда «молчавшего» гена.

Онкобелки могут:

· имитировать действие факторов роста пути (синдром «самозатягивающейся петли»)

· могут модифицировать рецепторы факторов роста

· действовать на ключевые внутриклеточные процессы

Тканевая теория канцерогенеза

Клетка становится автономной, т.к. нарушается тканевая система контроля пролиферации клоногенных клеток, обладающих активизированными онкогенами. Основным фактом, подтверждающим механизм, основанный на нарушении тканевого гомеостаза, является способность опухолевых клеток нормализоваться при дифференцировке.Изучение перевивной ороговевающей карциномы крысы методом автографического анализа показало (Pierce, Wallace, 1971), что раковые клетки при делении могут давать нормальное потомство, то есть злокачественность генетически не закреплена и не наследуется дочерними клетками, как это предполагалось мутационной гипотезой и молекулярно-генетической теорией. Хорошо известны эксперименты по пересадке ядер опухолевых клеток в предварительно энуклеированные зародышевые клетки: в этом случае развивается здоровый мозаичный организм. Таким образом, вопреки представлению о якобы сохранении трансформированных онкогенов в нормализованных опухолевых клетках при дифференцировке, есть основание поставить под сомнение связь генетических нарушений с механизмом трансформации в качестве непосредственной причины.

Вирусная теория канцерогенеза

Чтобы стать злокачественной клетка должна приобрести по крайней мере 6 свойств как результат мутации генов, ответственных за деление клетки, апоптоз, репарацию ДНК, внутриклеточные контакты и т.д. В частности, на пути к приобретению злокачественности клетка, как правило:

1) самодостаточна в плане сигналов пролиферации (что может быть достигнуто активацией некоторых онкогенов, например, Н-Ras);

2) нечувствительна к сигналам, подавляющим ее рост (что происходит при инактивации гена опухолевого супрессора Rb);

3) способна ослабить или избежать апоптоза (что происходит в результате активации генов, кодирующих факторы роста);

4) формирование опухоли сопровождается усиленным ангиогенезом (что может быть обеспечено активацией гена VEGF, кодирующего ростовые факторы эндотелия сосудов;

5) генетически нестабильна;

6) не подвергается клеточной дифференцировке;

7) не подвергается старению;

8) характеризуется изменением морфологии и локомоции, что сопровождается приобретением свойств к инвазии и метастазированию.

Поскольку мутации генов являются событиями случайными и достаточно редкими, их накопление для инициации клеточной трансформации может длиться десятилетиями. Трансформация клетки может произойти гораздо быстрее в случае высокой мутагенной нагрузки и/или дефектности (слабости) механизмов защиты генома (генов p53, Rb, ДНК репарации и некоторых других). В случае же инфицирования клетки онкогенными вирусами, кодируемые вирусным геномом белки, обладающие трансформирующим потенциалом, нарушают номальные клеточные сигнальные связи, обеспечивая условия для активной клеточной пролиферации.

Хорошо известно, что возникновение примерно 15-20% новообразований человека имеют вирусное происхождение. Среди наиболее часто встречающихся таких вирусом индуцированных опухолей можно назвать рак печени, рак шейки матки, рак носоглотки, лимфому Беркитта, лимфому Ходжкина и многие другие. В настоящее время экспертами Международного Агентства по Изучению Рака (МАИР) следующие вирусы рассматриваются в качестве онкогенных для человека:

Вирусы гепатита В и С (Hepatitis B virus и Hepatitis C virus, HBV/ HCV) , вызывающие рак печени; В результате генетических перестроек происходит делеция гена X и некоторой части генов PreS2 , при этом клетки печени становятся HBsAg-негативными и окончательно уходят из-под иммунологического контроля. Далее происходит селекция клеток, в которых интегрирована ДНК HBV и которые содержат
3 основных транс-активатора, а именно: HBx, LHBs и/или MHBs(t). Транс-активаторы активируют клеточные гены, ответственные за пролиферацию клеток, синтез цитокинов (IL-6) и т.д. Цитокины, секретируемые клетками, содержащими транс-активаторы, создают микроокружение из прилегающих фибробластов, эндотелиальных клеток и др., в свою очередь, выделяющих другие ростовые факторы, стимулирупующие по паракринному типу пролиферацию гепатоцитов. Усиленная пролиферация гепатоцитов может привести к генетическим поломкам, которые будут способствовать селекции клеток с ускоренной пролиферацией и приобретению ими признаков злокачественной трансформации. В опухолевых клетках печени часто имеет место инактивация опухолевых супрессоров р53, Rb, BRCA2 и Е-кадхерина. Отмечена также активация теломеразы в печеночных клетках на стадии их превращения в злокачественные и нарушение функционирования ряда важных сигнальных систем.

Определенные типы (16 и 18) папаломавирусов человека (Human papillomavirus, HPV) - являющихся этиологическим агентом рака шейки матки и некоторых опухолей ано-генитальной сферы; Установлено, что трансформирующими генами являются в основном гены Е6 и Е7 , в меньшей степени Е5 . Механизм функционирования генов Е6 и Е7 сводится к взаимодействию продуктов этих генов с продуктами 2-х генов супрессоров р53 и Rb и последующей инактивации последних, что приводит к неконтролируемому росту инфицированных клеток.Проведенные исследования показали, что каждый из выше упомянутых 3-х генов латентной HPV инфекции, обладающий трансформирующими потенциями, вносит свой вклад внарушение сигнальных путей клетки, увеличение ее пролиферативной активности и накопление дополнительных генетических изменений. Стоит отметить что созданы терапевтические и профилактические вакцины против ВПЧ. Которые стимулюруют иммунную систему против Е6 и/или Е7 ранних вирусных белков (опухолевых антигенов), препятствующих входу инфицированных клеток в апоптоз и фазу старения, а также генерируют вирус-нейтрализующие антитела, специфические для капсида HPV.

Вирус Эпштейна-Барр (Epstein-Barr virus, EBV ), принимающий участие в возникновении целого ряда злокачественных новообразований;Механизм канцерогенеза сложен и мало изучен. В частности, белок LMP1, локализуясь в мембране, имитирует функцию конститутивно активированного рецептора СD40 и частично замещает эту функцию. Привлекая адаптерные молекулы TRAF через домены активации CTAR1 и CTAR2 активирует транскрипционные факторы AP-1 и NFkB и таким образом индуцирует экспрессию генов, регулируемую этими факторами (рецептор эпидермального фактора роста, EGFR, CD40, поверхностные активационные маркеры, молекулы адгезии и т.д.). Кроме того, LMP1 взаимодействует с Jak3-киназой и таким образом активирует STAT-сигнальные пути, стимулирующие размножение и передвижение клеток. LMP2A активирует киназу Akt/PBK, вызывая ряд эффектов, наиболее ярким из которых является подавление апоптоза. EBNA2 имитирует транскрипционную функцию процессированной формы Notch (трансмембранный белок, преобразующий контакты с окружающими клетками в генетические программы, регулирующие судьбу клетки), конститутивная активность которого ведет к развитию лимфоидных и эпителиальных опухолей. Основная функция EBNA1 состоит в обеспечении репликации и поддержания эписомального состояния генома ВЭБ.

Герпесвирус человека 8-го типа (Human herpesvirus type 8, HHV-8) , игращий важную роль в возникновении саркомы Капоши, первичной выпотной лимфомы, болезни Кастельмана и некоторых других патологических состояний;

Вирус Т-клеточного лейкоза человека (Human T-cell leukemia virus, HTLV-1) , являющийся этиологическим агентом Т-клеточного лейкоза взрослых, а также тропического спастического парапареза и ряда других неонкологических заболеваний.Механизм транс-актививации транскрипции ряда вирусных и клеточных генов (цитокинов, их рецепторов, циклинов и др), ассоциированных с клеточной пролиферацией и способствующих росту инфицированных HTLV-1 клеток. Белок Тах может и транс-репрессировать транскрипции определенных генов, действуя через транскрипционный ко-активатор р300. Тах также инактивирует чекпоинты (сверочные точки) клеточного цикла и ДНК-полимеразу (DNApol), снижая активность всех 3-х систем репарации ДНК и вызывая тем самым генетическую нестабильность, что в конечном итоге приводит к возникновению опухолевой клетки.

Вирус иммунодефицита человека (Human immunodeficiency virus, HIV) - не обладающего трансформирующими генами, но создающего необходимые условия (иммунодефицит) для возникновения рака.

Несмотря на различную организацию онкогенных вирусов человека, неодинаковый спектр их клеток-мишеней, они обладают рядом общих биологических свойств, а именно:

1) вирусы лишь инициируют патологический процесс, усиливая пролиферацию и генетическую нестабильность инфицированных ими клеток;

2) у инфицированных онкогенными вирусами лиц возникновение опухоли, как правило, событие нечастое: один случай новообразования возникает среди сотен, иногда тысяч инфицированных;

3) после инфицирования до возникновения опухоли имеет место продолжительный латентный период, длящийся годами, иногда десятилетиями;

4) у большинства инфицированных лиц возникновение опухоли не является обязательным, но они могут составить группу риска, с более высокой возможностью ее возникновения;

5) для злокачественной трансформации инфицированных клеток необходимы дополнительные факторы и условия, приводящие к селекции наиболее агрессивного опухолевого клона.

Знать причину заболевания - иметь ключ к его излечению. Но не со всеми патологиями все так просто. Природа новообразований, злокачественных и доброкачественных, до сих пор не известна ученым досконально. Ее изучением непосредственно занимается онкология - наука, спецификой которой являются раковые заболевания: изучение, диагностика, лечение и профилактика. На сегодня в распоряжении ученых несколько теорий канцерогенеза. Иными словами - версий по зарождению и развитию раковой опухоли в организме. Давайте познакомимся с ними.

Канцерогенез - что это

Слово произошло от лат. cancerogenesis. Это сочетание двух понятий - "рак" + "развитие", "зарождение".

Отсюда определение - патологическое сложное явление, процесс как зарождения, так и дальнейшей прогрессии раковой опухоли. Заменяет понятие "онкогенез".

Стадии процесса

Наиболее распространенной является теория многоступенчатого канцерогенеза. Иными словами, раковая опухоль всегда развивается, проходя несколько определенных этапов, по одному и тому же алгоритму у всех организмов. Это следующие стадии:

  • Инициация. Другое название - опухолевая трансформация. Первый шаг - необратимое изменение генома соматической клеточной массы (мутация). Происходит очень быстро - счет ведется на минуты, часы. Измененная клетка долго может быть неактивной. Или же процесс на этом и вовсе обрывается.
  • Промоция. Взаимодействие между мутировавшей клеткой и факторами внутри организма. Остаются измененные частицы с высокой репродуктивной активностью. Это проявление основного фенотипа опухоли.
  • Прогрессия. Стадия характеризуется дополнительными изменениями генома, селекцией наиболее приспособленных клеточных клонов. Стадия морфологически явной раковой опухоли, что уже способна метастазировать, отличается инвазивным ростом.

Мутационная теория

Эта теория канцерогенеза в современном мире считается общепризнанной. Рак начинает развитие в организме с одной маленькой клетки. Что же с ней не так? В специфических участках ее ДНК начинают накапливаться мутационные процессы. Они влияют на процесс синтеза новых белков. Элементарная единица организма начинает вырабатывать новое, дефектное белковое вещество. А так как большинство клеток в организме обновляются исключительно делением, то данные хромосомные нарушения дефектной клетки организма наследуются дочерними. Те, в свою очередь, передают их новым при своем размножении. В организме появляется очаг раковой опухоли.

Основоположник мутационной теории канцерогенеза - германский ученый-биолог Т. Бовери. Само предположение было им высказано еще в 1914 году. Бовери заявил, что причина рака - хромосомные изменения в клетках.

На протяжении последующих лет его позицию поддержали коллеги:

  • А. Кнудсон.
  • Г. Мюллер.
  • Б. Фогельштейн.
  • Э. Фэрон.
  • Р. Уэйнберг.

Данные ученые на протяжении десятков лет находили доказательства факта, что онкологическое заболевание - это последствие клеточных генных мутаций.

Случайные мутации

Эта теория канцерогенеза по каким-то аспектам схожа с позицией Бовери и его единомышленников. Ее автор - ученый Л. Леб, сотрудник Вашингтонского университета.

Специалист утверждал, что, по средним показателям, в каждой клетке за всю ее жизнь мутация может возникнуть лишь в одном гене. Но в каких-то случаях их (мутаций) частота возрастает. Способствуют этому оксиданты, канцерогены (факторы среды, непосредственно вызывающие рак) или же нарушения процессов репарации и репликации самой ДНК.

Л. Леб доказывал, что рак - это следствие всегда огромного числа мутаций на одну клетку. Так, в среднем, их число должно достигать 10-100 тысяч! Но сам автор также признает, что как-то подтвердить или опровергнуть им заявленное очень сложно.

Таким образом, в данном случае онкогенез расценивают как следствие клеточных мутаций, обеспечивающих данной клетке преимущества при делении. Хромосомным перестройкам в рамках этой теории канцерогенеза, опухолей отводится уже побочное значение.

Ранняя хромосомная нестабильность

Ученые пришли к новой идее в результате практических исследований. Они обнаружили, что в злокачественном образовании прямой кишки заключено множество клеток именно с измененным числом хромосом. Это наблюдение позволило им утверждать, что ранняя хромосомная нестабильность приводит к в онкогенах, онкосупрессорах.

Данная теория базируется на нестабильности генома. Этот фактор вкупе со всем известным естественным отбором может привести к появлению доброкачественного новообразования. Но иногда оно трансформируется в злокачественную опухоль, разрастающуюся метастазами.

Анеуплоидия

Еще одна заслуживающая внимания теория канцерогенеза. Ее автор - ученый П. Дюсберг, трудящийся в Калифорнийском университете США. По его предположению, рак - следствие лишь анеуплоидии. Мутации же, наблюдаемые в специфических генах, не играют в процессе канцерогенеза никакой роли.

Что же такое изменения, вследствие которых клетки начинают отличаться числом хромосом, никак не кратному их основному набору. В современности сюда относят также удлинение/укорачивание хромосомных нитей, их транслокации - перемещение крупных участков.

Естественно, подавляющая часть анеуплоидных клеток погибнет. Но у части выживших количество (а оно уже измеряется в тысячах) генов будет не таким, как у нормальных клеток. Следствие - распад команды ферментов, чья слаженная работа обеспечивала синтез и целостность ДНК, появление в двойной спирали массы разрывов, что уже дополнительно дестабилизируют геном. Чем выше уровень анеуплоидии, тем нестабильнее клетка, тем больше вероятность появления "неправильной" частицы, что будет существовать и делиться в любой части организма.

Суть теории в том, что появление и развитие злокачественной опухоли в большей мере обусловлено ошибками в хромосомном распределении, нежели мутационными процессами.

Эмбриональная

Одна из широко представленных теорий канцерогенеза в онкологии - это эмбриональная. Связывающая развитие рака с зародышевыми клетками.

Свои предположения на этот счет высказало несколько ученых разных лет. Кратко познакомимся с их взглядами:

  • Дж. Конгейм (1875 год). Ученый выдвинул гипотезу о том, что раковые клетки развиваются из эмбриональных. Но только из тех, что оказались ненужными в процессе развития зародыша.
  • В. Рипперт (1911 год). Его предположение основано на том, что измененная окружающая среда может позволить эмбриональной клетке "спрятаться" от системы контроля организма над ее развитием и дальнейшим размножением.
  • В. Роттер (1927 год). Ученый высказал такую гипотезу: примитивные эмбриональные клетки могут каким-то образом поселиться в органах, тканях организма в процессе его зародышевого развития. Эти-то частицы и станут очагом развития новообразования в дальнейшем.

Тканевая

Один из признанных авторов тканевой теории канцерогенеза - ученый Ю. М. Васильев. Согласно его взглядам, причина развития раковой опухоли - нарушение контроля тканевой системы над пролиферацией клоногенных клеток. А ведь именно эти частицы обладают активированными онкогенами.

Основной доказанный факт, подтверждающий теорию, - способность опухолевых клеток нормализироваться при их дифференцировке. Это позволили утверждать лабораторные исследования на мышах. Даже раковые клетки с измененным хромосомным набором при дифференцировке нормализируются.

В тканевой теории связывается многое - канцерогенный профиль, степени омоложения, изменение функций, структуры гомеостаза, режимы пролиферации, бесконтрольный рост клоногенных частиц организма. Вся эта совокупность в итоге приводит к образованию злокачественной опухоли.

Вирусная

Популярна в научном мире и вирусная теория канцерогенеза. Базируется она на следующем - для появления и развития раковой опухоли присутствие в организме вируса, вызывающего рак важно (в отличие от обычной инфекции) только на самой ранней стадии. Он вызывает в клетке наследственные изменения, которые уже в дальнейшем передаются дочерним самостоятельно, без его участия.

Вирусная природа некоторых раковых образований уже доказана учеными. Это вирус Рауса, обуславливающий саркому у кур, фильтрующийся агент, вызывающий у кроликов папиллому Шоупа, фактор молока - причина онкологии молочной железы у мышей. Всего таковых болезней позвоночных сегодня исследовано порядка 30. Касаемо людей - это папилломы и кондиломы, которые передаются от человека к человеку половым, бытовым путем.

Известны ученым также и вирусы, что могут вызвать лейкоз различных типов у мышей. Это вирус Френда, Гросса, Молони, Мазуренко, Графи.

В результате исследований специалисты также пришли к выводу, что злокачественное образование вирусной природы можно вызвать и искусственно. Для этого нужны нуклеиновые кислоты, что выделяют из опухолеродных вирусов. Она (кислота) вносит в клетку дополнительные генетические данные, что обуславливает малигнизацию частицы.

Факт, что причиной образования опухоли выступает химическое вещество (нуклеиновая кислота), сближает эту версию с полиэтиологической. А это уже шаг к разработке единой теории происхождения онкообразования.

Химическая теория

Согласно ей, основная причина клеточных мутаций, что ведут за собой развитие рака, - это химические среды. Ученые разделяют их на несколько групп:

  • Канцерогены генотоксические. Они будут реагировать непосредственно с ДНК.
  • Канцерогены эпигенетические. Они вызывают изменения хроматина, структуры ДНК, не затрагивая саму ее последовательность.

Внешние причины в рамках теории химического канцерогенеза делятся на такие группы:

  • Химические. Ароматические амины и углеводороды, асбест, минеральные удобрения, инсектициды, пестициды, гербициды.
  • Физические. Это различного вида излучения - ионизирующие, лучевые. Большого внимания заслуживает влияние на организмы радионуклидов.
  • Биологические.

Иные теории

В современном научном мире также существуют следующие теории появления и развития раковых опухолей:

  • Эпигенетическая.
  • Иммунная.
  • Раковых стволовых клеток.
  • Эволюционная.

Читатель теперь знаком как с понятием "канцерогенез", стадиями развития раковой опухоли, так и с основными теориями онкогенеза. Признанной из них на сегодня является мутационная. Будущее научного мира - в разработке единой теории, которая поможет человечеству навсегда победить эту страшную болезнь.