Привет студент. Квантовые точки — новая технология производства дисплеев

Важнейшим объектом физики низкоразмерных полупроводниковых геретоструктур являются так называемые квазинульмерные системы или квантовые точки. Дать точное определение квантовых точек достаточно трудно. Это связано с тем, что в физической литературе квантовыми точками называют широкий класс квазинульмерных систем, в которых проявляется эффект размерного квантования энергетических спектров электронов, дырок и экситонов. К этому классу, прежде всего, относят полупроводниковые кристаллы, у которых все три пространственных размера порядка боровского радиуса экситона в объёмном материале. Данное определение предполагает, что квантовая точка находится в вакууме, газовой или жидкой среде, либо ограничена каким-либо твердотельным материалом, отличающимся от материала, из которого она изготовлена. В этом случае трёхмерное пространственное ограничение элементарных возбуждений в квантовых точках обусловлено наличием границ раздела между различными материалами и средами, т. е. существованием гетерограниц. Такие квантовые точки часто называют микро- или нанокристаллами. Однако это простое определение не является полным, поскольку есть квантовые точки, для которых гетерограницы в одном либо двух измерениях отсутствуют. Несмотря на это, движение электронов, дырок или экситонов в таких квантовых точках пространственно ограничено из-за наличия потенциальных ям, возникающих, например, благодаря механическим напряжениям или флуктуациям толщины полупроводниковых слоёв. В этом смысле можно сказать, что квантовая точка - это любая трёхмерная потенциальная яма, заполненная полупроводниковым материалом, с характерными размерами порядка, в которой движение электронов, дырок и экситонов пространственно ограничено в трёх измерениях .

Методы изготовления квантовых точек

Среди всего многообразия различных квантовых точек можно выделить несколько основных типов, которые наиболее часто используются в экспериментальных исследованиях и приложениях. Прежде всего, это нанокристаллы в жидкостях, стёклах и в матрицах широкозонных диэлектриков (рис.1). Если они выращиваются в стеклянных матрицах, то, как правило, имеют сферическую форму. Именно в такой системе, представлявшей собой квантовые точки из CuCl, внедрённые в силикатные стёкла, при исследовании однофотонного поглощения был впервые обнаружен эффект трёхмерного размерного квантования экситонов. Эта работа положила начало бурному развитию физики квазинульмерных систем.

Рис.1.

Квантовые точки в кристаллической диэлектрической матрице могут быть прямоугольными параллелепипедами, как это имеет место для квантовых точек на основе CuCl, встроенных в NaCl. Нанокристаллами являются и квантовые точки, выращенные в полупроводниковых матрицах методом капельной эпитаксии .

Другим важным типом квантовых точек являются так называемые самоорганизованные квантовые точки, которые изготавливаются методом Странски-Крастанова с помощью техники молекулярно-лучевой эпитаксии (рис.2). Их отличительной особенностью является то, что они связаны между собой посредством сверхтонкого смачивающегося слоя, материал которого совпадает с материалом квантовых точек. Таким образом, в этих квантовых точках отсутствует одна из гетерограниц. К этому же типу, в принципе, могут быть отнесены пористые полупроводники, например пористый Si, а также потенциальные ямы в тонких полупроводниковых слоях, возникающие благодаря флуктуациям толщины слоёв .

Рис.2.

Рис.3. Структура с индуцированными механическими напряжениями InGaAs квантовыми точками. 1 - накрывающий слой GaAs; 2 - самоорганизованные InP квантовые точки, которые задают механические напряжения, приводящие к возникновению трёхмерных потенциальных ям в слое InGaAs; 3 и 6 - буферные слои GaAs; 4 - тонкая InGaAs квантовая яма, в которой образуются индуцированные механическими напряжениями квантовые точки; 5 - квантовые точки; 7 - подложка GaAs. Точечными линиями показаны профили механических наряжений.

Квантовые точки, индуцированные механическими напряжениями, можно отнести к третьему типу (рис.3). Они образуются в тонких полупроводниковых слоях благодаря механическим напряжениям, которые возникают из-за рассогласования постоянных решётки материалов гетерограниц. Эти механические напряжения приводят к появлению в тонком слое трёхмерной потенциальной яме для электронов, дырок и экситонов. Из рис. 3. видно, что такие квантовые точки не имеют гетерограниц в двух направлениях .

Современный мир переполнен всевозможной информацией. Особенно интересует людей область медицинских открытий. Частенько можно услышать о таком диво-приборе, как очки Панкова. Отзывы очень многих практиков довольно обнадеживающие, но есть и не такие уж радужные впечатления, как обещает реклама аппарата. Что же представляют собой чудодейственные очки, и в чем заключается суть их применения в области восстановления зрения взрослых и детей?

Методика воздействия на глаза квантовых очков профессора Панкова

Суть инновационной методики лечения глаз Панкова заключается в восстановлении зрения с помощью воздействия на сетчатку глаза цветного излучения. Строение человеческого ока таково, что оно различает цвета согласно импульсу головного мозга на определенные нервные окончания. Когда на глаза воздействуют в быстром темпе различные цветовые излучения, возбуждаются все ткани и нервные окончания, улучшается кровоснабжение и происходит оживление тех участков, которые, казалось бы, уже не выполняют свою функцию.

Новый аппарат, применяемый во многих медицинских центрах по восстановлению зрения, имеет положительные отзывы. Очки Панкова, как считают многие специалисты в сфере офтальмологии и цветотерапии, заслуживают внимания тех людей, которые теряют зрение или имеют побочные эффекты от работы за компьютером.

По своей сути квантовые очки Панкова - тренажерный стимулятор, который улучшает физиологическое предназначение каждой составляющей глазного аппарата. Очень много мнений сегодня сосредоточено вокруг темы, что же собой представляют квантовые очки Панкова. Отзывы бывают как лестными, так и отрицательными.

Где можно почерпнуть подробную информацию о приборе Панкова?

Перед тем как проект прибора был утвержден и разрешен для массового выпуска с целью применения в медицинской сфере для лечения зрения людей, автор - профессор Панков - написал интересный труд по теме возможностей восстановления зрения именно с помощью воздействия на глаза всех оттенков радуги.

Как выглядят очки Панкова, отзывы о данном приборе можно найти без особых проблем. Но в противоречивой информации от разных продавцов не всегда можно конкретно понять, что же все-таки лечит данный прибор и как его применять. Поэтому в большинстве случаев те, кому действительно необходима помощь в восстановлении своего зрения, обращаются за пояснениями к книге профессора, описывающей физиологическое значение каждого цвета, - «Радуга прозрения». Очки Панкова, отзывы о них имеют прямое отношение к книге.

Сегодня рынок медицинских приборов переполнен подделками, инструкции продаваемых аппаратов почти в каждом втором случае включают описания из авторского источника, но они не совсем конкретные касаемо применения их на практике.

В книге описаны методы воздействия на освещения, которое является разминкой. Но не всегда упражнения, например наблюдение за рыбками в аквариуме с цветным освещением, дает эффект. А вот заслуженное признание за счет ритмичности своей работы получил созданный автором прибор - очки профессора Панкова. Отзывы, безусловно, не могут дать детального ответа по поводу эффективности прибора. Чтобы получить достоверную оценку очков для восстановления зрения, нужно еще знать и мнение профессиональных офтальмологов.

Без назначения офтальмолога аппарат не применяется на практике. Эффект от него может профессионально оценить только специалист.

Влияние очков на восстановление зрения

Очки Панкова воздействуют на глаза таким образом:

  • за счет подаваемых световых сигналов происходит массаж глазных мышц; снимается спазм зрачка, который во время тренировки то сужается, то расширяется;
  • за счет ритмичной работы глазного аппарата улучшается отток внутриглазной жидкости, и передняя камера глаза получает колебание глубины восприятия изображения;
  • сокращение мышц улучшает кровообращение, за счет чего происходит эффективная микроциркуляция в сетчатке глаза, улучшается питание всех тканей, поэтому и улучшается зрительное восприятие.

В большинстве случаев положительные отзывы очки Панкова заслуживают при использовании в качестве тренажера для профилактики незапущенных заболеваний глаз, а также для тренировки зрения людей, профессиональная сфера деятельности которых связана с большой нагрузкой на зрение: компьютерщиков, бухгалтеров, кассиров, научных сотрудников, летчиков.

Очки Панкова назначаются офтальмологом при начальной степени катаракты, астенопии, амблиопии, прогрессирующей миопии, глаукоме, косоглазии, близорукости, развитой дальнозоркости, дистрофии сетчатки.

Если ориентироваться на положительные отзывы, очки Панкова рекомендуется также применять для профилактики осложнений в послеоперационный период, если хирургическое вмешательство было проведено в области глаз.

Факторы, обуславливающие использование очков

  • Анализируя все отзывы, очки Панкова следует применять в качестве тренажера офисным работникам, которые не имеют фактически перерывов в своей работе во время обработки данных на компьютерной технике.
  • Положительно о приборах отзываются и студенты, которым приходится и днем, и ночью напрягать зрение за чтением книг.
  • Полезны очки Панкова и тем, кто вместо обычных очков носит современные линзы, от которых устают глаза и часто краснеют.
  • Во многих ситуациях врач-офтальмолог выписывает тренинги аппаратом, если уверен в угрозе развития того или иного заболевания глаз.
  • Особенно полезно применение прибора при поставленном специалистом диагнозе - спазм аккомодации.

Возможные противопоказания применения инновационного тренажера для зрения

Не разрешено использование прибора Панкова при сильных воспалительных процессах глаз, психических заболеваниях, онкологии, заболеваниях центральной нервной системы, беременности, тяжелых формах сахарного диабета, туберкулезе легких, восстановлении после инфаркта или инсульта, а также не рекомендуется практика на детях младше трех лет.

Все "за" и "против" применения прибора для восстановления зрения

Как уже указывалось выше, очень многие, кому довелось столкнуться с очками Панкова на практике, отмечают положительный эффект после прохождения курса лечения под наблюдением врача-офтальмолога. Количество пациентов детского возраста в общем соотношении превышает число больных средней и пожилой возрастной категории. Практика говорит о важности исправления в раннем возрасте.

Люди, которые решили применять прибор без назначения врача, эффект не могут оценить профессионально, поэтому и много негативных отзывов, которые связывают это открытие не с чем иным, как с шарлатанством.

Советы профессиональных офтальмологов по поводу применения очков Панкова

Каждый офтальмолог, прежде чем назначить курс лечения очками Панкова, всегда перед этим ставит четкий диагноз. Прибор может не давать положительных сдвигов к улучшению состояния зрения, если болезнь слишком запущена. Очки Панкова можно применять только после медикаментозного лечения, после снятия воспалений.

Где можно приобрести очки Панкова?

Чего точно не следует делать, исходя из выше сказанного, так это приобретать прибор через Интернет-магазины. Причина этому - очень много подделок эффективного медицинского аппарата и очень много рекламы.

Причем реклама аппарата в большей степени акцентирует внимание покупателя не на его тренажерном предназначении, а на лечебных свойствах. Особенно активно очки Панкова предлагаются на сайтах мегаполисов. Так, для примера была проведена оценка мнений о данном аппарате жителей Санкт-Петербурга, которые удосужились приобрести его через виртуальных продавцов и испытать на практике. Если изучать эти отзывы, очки Панкова (Спб - не единственный регион, жители которого попались на уловки рекламщиков) вызвали очень много негативных характеристик и недоверия к данной инновации.

Так что восстанавливать свое зрение стоит посещая офтальмолога, а если и покупать прибор, то только по рекомендации компетентного доктора, который уж точно плохого не посоветует.



Доброе время суток, Хабражители! Я думаю многие заметили, что все чаще и чаще стала появляться реклама о дисплеях основанных на технологии квантовых точек, так называемые QD – LED (QLED) дисплеи и несмотря на то, что на данный момент это всего лишь маркетинг. Аналогично LED TV и Retina это технология создания дисплеев LCD, использующая в качестве подсветки светодиоды на основе квантовых точек.

Ваш покорный слуга решил все же разобраться что такое квантовые точки и с чем их едят.

Вместо введения

Квантовая точка - фрагмент проводника или полупроводника, носители заряда (электроны или дырки) которого ограничены в пространстве по всем трём измерениям. Размер квантовой точки должен быть настолько мал, чтобы квантовые эффекты были существенными. Это достигается, если кинетическая энергия электрона заметно больше всех других энергетических масштабов: в первую очередь больше температуры, выраженной в энергетических единицах. Квантовые точки были впервые синтезированы в начале 1980-х годов Алексеем Екимовым в стеклянной матрице и Луи Е. Брусом в коллоидных растворах. Термин «квантовая точка» был предложен Марком Ридом.

Энергетический спектр квантовой точки дискретен, а расстояние между стационарными уровнями энергии носителя заряда зависит от размера самой квантовой точки как - h/(2md^2), где:

  1. h - приведённая постоянная Планка;
  2. d - характерный размер точки;
  3. m - эффективная масса электрона на точке
Если же говорить простым языком то квантовая точка - это полупроводник, электрические характеристики которого зависят от его размера и формы.


Например, при переходе электрона на энергетический уровень ниже, испускается фотон; так как можно регулировать размер квантовой точки, то можно и изменять энергию испускаемого фотона, а значит, изменять цвет испускаемого квантовой точкой света.

Типы квантовых точек

Различают два типа:
  • эпитаксиальные квантовые точки;
  • коллоидные квантовые точки.
По сути они названы так по методам их получения. Подробно говорить о них не буду в силу большого количества химических терминов (гугл в помощь) . Добавлю только, что при помощи коллоидного синтеза можно получать нанокристаллы, покрытые слоем адсорбированных поверхностно-активных молекул. Таким образом, они растворимы в органических растворителях, после модификации - также в полярных растворителях.

Конструкция квантовых точек

Обычно квантовой точкой является кристалл полупроводника, в котором реализуются квантовые эффекты. Электрон в таком кристалле чувствует себя как в трех мерной потенциальной яме и имеет много стационарных уровней энергии. Соответственно при переходе с одного уровня на другой квантовой точкой может излучать фотон. При всем при этом переходами легко управлять меняя размеры кристалла. Возможно также перекинуть электрон на высокий энергетический уровень и получать излучение от перехода между более низколежащими уровнями и как следствия получаем люминесценцию. Собственно, именно наблюдение данного явления и послужило первым наблюдением квантовых точек.

Теперь о дисплеях

История полноценных дисплеев началась в феврале 2011 года, когда Samsung Electronics представили разработки полноцветного дисплея на основе квантовых точек QLED. Это был 4-х дюймовый дисплей управляемый активной матрицей, т.е. каждый цветной пиксель с квантовой точкой может включаться и выключаться тонкоплёночным транзистором.

Для создания прототипа на кремневую плату наносят слой раствора квантовых точек и напыляется растворитель. После чего в слой квантовых точек запрессовывается резиновый штамп с гребенчатой поверхностью, отделяется и штампуется на стекло или гибкий пластик. Так осуществляется нанесение полосок квантовых точек на подложку. В цветных дисплеях каждый пиксель содержит красный, зелёный или синий субпиксель. Соответственно эти цвета используются с разной интенсивностью для получения как можно большего количества оттенков.

Следующим шагом в развитии стала публикация статьи ученными из Индийского Института Науки в Бангалоре. Где было описаны квантовые точки которые люминесцируют не только оранжевым цветом, но и в диапазоне от темно-зеленого до красного.

Чем ЖК хуже?

Основное отличие QLED-дисплея от ЖК состоит в том, что вторые способны охватить только 20-30% цветового диапазона. Так же в телевизорах QLED отпадает необходимость в использовании слоя с светофильтрами, так как кристаллы при подаче на них напряжения излучают свет всегда с четко определенной длиной волны и как результат с одинаковым цветовым значением.


Так же были новости о продаже компьютерного дисплея на квантовых точках в Китае. К сожалению, воочию проверить, в отличии от телевизора мне еще не довелось.

P.S. Стоит отметь что область применения квантовых точек не ограничивается только LED - мониторами, помимо всего прочего они могут применяться, в полевых транзисторах, фотоэлементах, лазерных диодах, так же проходят исследование возможности применение их в медицине и квантовых вычислениях.

P.P.S. Если же говорить о моем личном мнении, то я считаю, что ближайший десяток лет популярностью пользоваться они не будут, не из-за того, что мало известны, а потому, как цены на данные дисплеи заоблачные, но все же хочется надеяться, что квантовые точки найдут свое применение и в медицине, и буду использоваться не только для увеличения прибыли, но и в благих целях.

4 декабря 2016 в 22:35

Квантовые точки и зачем их ставят

  • Квантовые технологии ,
  • Мониторы и ТВ

Доброе время суток, Хабражители! Я думаю многие заметили, что все чаще и чаще стала появляться реклама о дисплеях основанных на технологии квантовых точек, так называемые QD – LED (QLED) дисплеи и несмотря на то, что на данный момент это всего лишь маркетинг. Аналогично LED TV и Retina это технология создания дисплеев LCD, использующая в качестве подсветки светодиоды на основе квантовых точек.

Ваш покорный слуга решил все же разобраться что такое квантовые точки и с чем их едят.

Вместо введения

Квантовая точка - фрагмент проводника или полупроводника, носители заряда (электроны или дырки) которого ограничены в пространстве по всем трём измерениям. Размер квантовой точки должен быть настолько мал, чтобы квантовые эффекты были существенными. Это достигается, если кинетическая энергия электрона заметно больше всех других энергетических масштабов: в первую очередь больше температуры, выраженной в энергетических единицах. Квантовые точки были впервые синтезированы в начале 1980-х годов Алексеем Екимовым в стеклянной матрице и Луи Е. Брусом в коллоидных растворах. Термин «квантовая точка» был предложен Марком Ридом.

Энергетический спектр квантовой точки дискретен, а расстояние между стационарными уровнями энергии носителя заряда зависит от размера самой квантовой точки как - ħ/(2md^2), где:

  1. ħ - приведённая постоянная Планка;
  2. d - характерный размер точки;
  3. m - эффективная масса электрона на точке
Если же говорить простым языком то квантовая точка - это полупроводник, электрические характеристики которого зависят от его размера и формы.


Например, при переходе электрона на энергетический уровень ниже, испускается фотон; так как можно регулировать размер квантовой точки, то можно и изменять энергию испускаемого фотона, а значит, изменять цвет испускаемого квантовой точкой света.

Типы квантовых точек

Различают два типа:
  • эпитаксиальные квантовые точки;
  • коллоидные квантовые точки.
По сути они названы так по методам их получения. Подробно говорить о них не буду в силу большого количества химических терминов (гугл в помощь) . Добавлю только, что при помощи коллоидного синтеза можно получать нанокристаллы, покрытые слоем адсорбированных поверхностно-активных молекул. Таким образом, они растворимы в органических растворителях, после модификации - также в полярных растворителях.

Конструкция квантовых точек

Обычно квантовой точкой является кристалл полупроводника, в котором реализуются квантовые эффекты. Электрон в таком кристалле чувствует себя как в трех мерной потенциальной яме и имеет много стационарных уровней энергии. Соответственно при переходе с одного уровня на другой квантовой точкой может излучать фотон. При всем при этом переходами легко управлять меняя размеры кристалла. Возможно также перекинуть электрон на высокий энергетический уровень и получать излучение от перехода между более низколежащими уровнями и как следствия получаем люминесценцию. Собственно, именно наблюдение данного явления и послужило первым наблюдением квантовых точек.

Теперь о дисплеях

История полноценных дисплеев началась в феврале 2011 года, когда Samsung Electronics представили разработки полноцветного дисплея на основе квантовых точек QLED. Это был 4-х дюймовый дисплей управляемый активной матрицей, т.е. каждый цветной пиксель с квантовой точкой может включаться и выключаться тонкоплёночным транзистором.

Для создания прототипа на кремневую плату наносят слой раствора квантовых точек и напыляется растворитель. После чего в слой квантовых точек запрессовывается резиновый штамп с гребенчатой поверхностью, отделяется и штампуется на стекло или гибкий пластик. Так осуществляется нанесение полосок квантовых точек на подложку. В цветных дисплеях каждый пиксель содержит красный, зелёный или синий субпиксель. Соответственно эти цвета используются с разной интенсивностью для получения как можно большего количества оттенков.

Следующим шагом в развитии стала публикация статьи ученными из Индийского Института Науки в Бангалоре. Где было описаны квантовые точки которые люминесцируют не только оранжевым цветом, но и в диапазоне от темно-зеленого до красного.

Чем ЖК хуже?

Основное отличие QLED-дисплея от ЖК состоит в том, что вторые способны охватить только 20-30% цветового диапазона. Так же в телевизорах QLED отпадает необходимость в использовании слоя с светофильтрами, так как кристаллы при подаче на них напряжения излучают свет всегда с четко определенной длиной волны и как результат с одинаковым цветовым значением.


Так же были новости о продаже компьютерного дисплея на квантовых точках в Китае. К сожалению, воочию проверить, в отличии от телевизора мне еще не довелось.

P.S. Стоит отметь что область применения квантовых точек не ограничивается только LED - мониторами, помимо всего прочего они могут применяться, в полевых транзисторах, фотоэлементах, лазерных диодах, так же проходят исследование возможности применение их в медицине и квантовых вычислениях.

P.P.S. Если же говорить о моем личном мнении, то я считаю, что ближайший десяток лет популярностью пользоваться они не будут, не из-за того, что мало известны, а потому, как цены на данные дисплеи заоблачные, но все же хочется надеяться, что квантовые точки найдут свое применение и в медицине, и буду использоваться не только для увеличения прибыли, но и в благих целях.

Теги:

  • QLED
  • LED
  • Quantum display
Добавить метки

Для того чтобы получить общее представление о свойствах материальных предметов и законах, в соответствии с которыми «живет» привычный каждому макромир, вовсе не обязательно заканчивать высшее учебное заведение, ведь ежедневно каждый сталкивается с их проявлениями. Хотя в последнее время все чаще упоминается принцип подобия, сторонники которого утверждают, что микро и макромир весьма схожи, тем не менее, разница, все же, есть. Особенно это заметно при очень незначительных размерах тел и объектов. Квантовые точки, иногда называемые наноточками, как раз представляют собой один из этих случаев.

Меньше меньшего

Давайте вспомним классическое устройство атома, например, водорода. Он включает в себя ядро, которое благодаря присутствию в нем положительно заряженного протона обладает плюсовым то есть +1 (так как водород - первый элемент в таблице Менделеева). Соответственно, на определенном расстоянии от ядра находится электрон (-1), формируя электронную оболочку. Очевидно, что если увеличить значение то это повлечет за собой присоединение новых электронов (напомним: в целом атом электрически нейтрален).

Расстояние между каждым электроном и ядром определяется уровнями энергии отрицательно заряженных частиц. Каждая орбита является постоянной, суммарная конфигурация частиц определяет материал. Электроны могут перескакивать с одной орбиты на другую, поглощая или выделяя энергию посредством фотонов той или иной частоты. На наиболее удаленных орбитах находятся электроны с максимальным уровнем энергии. Что интересно, сам фотон проявляет двойственную природу, определяясь одновременно как безмассовая частица и электромагнитное излучение.

Само слово «фотон» греческого происхождения, оно означает «частица света». Следовательно, можно утверждать, что при смене электроном своей орбиты, он поглощает (выделяет) квант света. В данном случае уместно объяснить смысл другого слова - «квант». На самом деле ничего сложного нет. Слово произошло от латинского «quantum», что дословно переводится как наименьшее значение любой физической величины (здесь - излучения). Поясним на примере, что такое квант: если бы при измерении веса наименьшей неделимой величиной являлся миллиграмм, то его можно было бы так назвать. Вот так просто объясняется, казалось бы, сложный термин.

Квантовые точки: разъяснение

Часто в учебниках можно встретить следующее определение для наноточки - это чрезвычайно маленькая частица какого-либо материала, размеры которой сопоставимы с величиной излучаемой длины волны электрона (полный спектр охватывает предел от 1 до 10 нанометров). Внутри нее значение единичного носителя отрицательного заряда меньше, чем вне, поэтому электрон ограничен в перемещениях.

Однако термин «квантовые точки» может быть объяснен иначе. Электрон, поглотивший фотон, «поднимается» на более высокую энергетическую ступень, а на его месте образуется «недостача» - так называемая дырка. Соответственно, если электрон обладает -1 зарядом, то дырка +1. Стремясь вернуться к прежнему устойчивому состоянию, электрон испускает фотон. Связь носителей зарядов «-» и «+» в данном случае носит название экситон и в физике понимается как частица. Ее размер зависит от уровня поглощенной энергии (более высокой орбиты). Квантовые точки как раз и являются этими частицами. Частота излучаемой электроном энергии непосредственно зависит от размера частицы данного материала и экситона. Стоит отметить, что в основе цветового восприятия света человеческим глазом лежит различная