Открытие реликтового излучения. Что такое реликтовое излучение

Несмотря на применение современных приборов и новейших методов изучения Вселенной, вопрос ее появления все еще остается открытым. В этом нет ничего удивительного, если учесть ее возраст: согласно последним данным, он составляет от 14 до 15 млрд. лет. Очевидно, что с тех пор осталось очень мало свидетельств происходивших когда-то грандиозных процессов Вселенского масштаба. Поэтому утверждать что-либо никто не решается, ограничиваясь гипотезами. Однако одна из них с недавних пор получила весьма существенный аргумент - реликтовое излучение.

В 1964 году два сотрудника одной известной лаборатории, выполнявшие радионаблюдение за спутником «Эхо», имея доступ к соответствующему сверхчувствительному оборудованию, решили проверить некоторые свои теории относительно собственного радиоизлучения определенных космических объектов.

Для того чтобы отсеять возможные помехи от наземных источников, было решено использовать в 7,35 см. Однако после включения и настройки антенны было зарегистрировано странное явление: во всей Вселенной фиксировался некий шум, постоянная фоновая составляющая. Она не зависела ни от положения Земли относительно других планет, что сразу отсеяло предположение о радиопомехах этих ни от времени суток. Ни Р. Вилсон, ни А. Пензиас даже не догадывались, что открыли реликтовое излучение вселенной.

Так как никто из них не предполагал подобного, списывая «фон» на особенности аппаратуры (достаточно вспомнить, что используемая СВЧ-антенна была самой чувствительной в то время), минул почти целый год, пока стало очевидным - регистрируемый шум является частью самой Вселенной. Интенсивность улавливаемого радиосигнала оказалась практически идентичной интенсивности излучения температурой в 3 Кельвина (1 Кельвин равен -273 градуса по Цельсию). Для сравнения: нуль по Кельвину соответствует температуре объекта из неподвижных атомов. находится в пределах от 500 МГц до 500 ГГц.

В это время два теоретика из Принстонского университета - Р. Дикке и Д. Пибблс, основываясь на новых моделях развития Вселенной, математически вычислили, что подобное излучение должно существовать и пронизывать все пространство. Стоит ли говорить, что Пензиас, случайно узнавший о лекциях на эту тему, связался с университетом и сообщил, реликтовое излучение и было зарегистрировано.

Исходя из теории Большого Взрыва, вся материя и возникла в результате колоссального взрыва. Первые 300 тыс. лет после этого пространство представляло собой комбинацию элементарных частиц и излучений. Впоследствии из-за расширения температуры стали падать, что дало возможность появиться атомам. Регистрируемое реликтовое излучение - это отголосок тех далеких времен. Пока вселенная обладала границами, плотность частиц была столь высокой, что излучение оказывалось «связанным», так как масса частиц отражала любые виды волн, не позволяя им распространяться. И лишь после начала образования атомов пространство стало «прозрачным» для волн. Считается, что реликтовое излучение появилось именно так. В настоящий момент в каждом кубическом сантиметре пространства содержится около 500 первоначальных квантов, правда, их энергия уменьшилась почти в 100 раз.

Реликтовое излучение на различных участках Вселенной имеет разную температуру. Это обусловлено расположением первичного вещества в расширяющейся Вселенной. Там, где плотность атомов будущей материи была выше, доля излучения, а значит его температура, уменьшена. Именно в этих направлениях впоследствии образовались крупные объекты (галактики и их скопления).

Изучение реликтового излучения приподнимает завесу неизвестности над многими процессами, происходящими в начале времен.

> Что такое реликтовое излучение?

Открытие реликтового излучения : значение понятия, теория Большого Взрыва, расширение и карта Вселенной, движение света в пространстве, влияние темной материи.

Реликтовое излучение – послесвечение Большого Взрыва. Это одно из наиболее убедительных доказательств того, что это событие было во Вселенной. Лучше всего его объясняет Нед Райт из Калифорнийского университета (Лос-Анджелес).

Насколько полезно реликтовое излучение?

«Ну, наиболее полезная информация поступает на низком уровне. Когда я только начинал заниматься астрономией, не было 100% уверенности в достоверности теории Большого Взрыва. Поэтому наличие реликтового излучения в этой теории и отсутствие в конкурирующей заполнило большой пробел в знаниях.

Кроме того, спектр реликтового излучения сильно напоминает черный. Раз это темное тело, то мы можем полагать, что Вселенная плавно переходила от непрозрачности к прозрачности. Дипольная анизотропия микроволнового фона помогает точно определить факт, что мы движемся в пространстве. Одна небесная сторона намного жарче, а вторая холоднее, что намекает на температуру реликтового излучения. При подсчетах выясняется, что мы передвигаемся на десятую часть от процента скорости света – 370 км/с. Так что есть наше движение и передвижение сквозь Вселенную.

Спутник Планка позволил получить больше информации по линиям фонового реликтового излучения. У нас есть разница в 3 милликельвина, то есть различие в температуре пятен составляет +/- 100 микроквинов. Поэтому вам открывается детализированный рисунок области размером в 1.5 градусов. Он создается волновой акустикой, которая формируется из-за возмущения плотности в раннем этапе развития Вселенной. Можно даже проследить, как много времени прошло, прежде чем Вселенная станет прозрачной. И это важная информация, если вы решились изучать такую глобальную отрасль».

Что нам говорит реликтовое излучение и темная материя

«Реликтовое излучение имеет шаблон на шкале в 0.5 градусов, открывая нам эффективную линию позиции, вроде астрономической навигации. Вы измеряете одну звезду с секстантом и получаете линию своего нахождения. Но если смотрите на одну и ту же модель (установка акустической волны), то видите, что в распределении галактик все более локально. Конечно, речь идет об удаленных объектах, но в космологии это локальные территории.

Эти галактики демонстрируют одинаковый волнообразный узор, и вы можете измерить его, сравнить с тем, что наблюдается в прошлом, и получить линию пересечения позиции. Это помогает определить наше место во Вселенной, отыскать и даже подсчитать множество объектов. Также становится ясно, что существует темная энергия, которую никто пока не может понять, но мы знаем, на какие действия она способна. Ведь именно она ускоряет расширение». Вы сможете узнать еще много интересного про реликтовое излучение Вселенной (обнаружение, расширение Вселенной, большой взрыв, красное смещение, аномалии), если посмотрите видео.

Поляризация реликтового излучения

Физик Дмитрий Горбунов об эксперименте BICEP2, стадии инфляции и развитии теории гравитации:

Аномалии реликтового излучения

Астрофизик Олег Верходанов о низких мультиполях, влиянии объектов ближнего космоса на космологические измерения и учете ненайденных источников:

Реликтовое излучение

Астрономические наблюдения показывают, что, помимо отдельных источников излучения в виде звезд и галактик, во Вселенной есть излучение, неразделяемое на отдельные источники - фоновое излучение. Оно наблюдается во всех диапазонах электромагнитного спектра. В основном фоновое излучение есть сумма свечения различных источников (галактик, квазаров, межгалактического газа), настолько далеких, что современные средства астрономических наблюдений пока не могут разделить их суммарное излучение на отдельные слагаемые (вспомним, что и Млечный Путь вплоть до XVII века считался сплошной полосой света, и только в 1610 году Галилео Галилей, рассмотрев его в телескоп, обнаружил, что он состоит из отдельных звезд).

В 1965 г. американские радиоинженеры А. Пензиас и Р. Вильсон обнаружили фоновое излучение в микроволновом диапазоне (длина волны от 300 мкм до 50 см, частота от 6·10 8 Гц до 10 12 Гц). На этих частотах электромагнитных волн просто нет источников, которые могли бы дать фоновое излучение такой яркости. Это излучение очень однородно: с точностью до тысячных долей процента его интенсивность постоянна по всему небу. Заметим, что несколько процентов того “снега”, который возникает на экране телевизора на ненастроенном канале, обусловлены как раз микроволновым фоновым излучением.

Главным свойством микроволнового фонового излучения является его спектр (т.е. распределение интенсивности в зависимости от частоты или длины волны), показанный на рис. 5.1.2. Спектр этого излучения в точности ложится на теоретическую кривую, хорошо известную физике - кривую Планка. Спектр такого типа носит название спектра излучения абсолютно черного тела. Такой спектр характерен для полностью непрозрачного нагретого вещества. Температура микроволнового излучения составляет около 3 К (точнее, 2.728 К). Сложением излучений каких-либо источников невозможно добиться того, чтобы получился планковский спектр. Наиболее надежное подтверждение планковского характера спектра реликтового излучения было получено с помощью американского спутника COBE (Cosmic Background Explorer, Исследователь космического фона) в 1992 году.

Уравнение планковской кривой имеет вид

. (5.1)

Здесь ρ ν - спектральная плотность излучения (энергия излучения, приходящаяся на единичный объем и на единичный интервал частот), ν - частота, h - постоянная Планка, c - скорость света, k - постоянная Больцмана, T - температура излучения.

Микроволновое излучение Вселенной иначе называется реликтовым. Такое название связано с тем, что оно несет в себе информацию о физических условиях, царивших во Вселенной тогда, когда еще не успели образоваться звезды и галактики. Сам факт существования этого излучения говорит о том, что в прошлом свойства Вселенной были существенно иными, чем в настоящее время. Для обоснования этого вывода приведем следующую логическую цепочку.

  1. Поскольку спектр реликтового излучения является спектром абсолютно черного тела, это излучение формируется полностью непрозрачным нагретым телом.
  2. Поскольку это излучение равномерно приходит к нам со всех сторон, мы со всех сторон окружены каким-то непрозрачным телом.
  3. Однако Вселенная - в современном ее виде - почти полностью прозрачна для радиоволн в микроволновом (миллиметровом и сантиметровом) диапазоне. Стало быть, вещество, испускающее это излучение, отстоит от нас намного дальше, чем любые наблюдаемые объекты - галактики, квазары и т.д. Вспоминая принцип “чем дальше в пространстве - тем глубже во времени”, мы приходим к выводу, что Вселенная была полностью непрозрачной в глубоком прошлом, когда еще не образовались звезды и галактики; а раз непрозрачной, значит, очень плотной . Микроволновое фоновое излучение является реликтом, оставшимся от той далекой эпохи.

Отметим, что почти идеальная однородность этого излучения - лучший довод в пользу космологического принципа, в пользу однородности Вселенной на больших масштабах.

Приведем некоторые количественные данные о реликтовом излучении. По закону Вина, температура чернотельного излучения с длиной волны, на которую приходится максимум интенсивности λ max , вычисляется по формуле

Для реликтового излучения λ max =0.1 см. Средняя энергия кванта этого излучения примерно 1.05·10 -22 Дж. В настоящее время в каждом кубическом метре находится примерно 4·10 8 реликтовых фотонов. Это примерно в миллиард раз больше, чем частиц обычного вещества (точнее, протонов; имеется в виду, конечно, средняя плотность).

Изменение температуры реликтового излучения со временем

Для обоснования предположения Гамова об изначально горячем состоянии Вселенной мы привлечем данные о реликтовом излучении. Попытаемся понять, какой была его температура в прошлом. Другими словами, выясним, какую температуру реликтового излучения зафиксировал бы наблюдатель в галактике с красным смещением z. Для этого используем формулу (2.1) λ=λ 0 (1+z), показывающую зависимость длины волны любого (в том числе, реликтового) излучения, путешествующего в межгалактическом пространстве, от красного смещения z, и закон Вина (5.2) T·λ max =0.29 K·см. Комбинируя эти формулы, мы находим, что при красном смещении z температура реликтового излучения T была

T(z)=T 0 (1+z), (5.3)

Где T 0 =2.728 K - температура в настоящее время (т.е. при z=0). Из этой формулы следует, что раньше температура реликтового излучения была выше, чем сейчас.

Существуют и прямые экспериментальные подтверждения этой закономерности. Группа американских ученых использовала крупнейший в мире телескоп Кек (на Гавайских островах) с зеркалом диаметром 10 метров для получения спектров двух квазаров с красными смещениями z=1.776 и z=1.973. Как выяснили эти ученые, спектральные линии этих объектов показывают, что они облучаются тепловым излучением с температурой 7.4±0.8 К и 7.9±1.1 К соответственно, что находится в прекрасном согласии с температурой реликтового излучения, ожидаемой из формулы (5.3): T(1.776)=7.58 К и T(1.973)=8.11 К. Одновременно, кстати, эти факты дают дополнительный аргумент в пользу того, что микроволновое фоновое излучение приходит к нам из самых глубин Вселенной.

. Георгий Антонович Гамов (1904-1968).

Чем ближе к Большому Взрыву, тем горячее реликтовое излучение. При z~1000 (такое красное смещение соответствует эпохе, отстоящей на 300 тыс. лет от Большого Взрыва) его температура была T~3000 K, причем в каждом кубическом метре находилось около 4·10 17 реликтовых фотонов. Столь мощное излучение должно было ионизовать весь существовавший тогда газ. Итак, в далеком прошлом Вселенной не могло существовать звезд, и все вещество представляло собой плотную горячую непрозрачную плазму .

Именно это утверждение составляет суть теории горячей Вселенной, основы которой заложил выдающийся физик Георгий Антонович Гамов, который родился и получил образование в нашей стране, здесь же стал знаменит как физик, но был вынужден эмигрировать в США в годы сталинских репрессий. Эта теория кратко рассмотрена в настоящем параграфе.

Одна из составляющих общего фона косм. эл. магн. излучения. Р. и. равномерно распределено по небесной сфере и по интенсивности соответствует тепловому излучению абсолютно чёрного I тела при темп ре ок. 3 К, обнаружено амер. учёными А. Пензиасом и … Физическая энциклопедия

РЕЛИКТОВОЕ излучение, заполняющее Вселенную космическое излучение, спектр которого близок к спектру абсолютно черного тела с температурой около 3 К. Наблюдается на волнах от нескольких мм до десятков см, практически изотропно. Происхождение… … Современная энциклопедия

Фоновое космическое излучение, спектр которого близок к спектру абсолютно черного тела с температурой ок. 3 К. Наблюдается на волнах от нескольких мм до десятков см, практически изотропно. Происхождение реликтового излучения связывают с эволюцией … Большой Энциклопедический словарь

реликтовое излучение - Фоновое космическое радиоизлучение, которое образовалось на ранних стадиях развития Вселенной. [ГОСТ 25645.103 84] Тематики условия физические косм. пространства EN relict radiation … Справочник технического переводчика

Фоновое космическое излучение, спектр которого близок к спектру абсолютно чёрного тела с температурой около 3°K. Наблюдается на волнах от нескольких миллиметров до десятков сантиметров, практически изотропно. Происхождение реликтового излучения… … Энциклопедический словарь

Электромагнитное излучение, заполняющее наблюдаемую часть Вселенной (См. Вселенная). Р. и. существовало уже на ранних стадиях расширения Вселенной и играло важную роль в её эволюции; является уникальным источником информации о её прошлом … Большая советская энциклопедия

Реликтовое излучение - (от лат. relicium остаток) космическое электромагнитное излучение, связанное с эволюцией Вселенной, начавшей свое развитие после «большого взрыва»; фоновое космическое излучение, спектр которого близок к спектру абсолютно черного тела с… … Начала современного естествознания

Фоновое космич. излучение, спектр к рого близок к спектру абсолютно чёрного тела с темп рой ок. 3 К. Наблюдается на волнах от неск. мм до десятков см, практически изотропно. Происхождение Р. и. связывают с эволюцией Вселенной, к рая в прошлом… … Естествознание. Энциклопедический словарь

Тепловое фоновое космическое излучение, спектр которого близок к спектру абсолютно черного тела с температурой 2,7 К. Происхождение Р. и. связано с эволюцией Вселенной, которая в далёком прошлом имела высокую температуру и плотность излучения… … Астрономический словарь

Космология Возраст Вселенной Большой взрыв Содвижущееся расстояние Реликтовое излучение Космологическое уравнение состояния Тёмная энергия Скрытая масса Вселенная Фридмана Космологический принцип Космологические модели Формировани … Википедия

Книги

  • Комплект таблиц. Эволюция Вселенной (12 таблиц) , . Учебный альбом из 12 листов. Артикул - 5-8676-012. Астрономические структуры. Закон Хаббла. Модель Фридмана. Периоды эволюции Вселенной. Ранняя Вселенная. Первичный нуклеосинтез. Реликтовое…
  • Космология , Стивен Вайнберг. Монументальная монография нобелевского лауреата Стивена Вайнберга обобщает результаты прогресса, достигнутого за последние два десятилетия в современной космологии. Она является уникальной по…

Космическое электромагнитное излучение, приходящее на Землю со всех сторон неба примерно с одинаковой интенсивностью и имеющее спектр, характерный для излучения абсолютно черного тела при температуре около 3 К (3 градуса по абсолютной шкале Кельвина, что соответствует -270°С). При такой температуре основная доля излучения приходится на радиоволны сантиметрового и миллиметрового диапазонов. Плотность энергии реликтового излучения 0,25 эВ/см 3 .
Радиоастрономы-экспериментаторы предпочитают называть это излучение «космическим микроволновым фоновым излучением» cosmic microwave background, CMB). Астрофизики-теоретики часто называют его «реликтовым излучением» (термин предложен русским астрофизиком И.С.Шкловским), поскольку в рамках общепринятой сегодня теории горячей Вселенной это излучение возникло на раннем этапе расширения нашего мира, когда его вещество было практически однородным и очень горячим. Иногда в научной и популярной литературе можно также встретить термин «трехградусное космическое излучение». Далее мы будем называть это излучение «реликтовым».
Открытие в 1965 реликтового излучения имело огромное значение для космологии; оно стало одним из важнейших достижений естествознания 20 в. и, безусловно, самым важным для космологии после открытия красного смещения в спектрах галактик. Слабое реликтовое излучение несет нам сведения о первых мгновениях существования нашей Вселенной, о той далекой эпохе, когда вся Вселенная была горячей и в ней еще не существовало ни планет, ни звезд, ни галактик. Проведенные в последние годы детальные измерения этого излучения с помощью наземных, стратосферных и космических обсерваторий приоткрывают завесу над тайной самого рождения Вселенной.
Теория горячей Вселенной. В 1929 американский астроном Эдвин Хаббл (1889-1953) открыл, что большинство галактик удаляется от нас, причем тем быстрее, чем дальше расположена галактика (закон Хаббла). Это было интерпретировано как всеобщее расширение Вселенной, начавшееся примерно 15 млрд. лет назад. Встал вопрос о том, как выглядела Вселенная в далеком прошлом, когда галактики только начали удаляться друг от друга, и даже еще раньше. Хотя математический аппарат, основанный на общей теории относительности Эйнштейна и описывающий динамику Вселенной, был создан еще в 1920-е годы Виллемом де Ситтером (1872-1934), Александром Фридманом (1888-1925) и Жоржем Леметром (1894-1966), о физическом состоянии Вселенной в раннюю эпоху ее эволюции ничего не было известно. Не было даже уверенности, что в истории Вселенной существовал определенный момент, который можно считать «началом расширения».
Развитие ядерной физики в 1940-е годы позволило начать разработку теоретических моделей эволюции Вселенной в прошлом, когда ее вещество, как предполагалось, было сжато до высокой плотности, при которой были возможны ядерные реакции. Эти модели, прежде всего, должны были объяснить состав вещества Вселенной, который к тому времени уже был достаточно надежно измерен по наблюдениям спектров звезд: в среднем они состоят на 2 / 3 из водорода и на 1 / 3 из гелия, а все остальные химические элементы вместе взятые составляют не более 2%. Знание свойств внутриядерных частиц - протонов и нейтронов - позволяло рассчитывать варианты начала расширения Вселенной, различающиеся исходным содержанием этих частиц и температурой вещества и находящегося с ним в термодинамическом равновесии излучения. Каждый из вариантов давал свой состав исходного вещества Вселенной.
Если опустить детали, то существуют две принципиально разные возможности для условий, в которых протекало начало расширения Вселенной: ее вещество могло быть либо холодным, либо горячим. Следствия ядерных реакций при этом в корне отличаются друг от друга. Хотя идею о возможности горячего прошлого Вселенной высказывал еще в своих ранних работах Леметр, исторически первой в 1930-е годы была рассмотрена возможность холодного начала.
В первых предположениях считалось, что все вещество Вселенной существовало сначала в виде холодных нейтронов. Позже выяснилось, что такое предположение противоречит наблюдениям. Дело в том, что нейтрон в свободном состоянии распадается в среднем за 15 минут после возникновения, превращаясь в протон, электрон и антинейтрино. В расширяющейся Вселенной возникшие протоны стали бы соединяться с еще оставшимися нейтронами, образуя ядра атомов дейтерия. Дальше цепочка ядерных реакций привела бы к образованию ядер атомов гелия. Более сложные атомные ядра, как показывают расчеты, при этом практически не возникают. В результате все вещество превратилось бы в гелий. Такой вывод находится в резком противоречии с наблюдениями звезд и межзвездного вещества. Распространенность химических элементов в природе отвергает гипотезу о начале расширения вещества в виде холодных нейтронов.
В 1946 в США «горячий» вариант начальных стадий расширения Вселенной предложил физик русского происхождения Георгий Гамов (1904-1968). В 1948 была опубликована работа его сотрудников - Ральфа Альфера и Роберта Хермана, в которой рассматривались ядерные реакции в горячем веществе в начале космологического расширения с целью получить наблюдаемое в настоящее время соотношение между количеством различных химических элементов и их изотопов. В те годы стремление объяснить происхождение всех химических элементов их синтезом в первые мгновения эволюции вещества было естественным. Дело в том, что тогда ошибочно оценивали время, протекшее с начала расширения Вселенной, всего в 2-4 млрд. лет. Это было связано с завышенным значением постоянной Хаббла, вытекавшим в те годы из астрономических наблюдений.
Сравнивая возраст Вселенной в 2-4 млрд.лет с оценкой возраста Земли - около 4 млрд. лет, - приходилось предполагать, что Земля, Солнце и звезды образовались из первичного вещества с уже готовым химическим составом. Считалось, что этот состав не изменился сколь-нибудь существенно, так как синтез элементов в звездах - процесс медленный и для его осуществления перед образованием Земли и других тел уже не было времени.
Последующий пересмотр шкалы внегалактических расстояний привел и к пересмотру возраста Вселенной. Теория эволюции звезд успешно объясняет происхождение всех тяжелых элементов (тяжелее гелия) их нуклеосинтезом в звездах. Отпала необходимость объяснять происхождение всех элементов, включая и тяжелые, на ранней стадии расширения Вселенной. Однако суть гипотезы горячей Вселенной оказалась верной.
С другой стороны, содержание гелия в звездах и межзвездном газе составляет около 30% по массе. Это гораздо больше, чем можно объяснить ядерными реакциями в звездах. Значит гелий, в отличие от тяжелых элементов, должен синтезироваться в начале расширения Вселенной, но при этом - в ограниченном количестве.
Основная идея теории Гамова как раз и состоит в том, что высокая температура вещества препятствует превращению всего вещества в гелий. В момент 0,1 сек после начала расширения температура была около 30 млрд. K. В таком горячем веществе имеется много фотонов большой энергии. Плотность и энергия фотонов столь велики, что происходит взаимодействие света со светом, приводящее к рождению электронно-позитронных пар. Аннигиляция пар может в свою очередь приводить к рождению фотонов, а также к возникновению пар нейтрино и антинейтрино. В этом «бурлящем котле» находится обычное вещество. При очень высоких температурах не могут существовать сложные атомные ядра. Они были бы моментально разбиты окружающими энергичными частицами. Поэтому тяжелые частицы вещества существуют в виде нейтронов и протонов. Взаимодействия с энергичными частицами заставляют нейтроны и протоны быстро превращаться друг в друга. Однако реакции соединения нейтронов с протонами не идут, так как возникающее при этом ядро дейтерия тут же разбивается частицами большой энергии. Так, из-за большой температуры в самом начале обрывается цепочка, ведущая к образованию гелия.
Только когда Вселенная, расширяясь, охлаждается до температуры ниже миллиарда кельвинов, некоторое количество возникающего дейтерия уже сохраняется и приводит к синтезу гелия. Расчеты показывают, что температуру и плотность вещества можно согласовать так, чтобы к этому моменту доля нейтронов в веществе составляла около 15% по массе. Эти нейтроны, соединяясь с таким же количеством протонов, образуют около 30% гелия. Остальные тяжелые частицы остались в виде протонов - ядер атомов водорода. Ядерные реакции заканчиваются по прошествии первых пяти минут после начала расширения Вселенной. В дальнейшем, по мере расширения Вселенной, температура ее вещества и излучения снижается. Из работ Гамова, Альфера и Хермана 1948 года следовало: если теория горячей Вселенной предсказывает возникновение 30% гелия и 70% водорода как основных химических элементов природы, то современная Вселенная неизбежно должна быть заполнена остатком («реликтом») первобытного горячего излучения, причем современная температура этого реликтового излучения должна быть около 5 K.
Однако на гипотезе Гамова анализ разных вариантов начала космологического расширения не закончился. В начале 1960-х годов остроумная попытка снова вернуться к холодному варианту была предпринята Я.Б.Зельдовичем, которые предположил, что первоначальное холодное вещество состояло из протонов, электронов и нейтрино. Как показал Зельдович, такая смесь при расширении превращается в чистый водород. Гелий и другие химические элементы, согласно этой гипотезе, синтезировались позже, когда образовались звезды. Заметим, что к этому моменту астрономы уже знали, что Вселенная в несколько раз старше Земли и большинства окружающих нас звезд, а данные об обилии гелия в дозвездном веществе были в те годы еще очень неопределенными.
Казалось бы, решающим тестом для выбора между холодной и горячей моделями Вселенной мог стать поиск реликтового излучения. Но почему-то долгие годы после предсказания Гамова и его коллег никто сознательно не пытался обнаружить это излучение. Открыто оно было совершенно случайно в 1965 радиофизиками из американской компании «Белл» Р.Уилсоном и А.Пензиасом, награжденными в 1978 Нобелевской премией.
На пути к обнаружению реликтового излучения. В середине 1960-х годов астрофизики продолжали теоретически изучать горячую модель Вселенной. Вычисление ожидаемых характеристик реликтового излучения было выполнено в 1964 А.Г.Дорошкевичем и И.Д.Новиковым в СССР и независимо Ф.Хойлом и Р.Дж.Тейлором в Великобритании. Но эти работы, как и более ранние работы Гамова с коллегами, не привлекли к себе внимания. А ведь в них уже было убедительно показано, что реликтовое излучение можно наблюдать. Несмотря на крайнюю слабость этого излучения в нашу эпоху, оно, к счастью, лежит в той области электромагнитного спектра, где все прочие космические источники в целом излучают еще слабее. Поэтому целенаправленный поиск реликтового излучения должен был привести к его открытию, но радиоастрономы не знали об этом.
Вот что сказал А.Пензиас в своей нобелевской лекции: «Первое опубликованное признание реликтового излучения в качестве обнаружимого явления в радиодиапазоне появилось весной 1964 в краткой статье А.Г.Дорошкевича и И.Д.Новикова, озаглавленной Средняя плотность излучения в Метагалактике и некоторые вопросы релятивистской космологии . Хотя английский перевод появился в том же году, но несколько позже, в широко известном журнале «Советская физика - Доклады», статья, по-видимому, не привлекла к себе внимания других специалистов в этой области. В этой замечательной статье не только выведен спектр реликтового излучения как чернотельного волнового явления, но также отчетливо сконцентрировано внимание на двадцатифутовом рупорном рефлекторе лаборатории «Белл» в Кроуфорд-Хилл, как на наиболее подходящем инструменте для его обнаружения!» (цит. по: Шаров А.С., Новиков И.Д. Человек, открывший взрыв Вселенной: Жизнь и труд Эдвина Хаббла М., 1989).
К сожалению, эта статья осталась незамеченной ни теоретиками, ни наблюдателями; она не стимулировала поиск реликтового излучения. Историки науки до сих пор гадают, почему долгие годы никто не пытался сознательно искать излучение горячей Вселенной. Любопытно, что мимо этого открытия - одного из крупнейших к 20 в. - ученые прошли несколько раз, не заметив его.
Например, реликтовое излучение могло быть открыто еще в 1941. Тогда канадский астроном Э.Мак-Келлар анализировал линии поглощения, вызываемые в спектре звезды Дзета Змееносца межзвездными молекулами циана. Он пришел к выводу, что эти линии в видимой области спектра могут возникать только при поглощении света вращающимися молекулами циана, причем их вращение должно возбуждаться излучением с температурой около 2,3 К. Конечно, никто не мог подумать тогда, что возбуждение вращательных уровней этих молекул вызывается реликтовым излучением. Лишь после его открытия в 1965 были опубликованы работы И.С.Шкловского, Дж.Филда и др., в которых показано, что возбуждение вращения межзвездных молекул циана, линии которых отчетливо наблюдаются в спектрах многих звезд, вызвано именно реликтовым излучением.
Еще более драматичная история произошла в середине 1950-х годов. Тогда молодой ученый Т.А.Шмаонов под руководством известных советских радиоастрономов С.Э.Хайкина и Н.Л.Кайдановского провел измерения радиоизлучения из космоса на длине волны 32 см. Эти измерения были выполнены с помощью рупорной антенны, подобной той, которая была использована много лет спустя Пензиасом и Уилсоном. Шмаонов со всей тщательностью изучил возможные помехи. Конечно, в его распоряжении тогда еще не было столь чувствительных приемников, которые появились впоследствии у американцев. Результаты измерения Шмаонова были опубликованы в 1957 в его кандидатской диссертации и в журнале «Приборы и техника эксперимента». Вывод из этих измерений был таков: «Оказалось, что абсолютная величина эффективной температуры радиоизлучения фона... равна 4± 3 К». Шмаонов отмечал независимость интенсивности излучения от направления на небе и от времени. Хотя ошибки измерений были велики и говорить о какой-либо надежности цифры 4 не приходится, теперь нам ясно, что Шмаонов измерял именно реликтовое излучение. К сожалению, ни он сам, ни другие радиоастрономы ничего не знали о возможности существования реликтового излучения и не придали должного значения этим измерениям.
Наконец, около 1964 к этой проблеме сознательно подошел известный физик-экспериментатор из Принстона (США) Роберт Дикке. Хотя его рассуждения основывались на теории «осциллирующей» Вселенной, которая многократно испытывает расширение и сжатие, Дикке ясно понимал необходимость поиска реликтового излучения. По его инициативе в начале 1965 молодой теоретик Ф.Дж.Э.Пиблс провел необходимые вычисления, а П.Г.Ролл и Д.Т.Уилкинсон начали сооружать маленькую низкошумящую антенну на крыше Пальмеровский физической лаборатории в Принстоне. Для поиска фонового излучения не обязательно использовать большие радиотелескопы, так как излучение идет со всех направлений. От того, что большая антенна фокусирует луч на меньшей площадке неба, ничего не выигрывается. Но группа Дикке не успела сделать запланированное открытие: когда их аппаратура уже была готова, им оставалось лишь подтвердить открытие, накануне случайно сделанное другими.