Тема: определение эдс и внутреннего сопротивления источника тока. Лабораторная работа «Измерение ЭДС и внутреннего сопротивления источника тока» (11 класс)

Источник – это устройство, которое преобразует механическую, химическую, термическую и некоторые другие формы энергии в электрическую. Другими словами, источник является активным сетевым элементом, предназначенным для генерации электроэнергии. Различные типы источников, доступных в электросети, представляют собой источники напряжения и источники тока. Эти две концепции в электронике различаются друг от друга.

Источник постоянного напряжения

Источник напряжения – устройство с двумя полюсами, напряжение его в любой момент времени является постоянным, и проходящий через него ток не оказывает влияния. Такой источник будет идеальным, имеющим нулевое внутреннее сопротивление. В практических условиях он не может быть получен.

На отрицательном полюсе источника напряжения скапливается избыток электронов, у положительного полюса – их дефицит. Состояния полюсов поддерживаются процессами внутри источника.

Батареи

Батареи хранят химическую энергию внутри и способны преобразовывать ее в электрическую. Батареи не могут быть перезаряжены, что является их недостатком.

Аккумуляторы

Аккумуляторы являются перезаряжаемыми батареями. При зарядке электрическая энергия сохраняется внутри в виде химической. Во время разгрузки химический процесс протекает в противоположном направлении, а электрическая энергия высвобождается.

Примеры:

  1. Свинцово-кислотный аккумуляторный элемент. Изготавливается из свинцовых электродов и электролитической жидкости в виде разведенной дистиллированной водой серной кислоты. Напряжение на ячейку – около 2 В. В автомобильных аккумуляторах шесть ячеек обычно соединены в последовательную цепь, на клеммах выхода результирующее напряжение – 12 В;

  1. Никель-кадмиевые аккумуляторы, напряжение ячейки – 1,2 В.

Важно! При небольших токах батареи и аккумуляторы можно рассматривать как хорошее приближение к идеальным источникам напряжения.

Источник переменного напряжения

Электроэнергия производится на электрических станциях с помощью генераторов и после регулирования напряжения передается к потребителю. Переменное напряжение домашней сети 220 В в блоках питания различных электронных устройств легко преобразуется в более низкий показатель при применении трансформаторов.

Источник тока

По аналогии, как идеальный источник напряжения создает постоянное напряжение на выходе, задача источника тока – выдать постоянное значение тока, автоматом контролируя требуемое напряжение. Примерами являются трансформаторы тока (вторичная обмотка), фотоэлементы, коллекторные токи транзисторов.

Расчет внутреннего сопротивления источника напряжения

Реальные источники напряжения обладают собственным электрическим сопротивлением, которое называется «внутреннее сопротивление». Присоединенная на выводы источника нагрузка обозначается под названием «внешнее сопротивление» – R.

Батарея аккумуляторов генерирует ЭДС:

ε = E/Q, где:

  • Е – энергия (Дж);
  • Q – заряд (Кл).

Суммарная ЭДС аккумуляторного элемента является напряжением его разомкнутой цепи при отсутствии нагрузки. Его можно проконтролировать с хорошей точностью цифровым мультиметром. Разность потенциалов, измеренная на выходных контактах батареи, когда она включена на нагрузочный резистор, составит меньшую величину, чем ее напряжение при незамкнутой цепи, по причине протекания тока через нагрузочное внешнее и через внутреннее сопротивление источника, это приводит к рассеиванию энергии в нем как теплового излучения.

Внутреннее сопротивление аккумулятора с химическим принципом действия находится между долей ома и несколькими омами и в основном связано с сопротивлением электролитических материалов, используемых при изготовлении батареи.

Если резистор сопротивлением R подсоединить к батарее, ток в цепи I = ε/(R + r).

Внутреннее сопротивление – не постоянная величина. На него влияет род батареи (щелочная, свинцово-кислотная и т. д.), оно изменяется в зависимости от нагрузочного значения, температуры и срока использования аккумулятора. К примеру, у разовых батареек внутреннее сопротивление возрастает во время использования, а напряжение в связи с этим падает до прихода в состояние, непригодное для дальнейшей эксплуатации.

Если ЭДС источника – заранее данная величина, внутреннее сопротивление источника определяется, измеряя ток, протекающий через нагрузочное сопротивление.

  1. Так как внутреннее и внешнее сопротивление в приближённой схеме включены последовательно, можно использовать законы Ома и Кирхгофа для применения формулы:
  1. Из этого выражения r = ε/I — R.

Пример. Аккумулятор с известной ЭДС ε = 1.5 В и соединен последовательно с лампочкой. Падение напряжения на лампочке составляет 1,2 В. Следовательно, внутреннее сопротивление элемента создает падение напряжения: 1,5 — 1,2 = 0,3 В. Сопротивление проводов в цепи считается пренебрежимо малым, сопротивление лампы не известно. Измеренный ток, проходящий через цепь: I = 0,3 А. Нужно определить внутреннее сопротивление аккумулятора.

  1. По закону Ома сопротивление лампочки R = U/I = 1,2/0,3 = 4 Ом;
  2. Теперь по формуле для расчета внутреннего сопротивления r = ε/I — R = 1,5/0,3 — 4 = 1 Ом.

В случае короткого замыкания внешнее сопротивление падает почти до нуля. Ток может ограничивать свое значение только маленьким сопротивлением источника. Сила тока, возникающая в такой ситуации, настолько велика, что источник напряжения может быть поврежден тепловым воздействием тока, существует опасность возгорания. Риск пожара предотвращается установкой предохранителей, например, в цепях автомобильных аккумуляторов.

Внутреннее сопротивление источника напряжения – важный фактор, когда решается вопрос, как передать наиболее эффективную мощность подсоединенному электроприбору.

Важно! Максимальная передача мощности происходит, когда внутреннее сопротивление источника равно сопротивлению нагрузки.

Однако при этом условии, помня формулу Р = I² x R, идентичное количество энергии отдается нагрузке и рассеивается в самом источнике, а его КПД составляет всего 50%.

Требования нагрузки должны быть тщательно рассмотрены для принятия решения о наилучшем использовании источника. Например, свинцово-кислотная автомобильная батарея должна обеспечивать высокие токи при сравнительно низком напряжении 12 В. Ее низкое внутреннее сопротивление позволяет ей это делать.

В некоторых случаях источники питания высокого напряжения должны иметь чрезвычайно большое внутреннее сопротивление, чтобы ограничить ток к. з.

Особенности внутреннего сопротивления источника тока

У идеального источника тока бесконечное сопротивление, а для подлинных источников можно представить приближенный вариант. Эквивалентная электросхема – это сопротивление, подключенное к источнику параллельно, и внешнее сопротивление.

Токовый выход от источника тока распределяется так: частично ток течет через наиболее высокое внутреннее сопротивление и через низкое сопротивление нагрузки.

Выходной ток будет находиться из суммы токов на внутреннем сопротивлении и нагрузочного Iо = Iн + Iвн.

Получается:

Iн = Iо — Iвн = Iо — Uн/r.

Эта зависимость показывает, что когда внутреннее сопротивление источника тока растет, тем больше снижается ток на нем, а резистор нагрузки получает большую часть тока. Интересно, что напряжение влиять не будет на токовую величину.

Выходное напряжение реального источника:

Uвых = I x (R x r)/(R +r) = I x R/(1 + R/r). Оцените статью:

На концах проводника, а значит, и тока необходимо наличие сторонних сил неэлектрической природы, с помощью которых происходит разделение электрических зарядов .

Сторонними силами называются любые силы, действующие на электрически заряженные частицы в цепи, за исключением электростатических (т. е. кулоновских).

Сторонние силы приводят в движение заряженные частицы внут-ри всех источников тока: в генераторах, на электростанциях, в гальванических элементах, аккумуляторах и т. д.

При замыкании цепи создается электрическое поле во всех про-водниках цепи. Внутри источника тока заряды движутся под действием сторонних сил против кулоновских сил (электроны движут-ся от положительно заряженного электрода к отрицательному), а во всей остальной цепи их приводит а движение электрическое поле (см. рис. выше).

В источниках тока в процессе работы по разделению заряженных частиц происходит превращение разных видов энергии в электричес-кую. По типу преобразованной энергии различают следующие виды электродвижущей силы:

- электростатическая — в электрофорной машине, в которой происходит превращение механической энергии при трении в электрическую;

- термоэлектрическая - в термоэлементе — внутренняя энергия нагретого спая двух проволок, изготовленных из разных металлов, превращается в электрическую;

- фотоэлектрическая — в фотоэлементе. Здесь происходит превращение энергии света в элек-трическую: при освещении некоторых веществ, например, селена, оксида меди (I) , кремния наблюдается потеря отрицательного электрического заряда;

- химическая — в гальванических элементах, аккумуляторах и др. источниках, в которых происходит превращение химической энергии в электрическую.

Электродвижущая сила (ЭДС) — характеристика источников тока. Понятие ЭДС было введено Г. Омом в 1827 г. для цепей постоянного тока. В 1857 г. Кирхгофф определил ЭДС как работу сторонних сил при переносе единичного электрического заряда вдоль замкнутого контура:

ɛ = A ст /q ,

где ɛ — ЭДС источника тока, А ст — работа сторонних сил , q — количество перемещенного заряда.

Электродвижущую силу выражают в вольтах.

Можно говорить об электродвижущей силе на любом участке цепи. Это удельная работа сторонних сил (работа по перемещению единичного заряда) не во всем контуре, а только на данном участке.

Внутреннее сопротивление источника тока.

Пусть имеется простая замкнутая цепь, состоящая из источника тока (например, гальванического элемента, аккумулятора или генератора) и резистора с сопротивлением R . Ток в замкну-той цепи не прерывается нигде, следовательно, oн существует и внутри источника тока. Любой источник представляет собой некоторое сопротивление дли тока. Оно называется внутренним сопротивлением источника тока и обозначается буквой r .

В генераторе r — это сопротивление обмотки, в гальваническом элементе — сопротивление раствора электролита и электродов.

Таким образом, источник тока характеризуется величинами ЭДС и внутреннего сопротивлении, которые определяют его качество. Например, электростатические машины имеют очень большую ЭДС (до десятков тысяч вольт), но при этом их внутреннее сопротивление огромно (до со-тни Мом). Поэтому они непригодны для получения сильных токов. У гальванических элементов ЭДС всего лишь приблизительно 1 В, но зато и внутреннее сопротивление мало (приблизительно 1 Ом и меньше). Это позволяет с их помощью получать токи, измеряемые амперами.

Допустим, есть простейшая электрическая замкнутая цепь, включающая в себя источник тока, например генератор, гальванический элемент или аккумулятор, и резистор, обладающий сопротивлением R. Поскольку ток в цепи нигде не прерывается, то и внутри источника он течет.

В такой ситуации можно сказать, что любой источник обладает некоторым внутренним сопротивлением, препятствующим току. Это внутреннее сопротивление характеризует источник тока и обозначается буквой r. Для или аккумулятора внутреннее сопротивление - это сопротивление раствора электролита и электродов, для генератора - сопротивление обмоток статора и т. д.

Таким образом, источник тока характеризуется как величиной ЭДС, так и величиной собственного внутреннего сопротивления r – обе эти характеристики свидетельствуют о качестве источника.

Электростатические высоковольтные генераторы (как генератор Ван де Граафа или генератор Уимшурста), к примеру, отличаются огромной ЭДС измеряемой миллионами вольт, при этом их внутреннее сопротивление измеряется сотнями мегаом, потому они и непригодны для получения больших токов.


Гальванические элементы (такие как батарейка) - напротив - имеют ЭДС порядка 1 вольта, хотя внутреннее сопротивление у них порядка долей или максимум - десятка Ом, и от гальванических элементов поэтому можно получать токи в единицы и десятки ампер.

На данной схеме показан реальный источник с присоединенной нагрузкой. Здесь обозначены , его внутреннее сопротивление, а также сопротивление нагрузки. Согласно , ток в данной цепи будет равен:

Поскольку участок внешней цепи однороден, то из закона Ома можно найти напряжение на нагрузке:

Выразив из первого уравнения сопротивление нагрузки, и подставив его значение во второе уравнение, получим зависимость напряжения на нагрузке от тока в замкнутой цепи:

В замкнутом контуре ЭДС равна сумме падений напряжений на элементах внешней цепи и на внутреннем сопротивлении самого источника. Зависимость напряжения на нагрузке от тока нагрузки в идеальном случае линейна.

График это показывает, но экспериментальные данные на реальном резисторе (крестики возле графика) всегда отличаются от идеала:


Эксперименты и логика показывают, что при нулевом токе нагрузки напряжение на внешней цепи равно ЭДС источника, а при нулевом напряжении на нагрузке ток в цепи равен . Это свойство реальных цепей помогает экспериментально находить ЭДС и внутреннее сопротивление реальных источников.

Экспериментальное нахождение внутреннего сопротивления

Чтобы экспериментально определить данные характеристики, строят график зависимости напряжения на нагрузке от величины тока, затем экстраполируют его до пересечения с осями.

В точке пересечения графика с остью напряжения находится значение ЭДС источника, а в точке пересечения с осью тока находится величина тока короткого замыкания. В итоге внутреннее сопротивление находится по формуле:

Развиваемая источником полезная мощность выделяется на нагрузке. График зависимости этой мощности от сопротивления нагрузки приведен на рисунке. Эта кривая начинается от пересечения осей координат в нулевой точке, затем возрастает до максимального значения мощности, после чего спадает до нуля при сопротивлении нагрузки равном бесконечности.


Чтобы найти максимальное сопротивление нагрузки, при котором теоретически разовьется максимальная мощность при данном источнике, берется производная от формулы мощности по R и приравнивается к нулю. Максимальная мощность разовьется при сопротивлении внешней цепи, равном внутреннему сопротивлению источника:

Это положение о максимальной мощности при R = r, позволяет экспериментально найти внутреннее сопротивление источника, построив зависимость мощности, выделяемой на нагрузке, от величины сопротивления нагрузки. Найдя реальное, а не теоретическое, сопротивление нагрузки, обеспечивающее максимальную мощность, определяют реальное внутреннее сопротивление источника питания.

КПД источника тока показывает отношение максимальной выделяемой на нагрузке мощности к полной мощности, которую в данный момент развивает

Цель работы: Научиться экспериментальным путем определять ЭДС, и внутреннее сопротивление источника тока.

Приборы и оборудование: Источники электрической энергии, амперметр (до 2А с делением до 0,1А), вольтметр (постоянного до 3А с делением до 0,3В), магазин (сопротивления до 10 Ом) ключ, соединительные провода.

ТЕОРИЯ:

Для поддержания тока в проводнике необходимо, чтобы разность потенциалов (напряжение) на его концах была неизменной. Для этого используется источник тока. Разность потенциалов на его полюсах образуется вследствие разделения зарядов на положительные и отрицательные. Работу по разделению зарядов выполняют сторонние силы (не электрического происхождения).

Величина, измеряемая работой, совершенной сторонними силами при перемещении единичного положительного электрического заряда внутри источника тока, называется электродвижущей силой источника тока (ЭДС) и выражается в вольтах.

Когда цепь замыкается, разделенные в источнике тока заряды образуют электрическое поле, которое перемещает заряды по внешней цепи; внутри же источника тока заряды движутся навстречу полю под действием сторонних сил. Таким образом, энергия, запасенная в источнике тока, расходуется на работу по перемещению заряда в цепи с внешним R и внутренним r сопротивлениями.

ХОД РАБОТЫ

1. Собрать электрическую цепь как показано на схеме.

2. Измерить ЭДС источника электрической энергии замкнув его на вольтметр (схема).

3. Измерить силу тока и падение напряжения на заданном сопротивлении.

Е U I R r rcр
1.
2.
3.

4. Вычислить внутреннее сопротивление по закону Ома для всей цепи.

5. Произвести опыты с другими сопротивлениями и вычислить внутреннее сопротивление элемента.

6. Вычислить среднее значение внутреннего сопротивления элемента.

7. Результаты всех измерений и вычислений записать в таблицу.

8. Найти абсолютную и относительную погрешность.



9. Сделать вывод.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Укажите условия существования электрического тока в проводнике.

2. Какова роль источника электрической энергии в электрической цепи?

3. От чего зависит напряжение на зажимах источника электрической энергии?

ЛАБОРАТОРНАЯ РАБОТА № 7

ОПРЕДЕЛЕНИЕ ЭЛЕКТРОХИМИЧЕСКОГО ЭКВИВАЛЕНТА МЕДИ.

Цель работы : научиться на практике рассчитывать электрохимический эквивалент меди.

Оборудование: Весы с разновесом, амперметр, часы., источник электрической энергии, реостат, ключ, медные пластины (электроды), соединительные провода, электролитическая ванна с раствором медного купороса.

Теория

Процесс, при котором молекулы солей, кислот и щелочей при растворении в воде или других растворителях распадаются на заряженные частицы (ионы), назы­вается электролитической диссоциацией, получившийся при этом раствор с поло­жительными и отрицательными ионами называется электролитом.

Если в сосуд с электролитом поместить пластины (электроды), соединенные с зажимами источника тока (создать в электролите электрическое поле), то положи­тельные ионы будут двигаться к катоду, а отрицательные - к аноду. Следовательно, в растворах кислот, солей и щелочей электрический заряд будет перемещаться вместе с частицами вещества. У электродов при этом происходит окислительно-восстановительные реакции, при которых на них выделяется вещест­во. Процесс прохождения электрического тока через электролит, сопровождающий­ся химическими реакциями называется электролизом.

Для электролиза справедлив закон Фарадея: масса выделившегося вещества на электроде прямо пропорциональна заряду, прошедшему через электролит:

где k-электрохимический эквивалент-количествовещества, выделенное при прохождении через электролит 1 Кл электричества. Измерив силу тока в цепи, вре­мя его прохождения и массу выделившегося на катоде вещества можно определить электрохимический эквивалент (1с выражается в кг/Кл).

где m-масса меди, выделившейся на катоде; I-сила тока в цепи; t- время пропускания тока в цепи.

Соберите электрическую цепь по схеме.

1. Одну из пластин, которая будет катодом, (если пластина мокрая, ее надо подсушить) тщательно взвесить с точностью до 10мг и записать результат в таблицу.

2. Вставить электрод в электролитическую ванну и составить электрическую цепь согласно схеме.

3. Отрегулировать реостатом ток, чтобы величина его не превышала 1А на 50см 2 погруженной части катодной пластины.

4. Замкнуть цепь на 15-20 минут.

5. Разомкнуть цепь, вынуть катодную пластинку, смыть с нее остатка раствора и высушить под рукосушителем.

6. Взвесить высушенную пластину с точностью до 10мг.

7. Значение тока, время опыта, увеличение в массе катодной пластину записать в таблицу и определить электрохимический эквивалент.

Оценка погрешностей.

.

Относительная погрешность:
.

, следовательно .

После этого дается результат в виде: .

Сравните полученный результат с табличным.

Контрольные вопросы.

1. Что такое электролитическая диссоциация, электролиз?

2. До каких пор будет происходить электролиз медного купороса, если оба электрода медные? Оба электрода угольные?

3. Быстрее или медленнее пойдет электролиз, если один из медных электродов заменить цинковым?

Электрический ток в проводнике возникает под воздействием электрического поля, заставляющего свободные заряженные частицы приходить в направленное движение. Создание тока частиц - серьезная проблема. Соорудить такое устройство, которое будет поддерживать разность потенциалов поля длительное время в одном состоянии - задача, решение которой оказалось под силу человечеству только к концу XVIII века.

Первые попытки

Первые попытки «накопить электричество» для дальнейшего его исследования и использования были предприняты в Голландии. Немец Эвальд Юрген фон Клейст и голландец Питер ван Мушенбрук, проводившие свои исследования в городке Лейден, создали первый в мире конденсатор, названный позже «лейденской банкой».

Накопление электрического заряда уже проходило под действием механического трения. Использовать разряд через проводник можно было в течение некоторого, достаточно короткого, промежутка времени.

Победа человеческого разума над такой эфемерной субстанцией, как электричество, оказалась революционной.

К сожалению, разряд (электрический ток, создаваемый конденсатором) длился настолько коротко, что создать не мог. Кроме того, напряжение, даваемое конденсатором, постепенно понижается, что не оставляет возможности получать длительный ток.

Нужно было искать иной способ.

Первый источник

Эксперименты итальянца Гальвани по исследованию «животного электричества» были оригинальной попыткой найти естественный источник тока в природе. Развешивая лапки препарированных лягушек на металлических крючках железной решетки, он обратил внимание на характерную реакцию нервных окончаний.

Однако выводы Гальвани опроверг другой итальянец - Алессандро Вольта. Заинтересовавшись возможностью получения электричества из организмов животных, он провел серию экспериментов с лягушками. Но вывод его оказался полной противоположностью предыдущим гипотезам.

Вольта обратил внимание, что живой организм является лишь индикатором электрического разряда. При прохождении тока мышцы лапок сокращаются, указывая на разность потенциалов. Источником электрического поля оказался контакт разнородных металлов. Чем дальше друг от друга они находятся в ряду химических элементов, тем значительнее эффект.

Пластины из разнородных металлов, проложенные бумажными дисками, пропитанными раствором электролита, создавали длительное время необходимую разность потенциалов. И пусть она была невысока (1,1 В), но электрический ток можно было исследовать долгое время. Главное, что напряжение сохранялось неизменным так же долго.

Что происходит

Почему в источниках, получивших название «гальванических элементов», вызывается такой эффект?

Два металлических электрода, помещенных в диэлектрик, играют разные роли. Один поставляет электроны, другой их принимает. Процесс окислительно-восстановительной реакции приводит к появлению избытка электронов на одном электроде, который называют отрицательным полюсом, и недостатка на втором, обозначим его как положительный полюс источника.

В самых простых гальванических элементах окислительные реакции происходят на одном электроде, восстановительные - на другом. Электроны приходят на электроды из внешней части цепи. Электролит является проводником тока ионов внутри источника. Сила сопротивления руководит длительностью процесса.

Медно-цинковый элемент

Принцип действия гальванических элементов интересно рассмотреть на примере медно-цинкового гальванического элемента, действие которого идет в счет энергии цинка и сульфата меди. В этом источнике пластина из меди помещена в раствор а цинковый электрод погружен в раствор сульфата цинка. Растворы разделены пористой прокладкой во избежание смешивания, но обязательно соприкасаются.

Если цепь замкнута, поверхностный слой цинка окисляется. В процессе взаимодействия с жидкостью атомы цинка, превратившись в ионы, появляются в растворе. На электроде высвобождаются электроны, которые могут принимать участие в образовании тока.

Попадая на медный электрод, электроны принимают участие в восстановительной реакции. Из раствора на поверхностный слой поступают ионы меди, в процессе восстановления они превращаются в атомы меди, осаждаясь на медной пластине.

Суммируем происходящее: процесс работы гальванического элемента сопровождается переходом электронов восстановителя к окислителю по внешней части цепи. Реакции идут на обоих электродах. Внутри источника протекает ионный ток.

Сложности использования

В принципе, любая из возможных окислительно-восстановительных реакций может быть использована в батареях. Но веществ, способных работать в ценных технически элементах, не так уж и много. Более того, многие реакции требуют затрат дорогостоящих веществ.

Современные аккумуляторные батареи имеют более простое строение. Два электрода, помещенные в один электролит, заполняют сосуд - корпус батареи. Такие конструктивные особенности упрощают строение и удешевляют аккумуляторы.

Любой гальванический элемент способен создавать постоянный ток.

Сопротивление тока не позволяет всем ионам одновременно оказаться на электродах, поэтому элемент работает достаточно долго. Химические реакции образования ионов рано или поздно прекращаются, элемент разряжается.

Источника тока имеет большое значение.

Немного о сопротивлении

Использование электрического тока, бесспорно, вывело научно-технический прогресс на новую ступень, дало ему гигантский толчок. Но сила сопротивления протеканию тока становится на пути такого развития.

С одной стороны, электрический ток обладает бесценными свойствами, используемыми в быту и технике, с другой - имеется значительное противодействие. Физика как наука о природе пытается установить баланс, привести в соответствие эти обстоятельства.

Сопротивление тока возникает вследствие взаимодействия электрически заряженных частиц с веществом, по которому они движутся. Исключить этот процесс в нормальных температурных условиях невозможно.

Сопротивление

Источника тока и противодействие внешней части цепи имеют несколько различную природу, но одинаковым в этих процессах является совершение работы по перемещению заряда.

Сама работа зависит только от свойств источника и его наполнения: качеств электродов и электролита, так же как для внешних частей цепи, сопротивление которых зависит от геометрических параметров и химических характеристик материала. К примеру, сопротивление металлического провода возрастает с увеличением его длины и уменьшается при расширении площади сечения. При решении задачи, как уменьшить сопротивление, физика рекомендует использовать специализированные материалы.

Работа тока

В соответствии с законом Джоуля-Ленца в проводниках выделяется количество теплоты, пропорциональное сопротивлению. Если количество теплоты обозначить Q внут. , силу тока I, время его протекания t, то получим:

  • Q внут. = I 2 · r · t,

где r - внутреннее сопротивление источника тока.

Во всей цепи, включающей как внутреннюю, так и внешнюю ее части, выделится полное количество теплоты, формула которого имеет вид:

  • Q полное = I 2 · r · t + I 2 · R · t = I 2 · (r +R) ·t,

Известно, как обозначается сопротивление в физике: внешняя цепь (все элементы, кроме источника) имеет сопротивление R.

Закон Ома для полной цепи

Учтем, что основную работу совершают сторонние силы внутри источника тока. Ее величина равна произведению заряда, переносимого полем, и электродвижущей силы источника:

  • q · E = I 2 · (r + R) · t.

понимая, что заряд равен произведению силы тока на время его протекания, имеем:

  • E = I · (r + R).

В соответствии с причинно-следственными связями закон Ома имеет вид:

  • I = E: (r + R).

В замкнутой цепи прямо пропорциональна ЭДС источника тока и обратно пропорциональна общему (полному) сопротивлению цепи.

Опираясь на эту закономерность, можно определить и внутреннее сопротивление источника тока.

Разрядная емкость источника

К основным характеристикам источников можно отнести и разрядную емкость. Максимальное количество электричества, получаемое при эксплуатации в определенных условиях, зависит от силы тока разряда.

В идеальном случае, когда выполняются определенные приближения, разрядную емкость можно считать постоянной.

К примеру, стандартная батарейка разности потенциалов 1,5 В обладает разрядной емкостью 0,5 А·ч. Если ток разрядки 100 мА, то работает в течение 5 часов.

Способы зарядки батарей

Эксплуатация батарей приводит к их разрядке. зарядка малогабаритных элементов осуществляется при помощи тока, значение силы которого не превышает одной десятой емкости источника.

Предлагаются следующие способы зарядки:

  • использование неизменного тока в течение заданного времени (порядка 16 часов током 0,1 емкости аккумулятора);
  • зарядка понижающим током до заданного значения разности потенциалов;
  • использование несимметричных токов;
  • последовательное применение кратких импульсов зарядки и разрядки, при которых время первой превышает время второй.

Практическая работа

Предлагается задание: определить внутреннее сопротивление источника тока и ЭДС.

Для его выполнения необходимо запастись источником тока, амперметром, вольтметром, ползунковым реостатом, ключом, набором проводников.

Использование позволит определить внутреннее сопротивление источника тока. Для этого необходимо знать его ЭДС, величину сопротивления реостата.

Расчетная формула сопротивления тока во внешней части цепи может быть определена из закона Ома для участка цепи:

  • I = U: R,

где I - сила тока во внешней части цепи, измеряется амперметром; U - напряжение на внешнем сопротивлении.

Для повышения точности измерения делаются не менее 5 раз. Для чего это нужно? Измеренные в ходе эксперимента напряжение, сопротивление, ток (вернее, сила тока) используются далее.

Чтобы определить ЭДС источника тока, воспользуемся тем, что напряжение на его клеммах при разомкнутом ключе практически равно ЭДС.

Соберем цепь из последовательно включенных батареи, реостата, амперметра, ключа. К клеммам источника тока подключаем вольтметр. Разомкнув ключ, снимаем его показания.

Внутреннее сопротивление, формула которого получена из закона Ома для полной цепи, определим математическими расчетами:

  • I = E: (r + R).
  • r = E: I - U: I.

Измерения показывают, что внутреннее сопротивление бывает значительно меньше внешнего.

Практическая функция аккумуляторов и батарей находит широкое применение. Бесспорная экологическая безопасность электродвигателей не подлежит сомнению, но создать емкий, эргономичный аккумулятор - проблема современной физики. Ее решение приведет к новому витку развития автомобильной техники.

Малогабаритные, легкие, емкие аккумуляторные батареи также крайне необходимы в мобильных электронных устройствах. Запас энергии, применяемой в них, напрямую связан с работоспособностью устройств.