Врожденный иммунитет кратко. Современное понятие об иммунитете

МАЙ ИЮНЬ 2004

том ЬХХХУ

ИЗДАНИЕ МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ ТАТАРСТАНА И КАЗАНСКОГО ГОСУДАРСТВЕННОГО МЕДИЦИНСКОГО УНИВЕРСИТЕТА

ТЕОРЕТИЧЕСКАЯ И КЛИНИЧЕСКАЯ МЕДИЦИНА

УДК 612. 017. 1

ВРОЖДЕННЫЙ иммунитет

Руслан Меджитое, Чарльз Джанееей Отдел иммунобиологии Иельского униеерситета, США

Иммунная система традиционно разделена на врожденный и адаптивный компоненты - каждый с различной функцией и ролью. Адаптивный компонент организован вокруг двух классов специализированных клеток- Т- и В-лим-фоцитов. Каждый лимфоцит экспонирует отдельный вид структурно уникального рецептора, поэтому набор рецепторов антигенов в общей совокупности лимфоцитов - весьма большой и чрезвычайно разнообразный. Размер и разнообразие этого набора повышают вероятность того, что для каждого антигена найдется лимфоцит со специфическим рецептором, который связавшись с антигеном вызовет активацию и быстрое размножение клетки. Этот процесс, названный клональной селекцией, объясняет большинство основных свойств адаптивной иммунной системы.

В ответ на инфекцию развитие клона лимфоцитов абсолютно необходимо для эффективной иммунной реакции. Однако требуется от трех до пяти дней для образования нужного числа клонов, которые будут дифференцироваться в эф-фекторные клетки, а это более чем достаточное время для большинства болезнетворных организмов, позволяющее им повредить хозяина. Напротив, эффекторные механизмы врожденного иммунитета, включающие антимикробные пептиды, фагоциты, альтернатив-

ный путь комплемента, активизируются немедленно после инфицирования и начинают контролировать репликацию болезнетворного агента. По этой причине сдерживание инфекции до момента включения лимфоцитов долго рассматривалось в качестве основной функции врожденного иммунитета. Становится все более очевидным, что врожденная иммунная система имеет намного более важную, фундаментальную роль в защите хозяина.

В этой статье мы рассмотрим пути взаимодействия и управления адаптивным иммунным ответом со стороны врожденной иммунной системы. Клиническое значение этих открытий еще только начинает определяться. Мы ожидаем, что они дополнят наши представления о предохранении организма от бактерий путем развития адаптивной иммунной системой длительной антимикробной защиты, а также механизмов, используемых для предотвращения аутоиммунных реакций.

Стратегии врожденного и адаптивного

иммунологического распознавания

Основное различие между адаптивной и врожденной иммунными системами состоит в механизмах и рецепторах, используемых для иммунологического распознавания. В адаптивной

© 11. "Казанский мед. ж.", № 3

иммунной системе рецепторы Т- и В-клеток возникают соматически в ходе их развития путем, обеспечивающим каждый лимфоцит структурно уникальным рецептором. Эти рецепторы не закодированы в зародышевых клетках, поэтому они не запрограммированы распознавать заданный набор антигенов. Напротив, чрезвычайно разнообразный набор рецепторов формируется беспорядочно, и лимфоциты, несущие "полезные" рецепторы (например, рецепторы для патогенов), отбираются для последующей клональной экспансии, сталкиваясь со специфическими антигенами. Более того, эти полезные рецепторы не могут быть переданы последующим поколениям, несмотря на то что они могли бы давать потомку преимущества выживания. Независимо от того, насколько они могут быть выгодны, рецепторы антигенов рутинных патогенов окружающей среды должны быть повторно изобретены каждым поколением. Поскольку участки связывания рецепторов антигенов возникают в результате случайного генетического механизма, набор рецепторов включает в себя рецепторы, связывающиеся не только с микроорганизмами, но и с безвредными природными агентами и собственными антигенами. Активация адаптивного иммунного ответа может быть вредна для хозяина, когда антигеном являются либо собственные, либо чужеродные антигены, которые не связаны с инфекционными микроорганизмами, поскольку иммунный ответ в этих случаях приводит к аутоиммунным и аллергическим заболеваниям. Как же иммунная система определяет происхождение антигена и необходимость развивать иммунный ответ? Недавние исследования продемонстрировали, что именно врожденная иммунная система играет значительную роль при принятии этих решений.

В ходе эволюции врожденная иммунная система возникла раньше адаптивной, и определенная форма врожденного иммунитета, вероятно, существует у всех многоклеточных организмов. В отличие от адаптивного иммунитета, врожденное иммунное распознавание опосре-довано наследственно закодированными рецепторами, что означает генетическую предопределенность специфичности каждого рецептора. Одним из преимуществ этой наследственной зако-

дированности рецепторов является их эволюционирование при естественном отборе в направлении специфичности к инфекционным агентам. Проблема, однако, в том, что в каждом организме находится ограниченное число генов в геноме. Человеческий геном, например, содержит от 35000 до 40000 генов, большинство из которых не имеют отношения к иммунному распознаванию. Для сравнения: существует приблизительно 1014 и 1018 различных соматически формируемых иммуноглобулиновых рецепторов и Т-клеточных рецепторов соответственно. Общее число рецепторов, вовлеченных во врожденное иммунное распознавание, исчисляется, думается, сотнями. Кроме того, микробы весьма гетерогенны и способны мутировать значительно быстрее, чем любой из их хозяев.

Стратегией врожденного иммунитета не может быть распознавание каждого возможного антигена, осуществляется фокусирование на нескольких высоко консервативных структурах в больших группах микроорганизмов . Эти структуры называются патоген-ассоции-рованными молекулярными образами - PAMP (pathogen-associated molecular patterns), а распознающие их рецепторы врожденной иммунной системы -образраспознающими рецепторами - PRR (pattern-recognition receptors). Наиболее известные PAMP - это бактериальный липополисахарид, пептидогли-кан, липотейхоевые кислоты, маннаны, бактериальная ДНК, двуспиральные РНК, глюканы. Несмотря на значительные химические различия этих веществ, все PAMP имеют общие свойства . Во-первых, все PAMP образуются только микробами, а не их хозяином. Например, липополисахарид синтезируется только бактериями, PRR распознают его, сигнализируя хозяину о присутствии в организме инфекции. Во-вторых, структуры, узнаваемые врожденной иммунной системой, обычно важны для выживания или патогенности микроорганизмов. В-третьих, PAMP - обычно инвариантные структуры, присущие всему классу патогенов. Например, все грамотрицательные бактерии содержат ЛПС, следовательно, рецепторы хозяина, распознающие образ ЛПС, фактически выявляют любую грамотрицатель-ную инфекцию.

Образраспознающие рецепторы

Рецепторы врожденной иммунной системы, закодированные в геноме, имеют ряд отличий от рецепторов антигенов. Они экспрессируются несколькими эффекторными клетками врожденной иммунной системы, что особенно важно: макрофагами, дендритными клетками и В-лимфоцитами - профессиональными антиген-представляющи-ми клетками. Экспрессия РЯЯ - не кло-нальная, все клетки данного типа (например, макрофаги) демонстрируют рецепторы единой специфичности. Кроме того, немедленно, после того как РЯЯ идентифицируют РАМР, клетка запускает выполнение эффекторных функций без необходимости пролиферации. Этот факт объясняет высокую скорость врожденных иммунных реакций.

По своей структуре РЯЯ относятся к нескольким белковым семействам. Например, в распознавание РАМР часто вовлечены домены лейцинбогатых повторов, кальцийзависимые лектиновые домены и белковые домены рецепторов-мусорщиков . По своей функции РЯЯ могут быть разделены на три класса: секретируемый, эндоцитозный и сигнальный.

Рис. 1. Лектиновый путь активации комплемента.

Активация лектинового пути активации комплемента опосредствована лектином, связывающим маннозу, являющимся РЯЯ микробных углеводов. Лектин, связывающий маннозу, ассоциирован сериновыми протеазами - маннансвязы-вающими лектин-ассоциированными протеазами 1 и 2 (ЫЛ8Р1 и ЫЛ8Р2). Взаимодействие лекти-на, связывающего маннозу, с микробным лиган-дом приводит к активации этих протеаз, которые расщепляют С2 и С4 компоненты системы комплемента. Продукты расщепления С2а и С4Ь образуют С3 конвертазу, инициализирующую каскад реакций за счет расщепления С3. Комплекс лек-тина, связывающего маннозу, и его протеаз функционирует так же, как С1 комплекс классического пути активации комплемента. Следует, однако, подчеркнуть, что сериновые протеиназы С1г и С1в активируются при связывании С1ц с комплексом антиген-антитело, в то же время активация системы комплемента может происходить прямо при узнавании микроба независимо от адаптивной иммунной системы.

С1г и С1б сериновым протеазам классического пути комплемента. Так же, как С1г и С1б, активировавшись маннан-связывающие лектин-ассоциированные протеазы приводят к расщеплению С3 и активации С3 конвертазы, что в результате усиливает каскад активации комплемента . Однако, в отличие от

С1 протеазы, для активации которой необходим комплекс антигена с антителом, маннансвязывающие лектин-ас-социированные протеазы активируются при связывании микробного лиганда с маннансвязывающим лектином (рис. 1).

Эндоцитозные PRR находятся на поверхности фагоцитов. После узнавания РАМР на микробной клетке эти рецепторы опосредуют поглощение патогена и его доставку к лизосомам, где он разрушается. Белки патогена обрабатываются, и образующиеся пептиды представляются молекулами МНС на поверхности макрофага. Маннозный рецептор макрофага, также член кальцийзависи-мого лектинового семейства, является эндоцитозным PRR. Он специфически узнает углеводы с большим числом ман-ноз, характерные для микроорганизмов, и опосредует их фагоцитоз . Другой эн-доцитозный PRR - макрофагальный рецептор-мусорщик - связывается с бактериальной стенкой и выступает существенным компонентом клиренса бактерий из кровообращения .

Сигнальные PRR распознают РАМР и активируют пути передачи сигнала для экспрессии разнообразных генов иммунного ответа, включая воспалительные цитокины.

Toll-рецепторы

Первый рецептор toll семейства был идентифицирован у дрозофил как компонент пути передачи сигнала, контролирующего дорзо-вентральную полярность эмбриона мухи . Анализ последовательности toll-гена выявил, что он кодирует трансмембранный белок с большим внеклеточным доменом, содержащим богатые лейцином повторы. Последовательность цитоплазмати-ческого домена toll белка оказалась удивительно похожа на цитоплазматиче-ский домен рецептора IL-1 млекопитающих . Более того, и рецептор IL-1 млекопитающих, и toll у дрозофил индуцируют пути передачи сигнала, активирующего транскрипцию ядерных фак-торов-кВ (NF-к В) . Члены этого семейства играют ключевую роль в индукции иммунных и воспалительных ответов у млекопитающих . У дрозофил микробная инфекция вызывает быстрое повышение уровня разнообразных антимикробных пептидов . Интересно, что промоторные участки генов, кодирующие эти пептиды, подобно многим генам млекопитающих, вовле-

ченным в воспаление и иммунный ответ, содержат NF-кВ-связывающие участки.

Эти открытия позволили предположить, что toll дрозофилы, кроме участия в эмбриогенезе, вовлечен в иммунный ответ взрослой мухи, что было продемонстрировано элегантными опытами группы Хоффмана . Дрозофилы, мутантные по функции toll гена, были высокочувствительны к грибковым инфекциям, однако инактивация toll гена не нарушала реактивности к бактериальным инфекциям. Поскольку у дрозофил имеется 9 toll белков , распознавание бактериальных патогенов и ответ на них может быть программой других членов toll семейства.

Гомологи toll дрозофилы были идентифицированы у млекопитающих и названы toll-like рецепторы - TLR . Первый охарактеризованный TLR человека (ныне обозначаемый как TLR4) стимулирует, как и его аналог у дрозофилы (рис. 2), активацию NF-кВ сигнального пути. За счет этого происходит экспрессия различных цитокинов и ко-стимуляторов, являющихся решающими для адаптивного иммунного ответа . Данные факты позволили предположить, что TLR функционируют как рецепторы врожденной иммунной системы , что в настоящее время показано для двух членов семейства - TLR4 и TLR2.

Первым свидетельством связи TLR4 и системы врожденного иммунитета было установление факта, что он является рецептором липополисахарида у мышей. Как спонтанная мутация, так и целенаправленная пробой TLR4 гена у мышей лишают их ответа на ЛПС и делают резистентными к эндотоксиново-му шоку . Напротив, у мышей с делецией TLR2 гена ответ на липопо-лисахарид не нарушен . Таким образом, стало ясно, что именно TLR4, а не TLR2 необходим для распознавания липополисахарида. Однако TLR4 - не единственный белок, вовлеченный в распознавание липополисахарида. Сначала ЛПС взаимодействует с сывороточным белком - ЛПС-связывающим белком, который передает его СБ14-ре-цептору макрофагов и В-лимфоцитов, прикрепленному к клеточной поверхности гликозилфосфоинозитольным якорем . Для TLR-опосредованного распознавания необходим еще белок

Рис. 2. Сигнальный путь toll-рецептора.

Некоторые из toll-подобных рецепторов (TLR) выполняют роль образраспознающих рецепторов (PRR) во врожденной иммунной системе. Распознавание ими микробных продуктов ведет к активации сигнального пути ядерного фактора-кБ (NF-кВ). В предложенном примере распознавание липополисахарида опосредовано тремя продуктами различных генов - CD14, TLR4, и MD-2. Связывание липополисахарида с CD14, по-видимому, приводит к ассоциации CD14 с комплексом TLR4-MD-2 и индуцирует димеризацию TLR4. Активированный TLR4 привлекает адап-терный белок MyD88, ассоциированный с серин-треониновой протеинкиназой, к интерлейкин-1 рецептор-ассоциированной киназе (IRAK). IRAK в дальнейшем фосфорилируется и взаимодействует с фактором некроза опухолей связанным фактором 6 (TRAF-6) адапторным белком. Олигоме-ризация TRAF-6 активирует представителя семейства митоген-активируемых протеинкиназ киназу киназы (MAP3K), которая прямо или опосредованно активирует I-kB киназу 1 (IKK1) и I-kB киназу 2 (IKK2). Эти киназы фосфорили-руют I-kB по остаткам серина, помечая таким образом I-kB для деградации и высвобождения NF-kB, который перемещается в ядро и стимулирует активацию транскрипции различных генов воспалительного и иммунного ответа.

MD-2 , а вероятный комплекс для распознавания ЛПС состоит по крайней мере из трех компонентов - CD 14, TLR4, MD-2. TLR4 и MD-2 постоянно

связаны друг с другом, а CD14 вовлекается в комплекс после связывания ЛПС (рис. 2).

Мыши с делецией TLR2 не отвечают на два основных РАМР - пептидо-гликан и липопротеины . У млекопитающих идентифицированы по крайней мере 10 TLR, все они вовлечены в распознавание основных микробных образов, запускающих ответы врожденной иммунной системы. Следовательно, нарушения в TLR-генах должны глубоко затрагивать иммунную систему. Мыши линии (C3H/HeJ) с мутацией TLR4, например, очень восприимчивы к грамотрицательной инфекции. Очевидно, полиморфизм TLR4 коррелирует с повышением восприимчивости человека к грамотрицательной инфекции.

Идентифицированы мутации как экто-домена, так и цитоплазматического домена TLR4 человека, хотя в целом информация об аллельных вариантах toll генов человека ограничена . Остается выяснить, повлияют ли эти мутации на распознавание ЛПС и восприимчивость к инфекции.

Врожденное иммунное распознавание

и контроль адаптивного иммунного ответа

Как обсуждалось ранее, адаптивная иммунная система имеет колоссальную способность распознавать практически любую антигенную структуру, однако случайно генерируемые рецепторы связываются с антигенами независимо от их происхождения - бактериальными, окружающей среды или собственными. Рецепторы врожденной иммунной системы, напротив, специфичны по отношению к структурам, обнаруживаемым исключительно на микробных патогенах (РАМР), поэтому они сигнализируют о присутствии инфекции. Сигналы, индуцированные узнаванием врожденной иммунной системой, управляют активацией адаптивных иммунных ответов, адаптивная иммунная система отвечает на патоген только после того, как он был обнаружен врожденной иммунной системой. Например, Т-лимфоциты используют рецепторы антигена для распознавания лиганда в форме пептида, связанного с молекулой МНС II на поверхности антиген представляющей клетки. Однако эти пептиды могут происходить из собственных тканей или

Рис. 3. Рецепторы, вовлеченные во взаимодействие врожденного и приобретенного иммунитета.

При распознавании патоген-ассоциированных молекулярных образов (РАМР) образраспознаю-щими рецепторами (РЯЯ), такими как 1о11-подобные рецепторы, генерируются сигналы, которые активизируют адаптивную иммунную систему. Эндоцитозные РЯЯ, например макрофагальный ман-нозный рецептор, связываются с микробной стенкой и опосредуют фагоцитоз патогена антигенпред-ставляющими клетками (макрофагами, дендритными клетками). Белки микроорганизмов обрабатываются в лизосомах, чтобы генерировать антигенные пептиды, которые формируют комплекс с молекулами главного комплекса гистосовместимости (МНС) класса II на поверхности макрофага. Эти пептиды распознаются рецепторами Т-клеток. В случае распознавания патогена сигнальными РЯЯ, например 1о11-подобными рецепторами, активируются сигнальные пути, вызывающие экспрессию цитокинов, хемокинов и костимуляторных молекул. Таким образом, РЯЯ играют роль и при формировании комплекса пептид-МНС, и при костимуляции, необходимой для активации Т клеток.

микробного патогена. На основании распознавания лишь пептида Т-клетка не способна отличить своего от чужого, так как рецепторы антигена сгенерированы случайно. Распознавание пептид-МНС лиганда рецептором антигена недостаточно для активации Т-клетки. Ей необходимы по крайней мере два сигнала для активации - комплекс пептида с МНС II молекулой и костимуляторный сигнал, опосредованный, например, СБ80 или СБ86 молекулами на поверхности антигенпредставляющей клетки. Т-лимфоцит может активироваться только в том случае, если антигенпред-ставляющая клетка экспрессирует совместно антиген и СБ80 или СБ86 молекулы. Распознавание антигена в отсутствии СБ80 или СБ86 молекул приводит к инактивации или апоптозу Т-лимфоцита.

Экспрессия СБ80 и СБ86 молекул на поверхности антигенпредставляющей клетки управляется врожденной иммунной системой. Рецепторы типа ТЬЯ индуцируют появление этих молекул на антигенпредставляющей клетке после распознавания своего РАМР . РАМР имеются только на патогенах, поэтому ТЬЯ индуцируют экспрессию СБ80 и СБ86 только при наличии инфекции.

Т-клетка, в свою очередь, получает оба сигнала, требуемые для активации, только в том случае, если ее рецептор связывается с пептидом, полученным из патогена, вызвавшего экспрессию молекул СБ80 или СБ86 посредством его РАМР типа ЛПС (рис.3).

Собственные антигены не распознаются рецепторами врожденной иммунной системы и поэтому не индуцируют экспрессии СБ 80 или СБ86. Этот механизм гарантирует в норме активацию только патогенспецифичных Т-клеток. После активации Т-хелперы контролируют другие компоненты адаптивного иммунитета - активацию цитотоксичес-ких лимфоцитов, В-лимфоцитов и макрофагов. Таким образом, распознавание врожденной иммунной системой контролирует все основные аспекты приобретенного иммунного ответа через узнавание микроорганизмов и индукции сигналов для запуска адаптивного иммунитета.

Врожденный иммунитет и болезнь

С учетом важной роли врожденной иммунной системы в регуляции всех аспектов иммунитета становится ясно, что дисфункция компонентов этой сис-

темы чревата болезнями. К иммунологическим нарушениям могут вести два основных вида генетических повреждений - мутации, инактивирующие рецепторы или молекулы передачи сигналов, вовлеченных во врожденное распознавание, и мутации, приводящие их в постоянно активное состояние. Первый тип мутаций приводит к различным иммунодефицитам, второй - к воспалительным реакциям и будет таким образом способствовать развитию различных состояний с воспалительным компонентом, включая астму, аллергию, артрит, аутоиммунные реакции. Действительно, мутации маннозного рецептора и маннансвязывающего лек-тина макрофагов человека и мыши обусловливают повышенную восприимчивость к некоторым патогенам . Пока о мутациях ТЬЯ генов известно немного, поиск полиморфизма ТЬЯ гена обеспечит новое понимание причин иммунных и воспалительных нарушений. Драматическим примером эффекта мутационной инактивации неизвестного компонента сигнальных путей ТЬЯ и ГЬ-1 является описание пациента с повышенной восприимчивостью к бактериальной инфекции .

Заключение

Врожденный иммунитет - это самая ранняя форма иммунной защиты хозяина, которая возникла на начальных этапах эволюции многоклеточных организмов, поскольку многие гены врожденной защиты имеются не только у позвоночных, но и у беспозвоночных животных, а также у растений. Высшие позвоночные имеют также адаптивную иммунную систему, принципы функционирования которой весьма отличны от таковых врожденного иммунитета. Случайная генерация чрезвычайно разнообразного набора антигенных рецепторов позволяет адаптивной иммунной системе распознавать фактически любой антиген. Но цена этого разнообразия -неспособность отличить свои антигены от чужих. Врожденная иммунная система, напротив, развертывает ограниченное число рецепторов, специфичных для консервативных микробных структур. Распознавание этих структур врожденной иммунной системой индуцирует костимуляторы, цитокины и хемоки-

ны, привлекающие и активирующие антигенспецифические лимфоциты и запускающие адаптивные иммунные ответы.

ЛИТЕРАТУРА

1. Belvin MP, Anderson KV.// Annu. Rev. Cell. Dev. Biol. - 1996. -Vol.12. -P.393-416.

2. Beutler B. //Curr. Opin. Immunol. - 2000. -Vol.12. -P. 20-26.

3. Epstein J., Eichbaum Q., Sheriff S., Ezekowitz RA. // Curr. Opin. Immunol. - 1996. -Vol.8. -P.29-35.

4. Fearon D.T., Locksley R.M.// Science. - 1996. -Vol. 272. -P.50-53.

5 . Fraser I.P., Koziel H., Ezekowitz R.A.// Semin. Immunol. -1998. - Vol.10. -P.363-372.

6. Gay N.J., Keith F.J.// Nature. -1991. -Vol.351. -P.355-356.

7. Ghosh S., May M.J., Koop E.B. //Annu. Rev. Immunol. - 1998. -Vol.16. -P.225-260.

8. Hashimoto C., Hudson K.L., Anderson K.V.// Cell. - 1988. -Vol. 52. -P.269-279.

9. Hoshino K., Takeuchi O., Kawai T. et al.// J. Immunol. -1999. -Vol. 162. -P.3749-3752.

10. Hoffmann J.A., Kafatos F.C., Janeway C.A., Ezekowitz RA.// Science. -1999. -Vol. 284. -P.1313-1318.

11. Imler J.L., Hoffmann J.A. // Curr. Opin. Microbiol. - 2000. -Vol. 3. -P.16-22.

14. Kuhns D.B., Long Priel D.A., Gallin J.I. // J. Immunol. -1997. -Vol. -158. -P.3959-3964.

15. Lemaitre B., Nicolas E., Michaut L., Reichhart JM., Hoffmann J.A. // Cell. -1996. -Vol. 86. -P.973-983.

16. Medzhitov R., Janeway C.A. Jr // Curr. Opin. Immunol. - 1997. -Vol.9. -P.4-9.

17. Medzhitov R., Preston-Hurlburt P., Janeway C.A. Jr.// Nature. -1997. -Vol.388. -P.394-397.

18. Medzhitov R, Janeway C.A. Jr. // Cell. - 1997. -Vol. 91. -P.295-298.

19. Poltorak A., He X., Smirnova I. et al.// Science. -1998. -Vol.282. -P.2085-2088.

20. Quershi S.T., Lariviere L., Leveque G. et al.// J. Exp. Med. - 1999. -Vol. 189. -P.615-625.

21. Rock F.L., Hardiman G., Timans J.C., Kastelein RA, Bazan J.F. // Proc. Natl. Acad. Sci. U S A. - 1998. -Vol.95. -P.588-593.

22. Suzuki H., Kurihara Y., Takeya M. et al. // Nature. - 1997. -Vol. 386. -P.292-296.

23. Shimazu R., Akashi S., Ogata H. et al. // Exp. Med. - 1999. -Vol.189. -P.1777-1782.

24. Thomas C.A., Li Y., Kodama T., Suzuki H., Silverstein S.C., El Khoury J.// J. Exp. Med. - 2000. -Vol. 19. -P. 147-156.

25. Takeuchi O., Hoshino K., Kawai T. et al. // Immunity. - 1999. -Vol.11. -P.443-451.

26. Takeuchi O., Kaufmann A., Grote K. et al. // J. Immunol. -2000. -Vol.164. -P.554-557.

27. Wright S.D., Tobias P.S., Ulevitch R.J., Ramos RA. // J. Exp. Med. - 1989. -Vol.170. -P.1231-1241.

Общая система иммунитета человека состоит из неспецифического (врожденного, переданного генетическим путем) и специфического иммунитета, который формируется в течение его жизни. На неспецифический иммунитет приходится 60-65% от всего иммунного статуса организма. Система врождённого иммунитета осуществляет основную защиту у большинства живых многоклеточных организмов. представляют собой две взаимодействующие части одной очень сложной системы, обеспечивающей развитие иммунного ответа на генетически чужеродные субстанции. Долгие годы сосуществовали два противоположных «полюса» и взгляда на вопрос, кто же важнее и главнее в защите от инфекций - врожденный иммунитет или приобретенный.

Иммунитет врожденный и приобретенный

Система врожденного иммунитета представляет собой совокупность различных клеточных рецепторов, ферментов и интерферонов, обладающих противовирусными свойствами и создает мощный заслон попаданию в организм бактерий, вирусов, грибков и так далее. Врожденный иммунитет характерен тем, что для развития неспецифических иммунных реакций ему не требуется предварительного контакта с инфекционным агентом. Существует удивительно тесное сходство между системами врожденного иммунитета у самых различных животных. Это свидетельство того, что эволюционно самая древняя система неспецифического иммунитета имеет жизненно важное значение. Система врождённого иммунитета намного более эволюционно древняя, чем система приобретённого иммунитета, и присутствует у всех видов растений и животных, но подробно изучена только у позвоночных. Было время, когда система врожденного иммунитета у позвоночных животных считалась архаичной и устаревшей, однако сегодня доподлинно известно, что от состояния врожденного иммунитета во многом зависит функционирование системы приобретенного иммунитета. Действительно неспецифический иммунный ответ определяет эффективность специфического иммунного ответа. Теперь уже считается общепринятым, что система врожденного иммунитета инициирует и оптимизирует реакции специфического иммунитета, которые развиваются более медленно. Иммунитет врожденный и приобретенный тесно взаимодействуют друг с другом. Своеобразным посредником во взаимодействии обеих систем является система комплемента. Система комплемента состоит из группы сывороточных глобулинов, которые, взаимодействуя в определенной последовательности, разрушают стенки клеток как самого организма, так и клетки микроорганизмов, проникших в тело человека. Одновременно система комплемента активизирует специфический иммунитет человека . Система комплемента способна разрушить неправильно построенные клетки эритроцитов и опухолевых клеток. Система комплемента обеспечивает непрерывность иммунного ответа. Именно неспецифический иммунитет отвечает и несет контроль за уничтожение раковых (опухолевых) клеток. Поэтому создание различных вакцин против рака - это элементарная биохимическая безграмотность и профанация, поскольку никакая вакцина не способна формировать неспецифический иммунитет. Любая вакцина, наоборот, формирует исключительно специфический иммунитет.

Система врожденного иммунитета

Неспецифический иммунитет формируется в организме человека, начиная с внутриутробного развития. Так на 2 месяце беременности уже обнаруживаются первые фагоциты - гранулоциты, а моноциты появляются на 4 месяце. Эти фагоциты формируется из стволовых клеток, которые синтезируются в костном мозге, а затем эти клетки, попадают в селезенку, где с целью их активирования к ним добавляется углеводный блок системы рецепции "свой-чужой". После рождения ребенка, врожденный иммунитет поддерживается за счет работы клеток селезенки, где формируются растворимые компоненты неспецифического иммунитета. Таким образом, селезенка является местом постоянного синтеза клеточных и неклеточных компонентов неспецифического иммунитета. Врожденный иммунитет сегодня считают абсолютным, так как в подавляющем большинстве случаев этот иммунитет не удаётся нарушить заражением даже громадными количествами вполне вирулентного материала. Вирулентность (лат. Virulentus — «ядовитый»), степень болезнетворности (патогенности) данного инфекционного агента (вируса, бактерии или другого микроба). Вирулентность зависит, как от свойств инфекционного агента, так и от чувствительности инфицированного организма. Однако могут быть и исключения, свидетельствующие об относительности врожденного иммунитета. Врожденный иммунитет в некоторых случаях может быть снижен действием ионизирующей радиации и созданием иммунологической толерантности. Врожденный иммунитет является первой линией защиты организма млекопитающих против агрессоров. Инфекционные агенты и их структурные компоненты, которые добрались до слизистых кишечника, носоглотки, легких или попали внутрь организма, «запускают» врожденный иммунитет. Через рецепторы врожденного иммунитета происходит активация фагоцитов - клеток, которые «заглатывают» чужеродные микроорганизмы или частицы. Фагоциты (нейтрофилы, моноциты и макрофаги, дендритные клетки и другие) - основные клетки врожденной иммунной системы. Фагоциты обычно циркулируют по организму в поисках чужеродных материалов, но могут быть призваны в конкретное место при помощи цитокинов. Цитокины - сигнальные молекулы играют очень важную роль на всех этапах иммунного ответа. Одни цитокины выступают в качестве медиаторов реакций врожденного иммунитета, а другие контролируют реакции специфического иммунитета. В последнем случае цитокины регулируют активацию, рост и дифференцировку клеток. К числу наиболее важных цитокинов относятся и молекулы трансфер факторы , которые составляют основу линейки американских препаратов, которые получили название Трансфер Фактор .

NК-клетки и Трансфер Фактор

Цитокины регулируют и активность NK-клеток. Нормальные киллеры или NK-клетки - это лимфоциты, обладающие цитотоксической активностью, то есть способные прикрепляться к клеткам-мишеням, секретировать токсичные для них белки, таким образом, их уничтожая. NK-клетки распознают клетки, пораженные некоторыми вирусами, и опухолевые клетки. Они содержат на мембране рецепторы, реагирующие со специфическими углеводами поверхности клеток-мишеней. Снижение НК-клеточной активности и снижение общего числа НК-клеток связаны с развитием и быстрым прогрессированием таких заболеваний, как рак, вирусный гепатит, СПИД, синдром хронической усталости, синдром иммунодефицита и целый ряд аутоиммунных заболеваний . Повышение функциональной активности натуральных киллеров напрямую связано с проявлением противовирусного и противоопухолевого действия. Сегодня ведется активный поиск лекарственных средств, способных стимулировать именно NK-клетки. В этом специалисты видят перспективу для разработки противовирусных препаратов широкого спектра действия. Но на сегодняшний день создан только один препарат, который способный стимулировать NK-клетки - и это Трансфер Фактор! Доказано, что Трансфер Фактор максимально повышают активность NK-клеток. Трансфер Фактор классик повышает активность этих клеток на 103%, а это значительно больше по сравнению с другими адаптогенами , в том числе, с обычным молозивом , которое повышает активность NK-клеток на 23%. Но только подумайте, Трансфер Фактор плюс, повышает активность NK-клеток на 283%! А сочетание Трансфер фактор плюс и Трансфер фактор Эдвенсд еще больше усиливает данный эффект - повышает активность NK-клеток на 437%, практически в 5 раз, полностью восстанавливая их активность в нашем организме. Именно поэтому Трансфер Фактор сегодня актуален в современном мире, а для жителей мегаполисов Трансфер Фактор вообще жизненно необходим, так как активность NK-клеток у жителей городов в 4-5 раз меньше нормы. И это доказанный факт! Так как у «условно здоровых» людей в нашей стране уровень активности NK-клеток в несколько раз снижен, то повышение ее даже на 437% — всего лишь выход на норму компетентности. Следует помнить, что активность NK-клеток оценивается не по их количеству, которое возрастает незначительно, а по числу актов цитолиза — уничтожения мутировавших или инфицированных клеток. Речь идет не о «подстегивании» иммунной системы, а о повышении ее компетентности, то есть способности различать «врагов». Компетентная иммунная система достигает больших результатов и гораздо меньшими усилиями. Производство линейки препаратов Трансфер Фактор началось в соединенных Штатах более пятнадцати лет назад. Компания 4 life , заинтересовавшись исследованиями специалистов, получила патент на производство этого иммуномодулятора. В нашей стране Трансфер Фактор сегодня чрезвычайно востребован и среди врачей, и среди простых людей. Трансфер Фактор также получил высочайшую оценку Министерства Здравоохранения Украины, которая отражена в методическом письме МЗ Украины от 29.12.2011г. «Эффективность применения Трансфер Факторов в комплексе иммунореабилитационных мероприятий». Сегодня у наших врачей появилась возможность следовать за природой, действовать в согласии с иммунной системой, а не за нее с помощью препарата Трансфер Фактор. Такой подход позволяет получать результаты, не достижимые прежде.

Приобретённый (специфический) иммунитет возник в ходе эволюции низших позвоночных. На приобретенный иммунитет приходится 35-40 % от всего иммунного статуса организма, однако он дает намного более интенсивный иммунный ответ и иммунологическую память, благодаря которой каждый чужой микроорганизм «запоминается» по его уникальным антигенам. Приобретенный иммунитет проявляет себя, когда организм контактирует с каким-либо антигенно чужеродным элементом: микроорганизмом, трансплантатом, мутировавшей собственной клеткой или химическим соединением, которое обладает иммуногенными свойствами. Приобретенный иммунитет формируется во время различных инфекционных болезней или отравлений. Но, стабильный иммунитет остается не после всех заболеваний! Вот примеры приобретенного иммунитета . Гонорея оставляет после себя непродолжительный слабый иммунитет, поэтому спустя время человек при контакте с инфекцией может вновь заболеть. А ветряная оспа больше известная в народе, как ветрянка формирует после себя стабильный иммунитет до конца жизни. Поэтому ветряной оспой болеют только раз в жизни. Длительность специфического иммунитета определяется иммуногенностью микроорганизма (способность вызывать иммунный ответ). Чем больше количество микроорганизмов, с которым встречается иммунная система человека , тем больше количество различных антител производит иммунная система для борьбы с различными болезнями, и следовательно, тем крепче приобретенный иммунитет. Собственно поэтому дети, растущие в условиях стерильности, болеют намного чаще, чем остальные их сверстники, хоть это и кажется нелогичным на первый взгляд. Поэтому с детских лет ребенок должен жить не в стерильных, а в естественных условиях, с огромным разнообразием микроорганизмов, только так иммунитет у детей будет развиваться и крепнуть. Приобретенный иммунитет человека формируется на протяжении всей его жизни и не передается последующим поколениям. Специфический иммунный отет делится на два типа: клеточный и гуморальный. Приобретенный иммунитет человека тесно связан с врожденным. Иммунитет врождённый и приобретённый взаимно дополняют и поддерживают друг друга.

Иммунитет врождённый и приобретённый

Однако при всей своей взаимосвязи иммунитет врождённый и приобретённый имеют существенные различия.

Специфический иммунитет и вакцинация

Специфический иммунитет может формироваться и искусственным способом - в результате вакцинации. Вместе с вакциной в организм человека вводят минимальное количество антигена, который не способен спровоцировать заболевание, но дает возможность лимфоцитам «запомнить» информацию о нем. Когда позже в организм попадает этот возбудитель, иммунная система активируется и происходит подавление антигена еще до начала его негативного воздействия на организм. Какую роль играют вакцины в формировании специфического иммунитета? Именно благодаря вакцинам в последнее столетие мы все реже встречается с такими вирусами, как холера, чума, корь и так далее. Все эти микроорганизмы очень опасны для организма человека. Поэтому в детском возрасте вводятся в организм почти каждого ребенка антигены в виде вакцины, имитирующие воздействие подобного микроорганизма для того, чтобы организм наработал соответствующие антитела. В некоторых случаях вакцина включает не только антигены, но и структурные компоненты патогенных микроорганизмов, живые модифицированные штаммы ослабленных или убитых микроорганизмов, ослабленных токсинов, которые получают в результате лабораторных исследований. Вакцинация должна охватить, примерно, 12% населения, чтобы инфекционное заболевание не переросло в эпидемию. В связи с тем, что созданный вакцинацией иммунитет человека имеет разную продолжительность - от нескольких лет до конца жизни, в определенный момент должна быть проведена повторная вакцинация (ревакцинация).

Формирование специфического иммунитета

Знаете ли вы, что новорожденные дети в первые 3 месяца практически не болеют теми инфекционными болезнями, которыми некогда переболела их мать. Организм малыша защищают антитела, которые от матери через плаценту попадают в кровеносную систему плода, а после рождения передаются с молоком матери ребенку. Иммунитет сформированный до рождения малыша называют плацентарным. Этот вид иммунитета невысок и непродолжителен. Значительно большее значение имеет иммунитет, сформированный при грудном вскармливании. Этот вид иммунитета начинает формироваться с первых дней рождения малыша. Молозиво , образующееся в молочных железах, в первые дни после родов содержит огромное количество антител. Также в молоке женщины содержатся готовые антитела, которые защищают младенца от инфекционных заболеваний. Чем более продолжительное вскармливание ребенка молоком матери, тем более продолжительная защита. Ученые только в последние десятилетия осознали важность грудного вскармливания и ценность молозива. Практически на протяжении всего двадцатого века молозиво считали побочным продуктом производства молока, а само грудное вскармливание считалось необязательным и немодным. В результате этого целые поколения лишили мощной природной защиты, которая формировалась на протяжении эволюции человека. И у нас в стране, и за рубежом мать не могла дать эту удивительную природную защиту своему ребенку! Молозиво считалось незрелым молоком, и младенца подносили к груди лишь на третий день. Сегодня ученые не отрицают, что в результате таких заблуждений мы получили значительное увеличение иммунодефицитов , аутоиммунных заболеваний, онко патологий , которые являются прямым результатом неадекватно работающей иммунной системы.

Как «перепрограммировать» иммунную систему

Только с началом производства препарата Трансфер Фактор появилась надежда на то, что ошибку двадцатого века можно исправить. Впервые появляется возможность «перепрограммировать» иммунную систему и удалить саму причину возникновения аутоиммунных заболеваний или атопических процессов в организме. Наш организм буквально «набит» трансфер факторами собственного производства. Много их в лейкоцитах крови, в лимфатических узлах, а также в тимусе. Иммунная информация в организме циркулирует от клеток иммунной памяти к периферии и назад, пополняя память новыми сведениями, благодаря трансфер факторам, на которых она и «записывается» для переноса. Сегодня у подавляющего числа жителей Земли эта циркулирующая иммунная информация искажена, ведь в ней нет самой важной составляющей - полноценной генетической памяти. Именно с помощью молекул трансфер факторов материнский иммунный опыт передается детенышам позвоночных при их рождении. Птицы вкладывают трансфер факторы в желтки яиц, млекопитающие передают молекулы трансфер факторы с молозивом. Именно содержанием природной иммунной информации в препарате Трансфер Фактор, объясняется высокая эффективность препарата при комплексном лечении многих заболеваний. На сегодняшний день Трансфер Фактору нет аналогов в мире! Заказать Трансфер Фактор можно на нашем сайте!

Содержание

Защитной реакцией или иммунитетом называется ответ организма на внешнюю опасность и раздражители. Множество факторов в теле человека способствуют его защите от различных болезнетворных организмов. Что такое врождённый иммунитет, как происходит защита организма и в чем заключается ее механизм?

Врожденный и приобретенный иммунитет

Само понятие иммунитета связано с эволюционно приобретенными способностями организма препятствовать попаданию в него чужеродных агентов. Механизм борьбы с ними разный, так как виды и формы иммунитета отличаются своим многообразием и характеристиками. По происхождению и формированию защитный механизм может быть:

  • врожденный (неспецифический, естественный, наследственный) – защитные факторы в теле человека, которые были сформированы эволюционно и помогают бороться с чужеродными агентами с самого начала жизни; также данный вид защиты обуславливает видовую невосприимчивость человека к заболеваниям, которые свойственны животным, растениям;
  • приобретенный – защитные факторы, которые формируются в процессе жизни, может быть естественным и искусственным. Естественная защита формируется после перенесенного воздействия, вследствие чего организм способен приобретать антитела к данному опасному агенту. Искусственная защита связана с введением в организм готовых антител (пассивная) или ослабленной формы вируса (активная).

Свойства врожденного иммунитета

Жизненно важным свойством врожденного иммунитета является постоянное наличие в организме естественных антител, которые обеспечивают первичную реакцию на вторжение патогенных организмов. Важное свойство естественной ответной реакции – система комплимента, которая представляет собой комплекс белков в крови, которые обеспечивают распознавание и первичную защиту от чужеродных агентов. Данная система выполняет следующие функции:

  • опсонизация – процесс присоединения элементов комплекса к поврежденной клетке;
  • хемотаксис – совокупность сигналов посредством химической реакции, которая привлекает другие иммунные агенты;
  • мембранотропный повреждающий комплекс – белки комплимента, которые разрушают защитную мембрану опсонизированных агентов.

Ключевое свойство естественной ответной реакции – первичная защита, вследствие которой организм может получить информацию о новых для него чужеродных клеток, вследствие чего создается уже приобретенный ответ, который при дальнейшем столкновении с аналогичными патогенами будет уже готов для полноценной борьбы, без привлечения других факторов защиты (воспаления, фагоцитоза и т.д.).

Формирование врожденного иммунитета

Неспецифическая защита есть у каждого человека, она закреплена генетически, способна передаваться по наследству от родителей. Видовой особенностью человека является то, что он не восприимчив к ряду болезней, характерных для других видов. Для формирования врожденного иммунитета важную роль играет внутриутробное развитие и грудное вскармливание после рождения. Мать передает своему ребенку важные антитела, которые закладывают основу его первых защитных сил. Нарушение формирования естественной защиты может привести к иммунодефицитному состоянию из-за:

  • воздействия излучения;
  • химических агентов;
  • болезнетворных организмов в период внутриутробного развития.

Факторы врожденного иммунитета

Что такое врождённый иммунитет и в чем состоит механизм его действия? Совокупность общих факторов врожденного иммунитета призваны создать определенную линию защиты организма от чужеродных агентов. Данная линия состоит из нескольких защитных барьеров, которые выстраивает организм на пути патогенных микроорганизмов:

  1. Эпителий кожи, слизистые оболочки – первичные барьеры, которые обладают колонизационной резистентностью. Вследствие проникновения патогена развивается воспалительная реакция.
  2. Лимфатические узлы – важная защитная система, которая борется с патогеном до внедрения его в систему кровообращения.
  3. Кровь – при попадании инфекции в кровь развивается системный воспалительный ответ, при котором задействуются специальные форменные элементы крови. Если микробы не погибают в крови – инфекция распространяется на внутренние органы.

Клетки врожденного иммунитета

В зависимости от механизмов защиты бывает гуморальный и клеточный ответ. Совокупность гуморальных и клеточных факторов создают единую систему защиты. Гуморальная защита – ответ организма в жидкостной среде, внеклеточном пространстве. Гуморальные факторы врожденного иммунитета подразделяются на:

  • специфические – иммуноглобулины, которые вырабатывают В-лимфоциты;
  • неспецифические – секреты желез, сыворотка крови, лизоцим, т.е. жидкости, обладающие антибактериальными свойствами. К гуморальным факторам относят систему комплимента.

Фагоцитоз – процесс поглощения инородных агентов, происходит посредством клеточной активности. Клетки, которые участвуют в ответе организма подразделяются на:

  • Т-лимфоциты – долгоживущие клетки, которые подразделяются на лимфоциты с разными функциями (натуральные киллеры, регуляторы и др.);
  • В-лимфоциты – продуцируют антитела;
  • нейтрофилы – содержат антибиотические белки, имеют рецепторы хемотаксиса, поэтому мигрируют к месту воспаления;
  • эозинофилы – участвуют в фагоцитозе, отвечают за обезвреживание гельминтов;
  • базофилы – отвечают за аллергическую реакцию в ответ на раздражители;
  • моноциты – специальные клетки, которые превращаются в разные виды макрофагов (костной ткани, легких, печени и т.д.), обладают множеством функций, в т.ч. фагоцитоз, активизация комплимента, регулирование процесса воспаления.

Стимуляторы клеток врожденного иммунитета

Последние исследования ВОЗ показывают, что почти у половины населения планеты важные иммунные клетки – натуральные киллеры, находятся в дефиците. Из-за этого люди чаще подвержены инфекционным, онкологическим заболеваниям. Однако есть специальные вещества, которые стимулируют активность киллеров, к ним относятся:

  • иммуномодуляторы;
  • адаптогены (общеукрепляющие вещества);
  • трансферфакторные белки (ТБ).

Наибольшей эффективностью обладают ТБ, стимуляторы клеток врожденного иммунитета данного вида были обнаружены в молозиве и яичном желтке. Данные стимуляторы широко используют в медицине, их научились выделять из естественных источников, поэтому трансферфакторные белки сейчас находятся в свободном доступе в виде медицинских препаратов. Их механизм действия направлен на восстановление повреждений в системе ДНК, налаживание иммунных процессов видовой особенности человека.

Видео: врожденный иммунитет

Внимание! Информация, представленная в статье, носит ознакомительный характер. Материалы статьи не призывают к самостоятельному лечению. Только квалифицированный врач может поставить диагноз и дать рекомендации по лечению, исходя из индивидуальных особенностей конкретного пациента.

Нашли в тексте ошибку? Выделите её, нажмите Ctrl + Enter и мы всё исправим!

Наличие иммунитета организма – необходимая защита, которая действует как невосприимчивость к чужеродным агентам, в том числе инфекционным возбудителям.

Необходимость иметь иммунитет заложена натурой. Способность сопротивляться берет начало в наследственном факторе. При этом нельзя оставить без внимания приобретенную возможность протекции организма, которая создает барьер для проникновения и размножения в теле различного рода бактерий и вирусов, а также защищает от воздействия производимых ими продуктов. Но иммунитет необязательно является защитой от патогенно – активных агентов. Ведь попадание в тело любого чужеродного микроорганизма способно вызвать иммунологическую реакцию, вследствие чего агент будет подвержен защитному воздействию и в последующей – уничтожен.

Отличие иммунитета заключается в многообразии происхождения, признаках проявления, механизме и некоторых других особенностях. Зависимо от источника иммунитет бывает:

  • Врожденный;
  • Приобретённый;

Главными отличительными характеристиками невосприимчивости считаются: генезис, форма появления, механизм и другие факторы. В зависимости от возникновения, иммунитет может быть врожденным и приобретенным. Первый подразделяется на видового и естественного типа.

Иммунология

Термин «иммунитет» связан со способностью и функциями организма создавать природное препятствие для попадания в него отрицательных агентов инородного происхождения, а также предусматривает способы распознавания чужого во врожденном иммунитете. Существуют механизмы противодействия подобных вредоносных организмов. Разнообразие методов борьбы с опасными возбудителями обусловлено видами и формами иммунитета, которые различают по многообразию и характеризующим признакам.

В зависимости от происхождения и формирования, механизм защиты может иметь врожденный характер, который также разделяется на несколько направлений. Различают неспецифического, естественного, наследственного типа природную способность организма сопротивляться. При таком виде иммунитета факторы защиты в человеческом теле сформировались . Они способствуют борьбе с агентами неизвестного происхождения с момента рождения человека. Данный тип иммунной системы характеризует способность человеческого существа находиться устойчивым к всевозможным болезням, которым может быть, уязвим организм животного, растения.

Приобретенного типа иммунитет характеризуется наличием факторов предохранения, сформировавшимися на протяжении всего жизненного периода. Ненатуральная форма защиты организма подразделяется на естественный и . Вырабатывание первого начинается после того, как человек подвергся влиянию в результате которого в нем начали вырабатываться специальные клетки – антитела, которые оказывают противодействие агенту данного заболевания. Искусственный вид защиты связан с получением организмом уже заранее приготовленных ненатуральным путем клеток, которые были введены внутрь. Имеет место, когда форма вируса активна.

Качественные свойства

Жизненно необходимой функцией, которую выполняет врожденная иммунная система, является регулярная выработка организмом антител естественным способом. Они предназначены для обеспечения первичной реакции на появление инородных агентов в организме. Следует понимать, каковы основные различия врожденного и приобретенного иммунитета. Достаточно важным свойством естественного ответа организма в виде реакции – присутствие системы комплемента. Это так называемый комплекс, который предусматривает в крови наличие белка, обеспечивающего определение и первичную защитную реакцию на чужеродные агенты. Задачами такой системы является выполнение следующих функций:

  • Опсонизация – процесс соединения в поврежденной клетке комплексных элементов;
  • Хемотакисис – слияние сигналов в результате происходящей химической реакции, которая осуществляет привлечение других иммунных агентов;
  • Мембранотропный повреждающий комплекс, в котором белковые сочетания в комплименте отвечают за разрушение защитной мембраны агентов опсонизации;

Преимущественным свойством естественного типа реакции организма является проявление первичного предохранения, на которые влияют молекулярные факторы врожденного иммунитета, в результате чего организм получает данные о неизвестных для него клетках чужеродного происхождения. Впоследствии такого процесса происходит образование приобретенной реакции, которая в некоторых случаях распознания неизвестных организмов будет готова для оказания противодействия, при этом, не привлекая посторонние защитные факторы.

Процесс формирования

Говоря об иммунитете, то он присутствует, как первичные признаки, у каждого организма, и заложен на генетическом уровне. Имеет отличительные черты врожденного иммунитета, а также обладает свойством быть переданным наследственным путем. Человек особенен тем, что у него есть внутренняя способность организма оказывать сопротивление множеству заболеваний, которым уязвимы другие живые существа.

В процессе формирования врожденной защиты главным берётся период внутриутробного развития и последующий стадия вскармливания младенца после появления на свет. Фундаментальное значение имеют переданные новорожденному антитела, дающие начало первым защитным признакам организма. Если в естественный процесс формирования вмешаться или воспрепятствовать, то это приводит к нарушениям , и стать причиной иммунодефицитного состояния. Таких факторов, негативно влияющих на детский организм, множество:

  • излучения;
  • воздействие агентов химического происхождения;
  • болезнетворные микробы во время развития в утробе матери.

Признаки врожденной защиты организма

В чем же заключается предназначение врожденного иммунитета и как происходит процесс защитной реакции?

Комплекс всех признаков, которые характеризуют врожденный иммунитет, определяют особую функцию противоборства организма на вторжение посторонних агентов. Создание подобной защитной линии происходит в несколько этапов, которые настраивают иммунитет на реакцию на патогенные микроорганизмы. К барьерам первичного типа относят кожный эпителий и слизистую оболочку, так как они обладают функцией резистентности. Как результат попадания патогенного организма – воспалительный процесс.

Важной защитной системой является работа лимфатических узлов, которые борются с патогенами до момента попадания в кровеносную систему. Нельзя оставить без внимания свойства крови, которая реагирует на попадание инфекции в тело действием специальных форменных элементов. В случае когда не происходит гибель вредоносных организмов в крови, то инфекционное заболевание начинает формирование и поражает внутренние системы человека.

Развитие клеток

Защитная реакция, зависимо от механизма протекции, может быть выражена гуморальным или клеточным ответом. Объединение которых представляет собой целостную защитную систему. Реакция организма в среде жидкостей и внеклеточного пространства называется гуморальной. Такой фактор врожденного типа иммунной системы можно разделить на:

  • специфический – В – лимфоциты формируют иммуноглобулины;
  • неспецифический – вырабатываются жидкости, которые не обладают антибактерицидным свойством. Сюда причисляют кровяную сыворотку, лизоцим;

К относится система комплимента.

Процессом поглощения агентов инородного происхождения путем воздействия мембраны клеток называется фагоцитоз. Иначе говоря, участвующие в реакции молекулы дифференцируются на:

  • лимфоциты группы Т – отличаются большой продолжительностью жизни, и разделяются по разным функциям. К ним можно отнести регуляторы, киллеры натуральные;
  • лимфоциты группы И – отвечающие за выработку антител;
  • нейтрофилы – отличаются присутствием антибиотических белков, у которых имеются , что объясняет миграцию к очагу воспаления;
  • эозинофилы – принимают участие в процессе фагоцитоза и отвечают за нейтрализацию гельминтов;
  • базофилы – предназначены для реакции на появление раздражителя;
  • моноциты – клетки специального назначения, превращающиеся в различного вида макрофаги и обладающие функциями, такими как, возможность активизировать процесс фагоцитоза, регулировать воспаление.

Факторы, стимулирующие клетки

В последних отчетах ВОЗ значатся такие данные, что практически половина населения планеты не имеет достаточного количества важных иммунных клеток – натуральных киллеров, в организме. Этим обуславливается учащение случаев выявления инфекционных и онкологических заболеваний у пациента. Но медицина развивается стремительно, и уже разработаны и широко используются средства, которые способны стимулировать активность киллеров.

Среди таких веществ имеет место применения адаптогенов, которые отличаются общеукрепляющими свойствами, иммуномодуляторов, трансферфактоных белков, которые обладают наибольшей степенью результативности. Подобного типа , способствующие усилению врожденного иммунитета, можно обнаружить в желтке яйца или молозиве.

Эти стимулирующие вещества распространены и используются в медицинских целях, выделяются искусственно из источников природного происхождения. На сегодня трансферфакторные белки доступны и представлены медицинскими препаратами. Какова природа воздействия? Заключается она в помощи в системы ДНК, запуске защитного процесса исходя из особенностей иммунитета человека.

Изучив природу появления и формирования невосприимчивости к бактериям, различие типов, становится понятно, что для нормальной работы организма надо иметь . Необходимо различать особенности врожденного и приобретенного. Оба дейстсвуют в комплексе, что способствует помощи организма в борьбе с попавшими в него вредными микроэлементами.

Чтобы противостояние было сильным и осуществлялись защитные функции качественно, необходимо изъять неполезные привычки из жизни и стараться следовать здоровому образу существования, дабы исключить возможность разрушения деятельности «крепких» и «рабочих» клеток.

Важна в таком случае комплексность подхода. Прежде всего, изменения должны коснуться вашего образа жизни, питания, использование народных способов повышения иммунитета. До того как вирусная инфекция убьёт организм, следует подготовиться к вероятной атаке. Здесь нужны процедуры закаливания, как простого способа защиты.

Также практикуется хождение без обуви, но это необязательно ходьба по улице. Здесь начинают , но только не по ледяному полу. Это также считается принципом закаливания, ведь поступок направлен на запуск защитных процессов в организме при помощи действия на точки активизации на ступнях, что приводит в оживлению клетки иммунной системы.

Существует множество способов и методов естественной подготовки организма к возможному воздействию внешних факторов. Главное, чтобы процедуры не были противопоказаниями по причине наличия заболеваний, которые в комплексе с методами закаливания могут обернуться негативно для организма.