Метод получения генно инженерного интерферона. Интерфероны

№ 7 Интерфероны, природа. Способы получения и применения.
Интерферон относится к важным защитным белкам иммунной системы. Открыт при изучении интерференции вирусов, т. е. явления, когда животные или культуры клеток, инфициро­ванные одним вирусом, становились нечувс­твительными к заражению другим вирусом. Оказалось, что интерференция обусловлена образующимся при этом белком, обладаю­щим защитным противовирусным свойством. Этот белок назвали интерфероном.
Интерферон представляет собой семейство белков-гликопротеидов, которые синтезируются клетками иммунной системы и соединитель­ной ткани. В зависимости от того, какими клетками синтезируется интерферон, выделя­ют три типа: α, β и γ-интерфероны.
Альфа-интерферон вырабатывается лейкоцитами, и он получил название лейкоцитар­ного; бета-интерферон называют фибробластным, поскольку он синтезируется фибробластами - клетками соединительной ткани, а гамма-интерферон - иммунным, так как он вырабатывается активированными Т-лимфоцитами, макрофагами, естественными киллерами, т. е. иммунными клетками.
Интерферон синтезируется в организме постоянно, и его концентрация в крови де­ржится на уровне примерно 2 МЕ/мл (1 меж­дународная единица - ME - это количество интерферона, защищающее культуру клеток от 1 ЦПД 50 вируса). Выработка интерферона резко возрастает при инфицировании виру­сами, а также при воздействии индукторов интерферона, например РНК, ДНК, сложных полимеров. Такие индукторы интерферона получили название интерфероногенов.
Помимо противовирусного действия интер­ферон обладает противоопухолевой защитой, так как задерживает пролиферацию (размноже­ние) опухолевых клеток, а также иммуномодулирующей активностью, стимулируя фагоцитоз, естественные киллеры, регулируя антителообразование В-клетками, активируя экспрессию главного комплекса гистосовместимости.
Механизм действия интерферона сложен. Интерферон непосредственно на вирус вне клетки не действует, а связывается со спе­циальными рецепторами клеток и оказыва­ет влияние на процесс репродукции вируса внутри клетки на стадии синтеза белков.
Применение интерферона . Действие интерферона тем эффективнее, чем раньше он начинает синтезироваться или пос­тупать в организм извне. Поэтому его использу­ют с профилактической целью при многих ви­русных инфекциях, например гриппе, а также с лечебной целью при хронических вирусных инфекциях, таких как парентеральные гепати­ты (В, С, D ), герпес, рассеянный склероз и др. Интерферон дает положительные результаты при лечении злокачественных опухолей и забо­леваний, связанных с иммунодефицитами.
Интерфероны обладают видоспецифичностью, т. е. интерферон человека менее эффек­тивен для животных и наоборот. Однако эта видоспецифичность относительна.
Получение интерферона . Получают интерферон двумя способами: а) путем инфи­цирования лейкоцитов или лимфоцитов кро­ви человека безопасным вирусом, в результате чего инфицированные клетки синтезируют интерферон, который затем выделяют и конс­труируют из него препараты интерферона; б) генно-инженерным способом - путем выра­щивания в производственных условиях рекомбинантных штаммов бактерий, способных продуцировать интерферон. Обычно используют рекомбинантные штаммы псевдомонад, кишечной палочки со встроенными в их ДНК генами интерферона. Интерферон, получен­ный генно-инженерным способом, носит на­звание рекомбинантного. В нашей стране рекомбинантный интерферон получил офици­альное название «Реаферон». Производство этого препарата во многом эффективнее и дешевле, чем лейкоцитарного.
Рекомбинантный интерферон нашел ши­рокое применение в медицине как профилак­тическое и лечебное средство при вирусных инфекциях, новообразованиях и при иммунодефицитах.

Интерфероны представляют собой белковые молекулы с молекулярной массой от 15000 до 21000 дальтон, продуцируемые и секретируемые клетками в ответ на вирусную инфекцию или другие возбудители.

Интерфероны (ИФН) - группа аутогенных гликопротеинов, биомеханизм действия которых связан с одновременным противовирусным эффектом - активацией клеточных генов, в результате чего синтезируются белки, ингибирующие синтез вирусной ДНК (РНК) и обладающие иммуномодулирующим эффектом - способностью усиливать экспрессию антигенов на клеточных мембранах и увеличивать активность цитотоксических Т-клеток и естественных киллеров .

ИФН подразделяются на два типа. К первому типу, действующему как ингибиторы репликации вируса и оказывающему преимущественно противовирусный эффект, относятся 22 различных подтипа ИФН-α и один подтип ИФН-β. Ко второму типу, проявляющему иммуномодуляторную активность, относятся ИФН-γ.

Существует три иммунологически различных класса ИФН: ИФН-α, ИФН-β, ИФН-γ.

К ИФН естественного происхождения относятся лимфобластоидный и лейкоцитарный ИФН (ИФН-α), синтезируемые соответственно стимулированными моноцитами и В-лимфоцитами человека, которые затем экстрагируются и очищаются; фибробластный ИФН (ИФН-β), получаемый из культуры фибробластов человека, и Т-лимфоцитарный ИФН (ИФН-γ).

К искусственно синтезируемым ИФН относится рекомбинантный ИФН-α, который представляет собой высокоочищенный единственный подтип ИФН-α, получаемый по рекомбинантной молекулярной технологии .

Известны способы получения лейкоцитарного интерферона человека из лейкоцитов донорской крови человека, индуцированных вирусами и другими индукторами.

Основным недостатком этих способов получения интерферонов являются вероятность контаминации конечного продукта вирусами человека, такими как вирус гепатитов В и С, вируса иммунодефицита и др.

В настоящее время более перспективным признан способ получения интерферона микробиологическим синтезом, который обеспечивает возможность получения целевого продукта со значительно более высоким выходом из сравнительно недорогого исходного сырья. Используемые при этом подходы позволяют создать оптимальные для бактериальной экспрессии варианты структурного гена, а также регуляторных элементов, контролирующих его экспрессию.

В качестве исходных микроорганизмов используют различные конструкции штаммов Pichia pastoris, Pseudomonas putida и Escherichia coli.

Недостатком использования P. pastoris в качестве продуцента интерферона, является крайне сложные условия ферментации этого типа дрожжей, необходимость строго поддерживать концентрацию индуктора, в частности метанола, в процессе биосинтеза.

Недостатком использования штаммов Ps. putida является сложность процесса ферментации при низком уровне экспрессии (10 мг интерферона на 1 л культуральной среды). Более продуктивным является использование штаммов Escherichia coli.

Известно большое количество плазмид и созданных на их основе штаммов Е. coli, экспрессирующих интерферон: штаммы Е. coli ATCC 31633 и 31644 с плазмидами Z-pBR322 (Psti) HclF-11-206 или Z-pBR 322(Pstl)/HclN SN 35-AHL6 (SU 1764515), штамм Е. coli pINF- AP2 (SU 1312961), штамм Е. coli pINF- F-Pa (AU 1312962), штамм E.Coli SG 20050 с плазмидой p280/21FN (Кравченко В.В. и др. Биоорганическая химия, 1987, т.13, №9, с.1186-1193), штамм E.Coli SG 20050 с плазмидой pINF14 (SU 1703691), штамм E.coli SG 20050 с плазмидой pINF16 (RU 2054041) и др. Недостатком технологий, основанных на использовании этих штаммов, является их нестабильность, а также недостаточный уровень экспрессии интерферона.

Наряду с особенностями используемых штаммов эффективность процесса во многом зависит от используемой технологии выделения и очистки интерферона.

Известен способ получения интерферона, включающий в себя культивирование клеток Ps. putida, разрушение биомассы, обработку полиэтиленимином, фракционирование сернокислым аммонием, гидрофобную хроматографию на фенилсилохроме С-80, рН-фракционирование лизата, его концентрирование и диафильтрацию, ионообменную хроматографию на целлюлозе DE-52, элюирование в градиенте рН, ионообменную хроматографию полученного элюента на целлюлозе СМ-52, концентрирование пропусканием через кассету фильтров и гель-фильтрацию на Сефадексе G-100 (SU 1640996). Недостатком этого способа кроме сложной многостадийной ферментации является многостадийность при получении конечного продукта.

Известен также способ получения интерферона, включающий в себя культивирование штамма E.coli SG 20050/pIF16, в LB-бульоне в колбах в термостатированном шейкере, центрифугирование биомассы, ее промывку буферным раствором и обработку ультразвуком для разрушения клеток. Полученный лизат центрифугируют, промывают 3М раствором мочевины в буфере, растворяют в растворе гуанидин хлорида в буфере, обрабатывают ультразвуком, центрифугируют, проводят окислительный сульфитолиз, диализ против 8 М мочевины, ренатурацию и окончательную двухстадийную хроматографию на СМ-52 целлюлозе и сефадексе G-50 (RU 2054041).

Недостатками этого способа является его относительно невысокая производительность основных этапов процесса выделения и очистки. В особенности это относится к ультразвуковой обработке продукта, диализу и окислительному сульфитолизу, что приводит к нестабильности выхода интерферона, а также к невозможности использования этого метода для промышленного производства интерферона.

В качестве наиболее близкого аналога (прототипа) может быть указан способ получения лейкоцитарного интерферона человека, заключающийся в культивировании рекомбинантного штамма E.coli, замораживании полученной биомассы при температуре не выше -70°С, размораживании, разрушении клеток микроорганизма лизоцимом, удалении ДНК и РНК введением в лизат ДНК-азы и очисткой выделенной нерастворимой формы интерферона отмывкой буферным раствором с детергентами, растворении осадка интерферона в растворе гуанидин гидрохлорида, ренатурации и одностадийной очистке ионообменной хроматографией. В качестве продуцента используют штамм E.coli SS5, полученный с помощью рекомбинантной плазмиды pSS5, содержащей три промотора: Plac, Pt7 и Ptrp, и ген альфа -интерферона с введенными нуклеотидными заменами.

Экспрессия интерферона штаммом E.coli SS5, содержащим эту плазмиду, контролируется тремя промоторами: Plac, Pt7 и Ptrp. Уровень экспрессии интерферона составляет около 800 мг на 1 л клеточной суспензии.

Недостатком способа является низкая технологичность использования ферментативного разрушения клеток, ДНК и РНК микроорганизма и одностадийная хроматографическая очистка интерферона. Это обуславливает нестабильность процесса выделения интерферона, приводит к снижению его качества и ограничивает возможность использования приведенной схемы для промышленного производства интерферона.

Недостатками данной плазмиды и штамма на ее основе являются использование в плазмиде сильного нерегулируемого промотора фага Т7 в штамме Е. coli BL21 (DE3), в котором ген Т7 РНК полимеразы находится под промотором lac оперона и который всегда "течет". Следовательно, в клетке непрерывно происходит синтез интерферона, что приводит к диссоциации плазмиды и снижению жизнеспособности клеток штамма, и в результате - снижение выхода интерферона.

Для получения больших количеств ИФН используют шестидневные однослойные культуры клеток куриного эмбриона или культивируемые лейкоциты крови человека, зараженные определенным видом вируса. Иными словами, для получения ИФН создают определенную систему вирус-клетка.

Из клетки человека изолирован ген, ответственный за биосинтез ИФН. Экзогенный человеческий ИФН получают, используя технологию рекомбинантных ДНК. Процедура выделения кДНК ИФН-ов состоит в следующем:

1) Из лейкоцитов человека выделяют мРНК, фракционируют ее по размерам, проводят обратную транскрипцию, встраивают в сайт модифицированной плазмиды.

2) Полученным продуктом трансформируют Е. соli; образовавшиеся клоны подразделяют на группы, которые идентифицируют.

3) Каждую группу клонов гибридизируют с ИФН - мРНК.

4) Из образовавшихся гибридов, содержащих кДНК и хРНК, выделяют мРНК, проводят ее трансляцию в системе синтеза белка .

5) Определяют интерферонную противовирусную активность каждой смеси, полученной в результате трансляции. Группы, проявившие интерферонную активность, содержат клон с кДНК, гибридизировавшийся с ИФН - мРНК; повторно идентифицируют клон, содержащий полноразмерную ИФН - кДНК человека.

2. Механизмы действия интерферонов

ИФН проявляют некоторые виды активности как лимфокины и им-муномодуляторы. ИФН I типа, действующие преимущественно как ингибиторы репликации вирусов в клетке, реализуют свой эффект, стимулируя выработку рибосомами клеток хозяина клеточных ферментов, которые тормозят продукцию вирусов, нарушая трансляцию вирусной мРНК и синтез вирусных белков.

ИФН вырабатывают большинство видов животных, но проявление их активности видоспецифично, т.е. они действуют только у того вида животных, в которых вырабатываются.

ИФН вызывают индукцию трех ферментов:

протеинкиназы, нарушающей начальный этап построения пептидной цепи;

олигоизоаденилат синтетазы, активирующей РНК-азу, которая разрушает вирусную РНК;

фосфодиэстеразы, разрушающей конечные нуклеотиды тРНК, что приводит к нарушению элонгации пептида.

С учетом антивирусного и иммуномоделирующего эффектов ИФН в НПО «Биомед» предложены и успешно апробированы, суппозитории с ИФНаn1 и пробиотиками при терапии дисбактериозов вирусной и бактериальной этиологии, кандидозов; в гинекологической практике для лечения эндометритов, кольпитов, вагинитов и гинекологического герпеса.

3. Терапевтическое применение ИНФ человека

Различают два поколения препаратов интерферона. Для первого поколения характерно натуральное происхождение, при котором его получают из крови доноров. Из него получают интерферон лейкоцитарный человеческий сухой, который применяют для ингаляций и закапывания в носовые проходы. Также производят интерферон в свечах, очищенный концентрированный интерферон в сухом виде и Лейкинферон.

Этот метод получения препаратов на основе интерферона является достаточно дорогим и малодоступным, поэтому в конце 20 века при помощи генной инженерии были созданы препараты интерферона второго поколения.

Таким образом, удалось разработать препараты Виферон, Интераль и другие, содержащие в себе рекомбинантный человеческий интерферон альфа-

По причине своих уникальных свойств препараты интерферона применяют при лечении и профилактики всех респираторных заболеваний, большинства онкозаболеваний, для лечения многих вирусных заболеваний и гриппа. Препараты интерферона широко применяются в лечении гепатита В и С: интерферон ограничивает развитие вируса, препятствует возникновению цирроза и исключает смертельный исход.

У некоторых препаратов интерферона имеются побочные эффекты, например, кожные высыпания, аллергии и заболевания кроветворной системы.

При длительном приеме интерферона в организме вырабатываются антитела к интерферону, что делает его неспособным к борьбе с вирусами. Причина этих явлений кроется в наличии альбумина в препаратах на основе интерферона.

Альбумин получают из крови, поэтому существует риск (хоть и минимальный) заражения гепатитом и другими болезнями, передающимися через кровь.

Название препарата

Подтип ИНФ

Способ получения

Фармакологическое действие

Показания к применению

Интерферон

Биосинтез в культуре лейкоцитов донорской крови под воздействием вирусов

Антивирусное, иммуномодулирующее, антипролиферативное

Вирусные заболевания, лейкоз, злокачественная меланома, рак почек, карциноидный синдром

Интерлок

Биосинтез в культуре лейкоцитов донорской крови под воздействием парамиковирусов

Подавляет жизнедеятельность ряда вирусов

Вирусные заболевания глаз, гепатиты

Рекомбинантный

Антивирусное, иммуномодулирующее, ингибирует пролиферацию большого спектра опухолевых клеток

Эпителиальная форма острой и рецидивирующей вирусной инфекции глаз; онкологические заболевания

Интерферон альфа-2а

Рекомбинантный. Белок, содержащий 165 аминокислот

Противовирусная, противоопухолевая активность

Лейкемический ретикулоэндотелиоз, саркома капоши, рак почки, мочевого пузыря, меланома, опоясывающий лишай

Реаферон

Рекомбинанатный ИНФ, продуцируемый бактериальным штаммом псевдомонады, в генетический аппарат которой встроен ген человеческого лейкоцитарного ИНФ α2. Идентичен человеческому лейкоцитарному ИНФ α2.

Вирусные, опухолевые заболевания

Интерферон альфа – n1

Высокоочищенный человеческий ИНФ

Противовирусная

Хронический активный инфекционный гепатит В

Инреферон бета

Суперпродуция фибробластов человека стимулятором в присутствии ингибиторов обменных процессов

Противовирусная, иммуномодулирующая, противоопухолевая активность

Хронические вирусные инфекции в офтальмологии, гинекологии и урологии, дерматологии, гепатологии, онкологии

Интерферон гамма

Рекомбинантный

Противовирусная, иммуномодулирующая, противоопухолевая активность

Хронические гранулематозные заболевания

1. www.antibiotic.ru/ab/brviri.shtml

2. www.interferon.su/php/content.php?id=71

3. www.pharmvestnik.ru

4. Временная фармакопейная статья 42У-23/60-439-97. Интерферон человеческий рекомбинантный альфа-два.

5. Гавриков А.В. Оптимизация биотехнологического производства субстанций рекомбинантных интерферонов человека.- М., 2003,

6. Глик Б., Пастернак Дж. Молекулярная биотехнология / Б.Глик, Дж. Пастернак. – М., Мир, 2002.

7. Государственная Фармакопея СССР. ХI изд., вып.1.- С. 175.

8. Государственный реестр лекарственных средств / Под ред. А.В. Катлинского и др. – М., 2002.

9. Народицкий Б.С. Молекулярная биотехнология интерферонов. // сборник научно-практической конференции«Интерферону – 50 лет». – М., 2007 г., стр. 17-23

10. Основы фармацевтической биотехнологии: Учебное пособие / Т.П. Прищеп, В.С. Чучалин, К.Л. Зайков, Л.К. Михалева. – Ростов-на-Дону.: Феникс; Томск: Издательство НТЛ, 2006.

11. Фролов А.Ф., Вовк А.Д., Дядюн С.Т. и др. Эффективность рекомбинантного альфа-два-интерферона при вирусном гепатите В//Врачебное дело.- Киев, 1990.- № 9.- С. 105–108.

Использование: биотехнология, медицинская промышленность. Сущность изобретения: конструируют рекомбинантную плазмиду pSV69, включающую фрагмент ДНК-кодирующий предшественник иммунного интерферона человека; трансформируют полученным рекомбинантным вектором линию клеток СОS-7, отбирают трансформированные клетки, которые культивируют в условиях, обеспечивающих накопление целевого продукта, и выделяют зрелую форму интерферона без N-концевых Сys-Туr-Сys (des-Суs-Тyr- Сysинтерферон). 8 ил.

Изобретение относится к технологии рекомбинантных ДНК, к средствам и способам использования такой технологии при раскрытии последовательности ДНК и определяемой ею последовательности аминокислот для иммунного интерферона человека, его получения, а также к полученным при этом различным продуктам и их использованию. Более конкретно настоящее изобретение относится к выделению и идентификации последовательностей ДНК, кодирующих иммунный интерферон человека и к построению рекомбинантного вектора экспрессии, содержащего эти последовательности ДНК, оперативно связанные с последовательностями промотора, и к осуществлению экспрессии с полученными таким образом векторами. В другом аспекте настоящее изобретение относится к системам культуры хозяина, таким как различные микроорганизмы и культуры клеток позвоночных, трансформированные векторами экспрессии и таким образом направленные на экспрессию указанных ранее последовательностей ДНК. Еще в одном аспекте настоящее изобретение относится к средствам и способам превращения конечных продуктов такой экспрессии в новые объекты, такие как фармацевтические композиции, пригодные для лечения и профилактики людей. В предпочтительных вариантах настоящее изобретение предлагает конкретные векторы экспрессии, которые имеют такие последовательности, что иммунный интерферон человека продуцируется и выделяется из клеток хозяина в зрелом виде. Кроме того, настоящее изобретение относится к различным процессам, используемым для получения таких последовательностей ДНК, векторов экспрессии, систем культур хозяина и конечных продуктов и их производных, а также к конкретным и связанным с ними условиям. Настоящее изобретение частично вытекает из открытия последовательности ДНК и установленной аминокислотной последовательности, кодирующей иммунный интерферон человека. Кроме того, настоящее изобретение предоставляет информацию о последовательности 3"- и 5" - боковых последовательностей гена иммунного интерферона человека, что облегчает связывание его in vitro в векторы экспрессии. В частности, установлен 5"-ДНК сегмент, кодирующий предлагаемый эндогенный сигнальный полипептид, который непосредственно предшествует аминокислотной последовательности предполагаемого зрелого иммунного интерферона человека. Эти открытия облегчает разработку средств и способов получения с помощью рекомбинантной технологии ДНК достаточного количества иммунного интерферона человека, что обеспечило, в свою очередь, возможность определения его биохимических свойств и биоактивности. Публикации и другие материалы, использованные для освещения предпосылок изобретения, а также в ряде случаев для освещения дополнительных подробностей, касающихся его применения, включены посредством ссылок, для удобства пронумерованы в нижеследующем тексте и соответствующим образом расположены в прилагаемом списке библиографии. Предпосылки изобретения

A. Иммунный интерферон человека

Интерфероны человека можно классифицировать на три группы в зависимости от различной антигенности и биологических и биохимических свойств. Первую группу составляет семейство лейкоцитарных интерферонов ( -интерферон, Le IF или IFN-), которые обычно вырабатываются, в основном, соответствующими клетками крови человека под действием вирусов. Эти интерфероны были получены микробиологическим способом и была обнаружена их биологическая активность (1, 2, 3). Их биологические свойства определили их использование в клиниках в качестве терапевтических агентов при лечении вирусных инфекций и злокачественных состояний (4). Во второй группе находится фибробластный интерферон человека (- интерферон, FIF или IFN-), вырабатываемый обычно фибробластами под действием вирусов, который также был получен микробиологическим способом, и было обнаружено, что он демонстрирует широкий спектр биологических активностей (5). Клинические испытания также указывают на его потенциальную терапевтическую ценность. Лейкоцитарные и фибробластные интерфероны имеют очень заметное сходство в их биологических свойствах, несмотря на тот факт, что степень гомологии на аминокислотном уровне относительно низка. Кроме того, обе группы интерферонов содержат от 165 до 166 аминокислот и являются кислотными стабильными белками. Иммунный интерферон человека (- -интерферон, IIF или IFN-), который составляет предмет настоящего изобретения в противоположность - и - интерферонам, pH 2 лабилен, его получают главным образом митогенной индукцией лимфоцитов и он также совершенно отличен по антигенным свойствам. До недавнего времени иммунный интерферон человека можно быть получать лишь в очень незначительных количествах, что, естественно, затрудняло его характеристику. Недавно было сообщено о гораздо более высокой, но все еще частичной очистке иммунного интерферона человека (6). Как сообщалось, это соединение было получено из культур лимфоцитов, стимулированных сочетанием фитогемагглютинина и сложного эфира форбола, и было очищено при помощи последовательных хроматографических разделений. В результате этой процедуры получили продукт с молекулярной массой 58000. Иммунный интерферон человека получали в очень малых количествах трансляций мРНК в осциты, проявляющие характеристики интерферонной активности иммунного интерферона человека, причем выражалась надежда, что кДНК иммунного интерферона можно будет синтезировать и клонировать (7). Полученное до сих пор количество иммунного интерферона явно недостаточно для проведения не вызывающих сомнений экспериментов по характеристике и определению биологических свойств очищенной компоненты. Однако при исследованиях in vitro, проведенных с неочищенными препаратами, также как и in vivo - экспериментах с препаратами - интерферона крыс, предполагалось, что основной функцией иммунного интерферона может быть функция иммунорегулирующего агента (8 и 9). Иммунный интерферон обладает не только противовирусной и противоклеточной активностью, общей для всех интерферонов человека, но и потенцирующим действием на эти активности - и -интерферонов (10). Кроме того, антипролиферативное действие -интерферона на опухолевые клетки in vitro, как сообщается, приблизительно в 10-100 раз выше нежели действие других классов интерферонов (8, 11, 12). Этот результат вместе с его выраженной иммунорегуляторной ролью (8 и 9) предлагает гораздо более выраженную противоопухолевую способность для IFN-, чем для FN- и IFN- . Действительно в экспериментах in vivo с мышами и крысами IFN- препараты демонстрируют заметное превосходство по сравнению со стимулированными против вируса интерферонами в плане противоопухолевой активности против остеогенной саркомы (13). Все эти исследования до настоящего изобретения приходилось выполнять на существенно загрязненных препаратах из-за их чрезвычайно малой доступности. Однако они однозначно подтверждали очень важные биологические функции иммунного интерферона. Иммунный интерферон обладает не только основной противовирусной активностью, но также, вероятно, сильной иммунорегуляторной и противоопухолевой активностью, что явно определяет его как потенциально многообещающий клинический объект. Было явно, что применение технологии рекомбинантной ДНК должно быть наиболее эффективным путем получения необходимых больших количеств иммунного интерферона человека. Независимо от того, будут ли полученные таким образом вещества включать гликозилирование, которое рассматривают как характеристику природного, полученного от человека материала, они будут, по-видимому, демонстрировать биоактивность, определяющих их клиническое применение при лечении широкого ряда вирусных заболеваний, новообразований и состояний с подавленным иммунитетом. B. Технология рекомбинантной ДНК

Технология рекомбинантной ДНК достигла зрелости. Молекулярные биологи способны достаточно легко рекомбинировать различные последовательности ДНК, создавая новые виды ДНК, способные продуцировать значительные количества экзогенных белковых продуктов в трансформированных микробах. В основном средства и способы для in vitro связывания различных фрагментов ДНК с тупыми или "липкими" концами разработаны, с их помощью получают потенциальные векторы экспрессии, пригодные для трансформации конкретных микроорганизмов, за счет чего регулируют направленный синтез нужных экзогенных продуктов. Однако для отдельных продуктов этот путь остается достаточно трудным, и наука не достигла еще той стадии, на которой можно гарантировать успех. Плазмида, нехромосомная петля двунитевой ДНК, найденная в бактериях и других микробах, и часто в виде множества копий на клетку остается основным элементом рекомбинантной ДНК технологии. В информацию, закодированную в ДНК плазмиды, включена информация, необходимая для репродуцирования плазмиды в дочерних клетках (то есть, источник репликации) и обычно одна или более фенотипических характеристик селекции, таких как устойчивость к антибиотикам для бактерий, которая позволяет клонам клетки хозяина, содержащим интересующую плазмиду, быть узнанными и предпочтительно расти на селективной среде. Польза плазмид состоит в том факте, что их можно специфически расщеплять той или другой рестикционной эндонуклеазой или "рестрикционным ферментом", каждый из которых узнает различные участки ДНК плазмиды. После этого гетерологичные гены или генные фрагменты можно включать в плазмиду путем присоединения концами к участку расщепления или к реконструированным концам, прилежащим к участку расщепления. Так получают так называемые репликабельные векторы экспрессии. Рекомбинацию ДНК осуществляют вне клетки, однако получаемый "рекомбинантный" репликабельный вектор экспрессии или плазмиду можно ввести в клетки способом, известным, как трансформация, с получением больших количеств рекомбинантных векторов в результате роста трансформанта. Более того, если ген соответствующим образом ориентирован по отношению к участку плазмиды, который управляет транскрипцией и трансляцией кодирующей ДНК, полученный вектор экспрессии можно использовать для реального получения полипептидной последовательности, кодируемой встроенным геном, т.е. для процесса, который носит название экспрессии. Экспрессию инициируют в области, известной как промотор, который распознается и связывается РНК полимеразой. На транскрипционной фазе экспрессии ДНК раскручивается, открывая его как химическую матрицу для инициированного синтеза информационной РНК с последовательности ДНК. Информационная РНК, в свою очередь, транслируется в полипептид с последовательностью аминокислот, закодированной мРНК. Каждая аминокислота закодирована нуклеотидным триплетом или "кодоном", которые все вместе составляют "структурный ген", то есть ту часть, которая кодирует аминокислотную последовательность экспрессированного полипептидного продукта. Трансляции инициируется "старт" - сигналом (обычно ATG, который в полученной информационной РНК становится AUG). Так называемые "стоп" - кодоны определяют конец трансляции и соответственно присоединения следующих аминокислотных единиц. Целевой продукт можно получить, лизируя в случае необходимости клетку хозяина и отделяя продукт путем соответствующих методов очистки от остальных белков. На практике применение технологии рекомбинантной ДНК может обеспечить экспрессию полностью гетерологичных полипептидов (так называемая прямая экспрессия) или в другом варианте - гетерологичных полипептидов, присоединенных к участку аминокислотной последовательности гомологичного полипептида. В последнем случае целевой биоактивный продукт иногда остается неактивным в слитом гомологично-гетерологичном полипептиде до тех пор, пока он не будет отщеплен во внеклеточное окружение (см. опубликованный патент Великобритании N 2007676A и American Scientist 68, 664 (1980). C. Технология клеточной культуры. Искусство культур клеток или тканей для изучения генетики и физиологии клеток хорошо разработано. Известны устройства и способы поддержания перманентных линий клеток, полученных последовательной серией переносов из изомированных нормальных клеток. Для применения в исследованиях такие клеточные линии поддерживают на твердых подложках в жидкой среде или выращивают в суспензии, содержащей поддерживающие питательные вещества. Получение более крупных партий препаратов сводится лишь к механическим проблемам. Более подробное описание предпосылок изобретения можно найти в Microbiology and Edition, Harpes and Row Reblishers, Inc., Hagerstown, Maryland (1973), особенно на стр. 1122, и далее Scientific American 245, 66 и далее (1981), каждая из которых включена здесь в качестве ссылки. Настоящее изобретение основано на открытии, что технологию рекомбинантной ДНК можно с успехом использовать для получения иммунного интерферона человека, предпочтительно в непосредственной форме и в количествах, достаточных для инициирования и проведения тестов на животных и в клиниках, что необходимо перед выходом на рынок. Этот продукт пригоден для использования во всех его формах для профилактики и лечения вирусных инфекций, злокачественных новообразований и состояний с подавленной или дефектной иммунной системой. Его варианты включают различные олигомерные формы, которые могут включать гликозилирование. Этот продукт получают в перестроенных генетически трансформированных микроорганизмах или в трансформированных системах клеточных культур. В используемом здесь контексте термин "клетка-трансформант" относится к клетке, в которую ведена ДНК, причем указанная ДНК является продуктом экзогенной ДНК-рекомбинации, и к потомству любой такой клетки, которое сохраняет введенную таким путем ДНК. Так, теперь стало возможно получать и выделять иммунный интерферон человека более эффективно, чем было возможно ранее. Одним из существенных факторов настоящего изобретения в его наиболее предпочтительном варианте является осуществление возможности генетически направить микроорганизм или клеточную культуру на продуцирование иммунного интерферона человека в достаточных для выделения количествах, секретированных клетках хозяина в зрелой форме. Настоящее изобретение включает полученный таким образом иммунный интерферон человека, средства и способы его получения. Далее настоящее изобретение направлено на способные к репликации векторы экспрессии ДНК, хранящие последовательности генов, кодирующих иммунный интерферон человека в доступной для экспрессии форме. Настоящее изобретение направлено также на штаммы микроорганизмов или клеточные культуры, трансформированные векторами экспрессии, описанными ранее, и на микробные или клеточные культуры таких трансформированных штаммов или культур, способные продуцировать иммунный интерферон человека. Еще в одном аспекте настоящее изобретение направлено на различные процессы, пригодные для получения указанных последовательностей гена иммунного интерферона, векторов экспрессии ДНК, штаммов микроорганизмов и клеточных культур и на их конкретные варианты. Кроме того, настоящее изобретение направлено на получение ферментационных культур указанных микроорганизмов и клеточных культур. Настоящее изобретение направлено также на получение иммунного интерферона человека как продукта прямой экспрессии секретированного клетками хозяина в зрелой форме. Это достижение может использовать ген, кодирующий последовательность зрелого иммунного интерферона человека, плюс 5"-фланкирующую ДНК, кодирующую сигнальный полипептид. Считают, что сигнальный полипептид служит для транспорта молекулы к стенке клетки организма хозяина, где он отщепляется во время процесса секреции зрелого человека. Этот вариант делает возможным выделение и очистку целевого зрелого иммунного интерферона, не обращаясь к включению процедуры, предназначенной для удаления примесей внутриклеточного белка хозяина или клеточных осколков. Встречающееся в тексте выражение "зрелый иммунный интерферон человека" означает продукт микробной или клеточной культуры иммунного интерферона человека, не содержащий сигнального пептида или последовательности препептида, который обязательно сопровождает трансляцию мРНК иммунного интерферона человека. Первый рекомбинантный иммунный интерферон человека, полученный в соответствии с настоящим изобретением, имеет метионин в качестве своей первой аминокислоты (представлен в результате включения кодона стартового сигнала ATG перед структурным геном) или в том случае, если метионин внутри - или внеклеточно отщеплен, имеет в качестве нормальной первой аминокислоты цистеин. Зрелый иммунный интерферон человека можно также получить в виде конъюгата с белком, отличным от обычного сигнального полипептида, причем конъюгата, который может быть специфически расщеплен внутри или вне клетки (см. публикацию патента Великобритании N 2007676A). И, наконец, зрелый иммунный интерферон человека можно получить прямой экспрессией без необходимости отщепления каких-либо посторонних излишних полипептидов. Это особенно важно в тех случаях, когда данный хозяин не способен удалять или удаляет недостаточно эффективно сигнальный пептид, а вектор экспрессии предназначен экспрессировать зрелый интерферон человека вместе с его сигнальным пептидом. Полученный таким образом зрелый иммунный интерферон человека выделяют и очищают до уровня, удовлетворяющего требованиям, необходимым для применения при лечении вирусных заболеваний, злокачественных новообразований и состояний с подавленным или недостаточным иммунитетом. Иммунный интерферон человека был получен следующим образом. 1. Ткани человека, например, ткань селезенки человека или периферические лимфоциты крови культивировали с митогенами для стимулирования продукции иммунного интерферона. 2. Осадок клеток из такой клеточной культуры экстрагировали в присутствии ингибитора рибонуклеазы с целью всей цитоплазмической РНК. 3. На олиго-dТ колонке выделили тотальную информационную РНК (мРНК) в полиаденилированной форме. Эту РНК расфракционировали по размерам, используя градиент плотности сахарозы и гель электрофорез в присутствии кислоты-мочевины. 4. Соответствующую РНК (от 12S до 18S) превратили в соответствующую однонитевую комплементарную ДНК (мДНК), из которой получили двунитевую кДНК. После поли - dC удлинения ее включили в вектор так, чтобы плазмида имела один или более фенотипических маркеров. 5. Полученные таким образом векторы использовали для трансформации бактериальных клеток с получением библиотеки колоний. Меченные радиоизотопами кДНК, полученные как из индуцированных, так и из неиндуцированных РНК, выделенных как описано ранее, использовали для раздельного определения дубликатных библиотек колоний. Затем избыток кДНК удаляли и колонии экспонировали на рентгеновской пленке для идентификации индуцированных клонов кДНК. 6. Из индуцированных клонов кДНК выделили соответствующую плазмидную ДНК и определили в ней последовательность оснований. 7. Секвенированную ДНК подготовили in vitro для включения в соответствующий вектор экспрессии, который использовали для трансформации подходящей клетки хозяина, который, в свою очередь, дали возможность расти в культуре и экспрессировать целевой иммунный интерферон человека. 8. В некоторых системах клеток хозяина, будучи включена в вектор экспрессии так, чтобы быть экспрессированной вместе с сигнальным пептидом, зрелая форма иммунного интерферона человека секретируется в среду клеточной культуры, что облегчает выделение и методы очистки. Описание предпочтительных вариантов изобретения. A. Система клеточных культур/векторы клеточных культур. Размножение клеток позвоночных в культуре (культура ткани) стало обычной процедурой за последние годы (см. Tissue Culture Academic Riess Kruse and Paterson ends, 1973). В данном случае использовали COS - 7 линию фибробластов почки обезьян в качестве хозяина для получения иммунного интерферона (25a). Однако подробно описанные здесь опыты можно проводить на любой линии клеток, которая способна к репликации и экспрессии совместимого вектора, например, W138, BHK, 3T3, CHO, VERO и линий клеток HeLa. Кроме того, необходимо, чтобы вектор экспрессии имел сайт инициации репликации и промотор, расположенный перед геном, подлежащим экспрессии, вкупе с необходимыми также участками связывания рибосомы, участками сплайсинга РНК, участками полиаденилирования и транскрипционными терминаторами. Хотя здесь были использованы эти важные элементы SV40, следует иметь в виду, что изобретение, хотя оно и описано здесь с точки зрения его предпочтительного варианта, не следует рассматривать как ограниченное лишь этими последовательностями. Так, например, могут быть использованы источники репликации других вирусных (например, Polyoma, Adeno, VSV, BPV и т.д.) векторов, а также клеточные источники репликации ДНК, которые могут функционировать в неинтегрированном состоянии. B. Экспрессия в культуре клеток млекопитающих. Стратегия синтеза иммунного интерферона в культуре клеток млекопитающих основана на разработке вектора, способного как к автономной репликации, так и к экспрессии чужого гена под контролем гетерологичного транскрипционного фрагмента. Репликация этого вектора в культуре ткани обеспечивалась за счет стимуляции инициатора репликации ДНК (происходящего из вируса SV 40) и стимуляции вспомогательной функции (T антиген) путем введения вектора в линию клеток, эндогенно экспрессирующих этот антиген (23 и 29). Поздний промотор вируса SV 40 предшествует структурному гену интерферона и обеспечивает транскрипцию гена. Вектор, который использовали для получения экспрессии , состоял из последовательностей pBR 322, которая обеспечивает маркер, пригодный для отбора в E. coli (устойчивой к ампициллину), а также инициатор репликации ДНК. Эти последовательности были получены из плазмиды pML - 1 (28) и представляют область, содержащую ECo RI и Bam HI рестрикционные сайты. SV 40 инициатор получен в составе фрагмента PVu II - Hind III размером 342 п.о., включающего эту область (30 и 31) (причем оба конца превращены в концы Eco RI). Эти последовательности, кроме того, что содержат вирусный инициатор репликации ДНК, кодируют промотор как для ранней, так и для поздней транскрипционной единицы, ориентация участка инициации из SV - 40 была такова, что промотор для поздней единицы транскрипции был расположен проксимально по соотношению к гену, кодирующему интерферон. На фиг. 1 изображено градиентное сахарозное центрифугирование поли(А) + РНК стимулированных лимфоцитов периферической крови. Наблюдается два максимума активности интерферона (показано заштрихованными прямоугольниками) с размерами 12S и 16S. Расположение маркеров рРНК (центрифугированных независимо) помечено над контуром поглощения. На фиг. 2 изображен электрофорез поли (A) + РНК стимулированных PBL на кислота-мочевина-агарозе. Наблюдается только один максимум активности, который мигрирует совместно с 18S РНК. Положение рибосомных маркеров РНК, которые были подвергнуты электрофорезу на прилежащей дорожке и проявлены окрашиванием этидиум бромидом, помечено выше контура активности. На фиг. 3 изображены картины гибридизации 96 колонии с индуцированными и неиндуцированными 32 P меченными кДНК пробами. 96 индивидуальных трансформантов выращивали на пластине для микротитрования, реплика была помещена на две нитроцеллюлозные мембраны, а затем фильтры гибридизовали с 32 P-кДНК образцами, полученными либо из индуцированных мРНК (вверху), либо из мРНК, выделенных из неиндуцированных культур pBL (неиндуцированные, внизу). Фильтры промывали для удаления негибридизованных РНК, а затем экспонировали на пленке для рентгеновских лучей. Эта серия фильтров представляет 86 таких серий (8300 независимых колоний). Примером индуцированного клона является помеченный H12. Фиг. 4 является рестрикционной картой вставки кДНК клона 69. Вставка кДНК связана с сайтами PstI (точки с обоих концов) и олиго-dC-dG "хвостами" (прямые линии). Число и размеры фрагментов, полученных расщеплением рестрикционными нуклеазами, были установлены с помощью электрофореза 6% акриламидном геле. Положения участков были подтверждены секвенированием (представлено на фиг. 5). Кодирующий участок самой большой открытой рамки считывания обведен, заштрихованный участок представляет 20 остатков последовательности сигнального пептида, тогда как участок с точечным пунктиром представляет последовательность зрелого IEN (46 аминокислот); 5" - конец мРНК находится слева, а 3" конец находится справа. На фиг. 5 представлена нуклеотидная последовательность вставки кДНК плазмиды р69. Представлена также "выведенная" последовательность аминокислот наиболее длинного открытого участка считывания. Предполагаемая сигнальная последовательность представлена остатками, помеченными от S1 до S20. На фиг. 6 приведена схема плазмиды pSV69, использованной для экспрессии IFN- в клетках обезьяны. Фиг. 7 изображает Саузерн-гибридизацию 8 различных переваренных Eco RI человеческих геномных ДНК, гибридизованных с 32 P-меченным DdeI- фрагментом 600 п.о. из кДНК-вставки p69. Два Eco RI-фрагмента явно гибридизованы с зондом в каждом образце ДНК. На фиг. 8 представлена Саузерн-гибридизация человеческой геномной ДНК, переваренной 6 различными рестрикционными эндонуклеазами, гибридизованной с 32 P-меченным зондом из p69. А. Источник IFN- мРНК

Лимфоциты периферической крови (PBL) были получены от доноров (людей) с помощью лейкофореза. Далее PBL были очищены градиентным центрифугированием в смеси фиколл-гепарин, а затем их культивировали при концентрации 510 6 кл/мл в RPMI 164 с 1 % L-глутамина, 25 мМ HEPS и 1 % раствора пенициллин-стрептомицин (Gibco Jrand gsland, Ny). Эти клетки индуцировали для получения IFN- митогенным стафилококковым энтеротоксином B (N мкг/мл) и культивировали в течение 34-48 ч при 37 o C в 5 % CO. К культуре PBL добавили дезацетилтимозин -- (0,1 мкг/мл) для повышения относительного выхода IFN- активности. В. Выделение информационной РНК. Тотальную РНК из культур PBL экстрагировали, в основном, в соответствии с сообщением Bergen, S.L. et al. (33). Клетки выделяли центрифугированием, а затем повторно суспендировали в 10 мМ NaCl, 10мМ TrCS-HCl (pH 7,5), 1,5мМ MgCl 2 и 10 мМ рибонуклеозид-ванадильного комплекса. Клетки лизировали, добавляя NP-40 (конечная концентрация 1%), и ядра выделяли центрифугированием. Надосадочная жидкость содержала тотальную РНК, которую очистили далее многократными экстракциями фенолом и хлороформом. Водную фазу довели до 0,2М NaCl, а затем все РНК осадили, добавив два объема этанола. РНК неиндуцированных (нестимулированных) культур выделили таким же способом. Для очистки мРНК от остальных видов РНК использовали олиго-dТ целлюлозную хроматографию (34). Типичные выходы из 1-2 л культивированных PBL составляли 5-10 мг тотальной РНК и 50-200 мкг поли(А) + PHK. C.Фракционирование мРНК по размерам. Для фракционирования препаратов мРНК использовали два способа. Эти способы использовали независимо (а не вместе) и каждый из них приводил к значительному обогащению IFN - мРНК. Для фракционирования мРНК использовали сахарозное градиентное центрифугирование в присутствии денатуранта формамида. Градиенты от 5 до 25 % сахарозы в 70 %-ном формамиде (32) центрифугировали при 154000g в течение 19 ч при 20 o C. Последовательные фракции (0,5 мл) выделяли затем с верхней части градиента, осаждали этанолом, а затем аликвоты вводили в социты Xenopus laevis для трансляции мРНК (35). Спустя 24 ч при комнатной температуре инкубационную среду стандартным методом ингибирования цитопатического эффекта исследовали на противовирусную активность, используя при этом Vesicular Stomatitis вирус (штамм Indiana) или вирус Eucepholomycarditis на клетках WISH (амнион человека) по описанию Стюарта (36), за исключением того, что образцы инкубировали с клетками в течение 24 ч (вместо 4) перед заражением вирусом. Соответственно наблюдали два пика активности для РНК, фракционированных в сахарозном градиенте (фиг. 1). Один пик седиментировал с рассчитанным размером 12S и содержал 100-400 ед/мл антивирусной активности (по сравнению со стандартом IFN-) на мкг введенной РНК. Другой пик активности седиментировал с размером 16S и содержал около половины активности более медленно седиментированного пика. Каждый из этих пиков активности, по-видимому, связан с IFN- , так как для тех же фракций, исследовавшихся на линии бычьих клеток (MDBK), которые не защищены человеческим IFN- , не наблюдалось никакой активности. Как активность IFN- , так и активность IFN- , можно легко определить, исследуя МДВК (5). Фракционирование мРНК (260 мкг) проводили также электрофорезом через кислотно-мочевинные агарозные гели. Вязкий агарозный гель (37 и 38) состоял из 1,75 % агарозы. О,025 М цитрата натрия, pH 3,8 и 6М мочевины. Электрофорез проводили в течение 7 ч при 25 мА и 4 o C. Затем гель разрезали лезвием бритвы. Отдельные ломтики расплавляли при 70 o C, после чего дважды экстрагировали фенолом и один раз хлороформом. Фракции осаждали этанолом, последовательно анализировали на предмет содержания мРНК IFN- введением в социты Xenopus laevis и затем проводили противовирусный анализ. Для фракционированных в геле образцов наблюдали только один пик активности (фиг. 2). Этот пик выходит вместе с 18S и имеет активность 600 ед/мл на микрограмм введенной РНК. Эта активность также, по-видимому, специфична для IFN- , так как не защищает клетки МДВК. Расхождение размеров, наблюдавшееся на сахарозных градиентах (12S и 16S) и кислотно-мочевинных гелях (18S) можно объяснить тем, что эти независимые методы фракционирования проводились в неодинаковых условиях полного денатурирования. Д. Получение библиотеки колоний,

Содержащих последовательности IFN-. 3 мг фракционированных в геле мРНК использовали для получения двунитевой кДНК по стандартным методикам (26 и 39)); кДНК фракционировали по размерам на 6% полиакриламидном геле. Фракции двух размеров электроэлюировали, 800 - 1500 п.о. (138 ng) и > 1500 п.о.(204 ng). Порции 35 ng каждого размера кДНК удлинили дезокси C-остатками, используя терминальную дезоксинуклеотидтрансферазу (40), и отжигали с 300 ng плазмиды pBK 322 (41), которая была аналогично сшита с дезокси-остатками в сайте Pst I(40). Каждую ренатурированную смесь трансформировали затем в E.coli К12 штамм 294. Получили приблизительно 8000 трансформантов с кДНК 800-1500 п.о. и 400 трансформантов кДНК > 1500 п.о. Е. Выделение из библиотеки колоний,

Индуцированных кДНК. Полученные колонии отдельно инокулировали в лунки пластинок для микротитрования, содержащих LB (58) + 5 мгк/мл тетрациклина и хранившихся при - 20 o C после добавления ЖДМСО до 7 %. Две копии библиотеки колоний выращивали на нитроцеллюлозных фильтрах и ДНК из каждой колонии фиксировали на фильтре по методу Gruushtein - Hogness (42). 32 P - меченные кДНК зонды приготовили, используя гельфракционированные мРНК размером 18S из индуцированных и неиндуцированных культур РВL. В качестве праймеров использовали олиго-d Т 12-18; применялись условия реакции, описанные ранее (I). Фильтры, содержащие 8000 трансформантов с размером кДНК 600-1500 п.о. и 400 трансформантов с размером кДНК более 1500 п.о. гибридизовали с 2010 6 срм индуцированных 30 P -кДНК. Дублирующий набор фильтров гибридизовали с 2010 6 срм неиндуцированных 32 P- кДНК. Гибридизацию проводили в течение 16 ч, используя условия, описанные Fritsch et al (43). Фильтры тщательно промыли (43), а затем экспонировали на Кодаковской пленке XR-5 для рентгеновских лучей с помощью Du Pont Lighitning-Plus. интенсифицирующих экранов в течение 16-48 ч. Сравнивали картину гибридизации для каждой колонии с двумя пробами. Приблизительно 40 % колоний явно были гибридизованы с обоими зондами, тогда как приблизительно 50 % колоний не подверглись гибридизации ни с одним зондом (см. фиг. 3). 124 колонии были гибридизованы заметно с индивидуальным зондом, но недетектируемо или очень слабо - с неиндуцированным зондом. Эти колонии индивидуально инокулировали в лунки пластинок для микротитрования, вырастили и перенесли на нитроцеллюлозные фильтры, а затем гибридизовали с теми же двумя пробами, как описано выше. Плазмидная ДНК, выделенная из каждой из этих колоний быстрым способом (44), была также связана с нитроцеллюлозными фильтрами и гибридизована (45) со стимулированными зондами. ДНК из 22 колоний, гибридизовавшееся только с индукционными зондами, были названы "индуцированными" колониями. F. Характеристики индуцированных колоний. Плазмидную ДНК получили из 5 индуцированных колоний (46) и использовали для того, чтобы охарактеризовать кДНК вставки. Рестрикционное мечение пяти индуцированных плазмид (р67, р68, р69, р70 и р71) показало, что четыре из них имеют аналогичные рестрикционные карты. Эти четыре плазмиды (р67, р69, р71 и р72) имеют каждая четыре Dde участка, 2 Hinf 1 участка и один Rsa 1 участок во вставке кДНК. Пятая плазмида (р68) содержит обычный Dde 1 фрагмент и, по-видимому, является коротким кДНК-клоном, относящимся к остальным четырем. Гомологичность, предполагаемая на основании картрирования с помощью рестрикционных нуклеаз, была подтверждена гибридизацией. Приготовили 32 P-меченную ДНК пробу (47) из DdeI фрагмента размером 600 п.о. плазмиды р67 и использовали для гибридизации (42) с остальными индуцированными колониями. Все пять картрированных рестрикционных нуклеазой колоний перекрестно гибридизовались с этим зондом, как и 17 других колоний из 124, выбранных при скрининге. Длину вставки кДНК в каждой из этих перекрестно гибридизирующихся плазмид определяли по перевариванию PstI и с помощью гельэлектрофореза. Клон с самой длинной кДНК-вставкой, по-видимому, является клоном 69 с размером вставки 1200-1400 п.о. Эту ДНК использовали во всех дальнейших экспериментах, ее рестрикционная карта приведена на фиг. 4. Вставка кДНК в р69, как было показано, является IFN- кДНК по полученным в трех независимых системах экспрессии продуктам, проявлявшим противовирусную активность, как описано более подробно infra. G. Анализ последовательной вставки кДНК р69. Полная нуклеотидная последовательность плазмидной p69 кДНК-вставки была определена методом дидеоксинуклеотидного обрыва цепи (48) после субклонирования фрагментов в M 13 вектор m 7 (49) и химическим методом Максама и Гилберта (52). Наиболее длинная открытая рамка считывания кодирует белок из 166 аминокислот, представленный на фиг. 5. Первый остаток кодирует первый метиониновый кодон, включенный в 5"-конец кДНК. Первые 20 остатков у аминоконца, вероятно, служат сигнальной последовательностью для секреции остальных 146 аминокислот. Эту предполагаемую сигнальную последовательность с другими известными сигнальными последовательностями объединяют, например, размеры и гидрофобность. Кроме того, четыре аминокислоты, найденные у предполагаемой отщепляемой последовательности (ser-leu-glu-cys) были идентичны с четырьмя остатками, найденными в точке отщепления нескольких лейкоцитных интерферонов (LeIF B, C, D, F и H (2)). Закодированная зрелая аминокислотная последовательность из 146 аминокислот (именуемая в дальнейшем "рекомбинантный человеческий иммуноинтерферон") имеет молекулярную массу 17140. Имеются два потенциальных положения гликозилирования (50) в закодированной белковой последовательности, у аминокислот от 28 до 30 (asn-gly-thr) и аминокислот от 100 до 102 (asn-tyr-ser). Существование этих положений согласуется с наблюдавшимся гликозилированием человеческого IFN- (6 и 51). Кроме того, единственные два цистеиновых остатка (положения 1 и 3) стерически слишком близки, чтобы образовывать дисульфидный мостик, что согласуется с наблюдавшейся стабильностью IFN- в присутствии таких восстанавливающих агентов, как IFN- - меркаптоэтанол (51). Выведенная зрелая аминокислотная последовательность, в общем, является основной, имея в сумме 30 лизиновых, аргининовых и гистидиновых остатков и всего 19 остатков аспарагиновой и глутаминовой кислот. Структура мРНК IFN- , установленная из ДНК последовательности плазмиды р69, заметно отличается от IFN- (1,2) или IFN- (5) мРНК. Так, кодирующий участок IFN- короче, хотя 5" нетранслируемый и 3"-нетранслируемый участки гораздо длиннее, чем в IFN-FN- и IFN- . H. Структура кодирующей последовательности гена IFN- . Структура гена, кодирующего IFN- , анализировали гибридизацией. В этой процедуре (54) 5 мкг высокомолекулярной человеческой ДНК (полученной по методу 55) переваривают до завершения с различными рестрикционными эндонуклеазами, проводят электрофорез на 1,0 % агарозном геле (56) и переносят на нитроцеллюлозный фильтр (54). 32 P-меченную пробу ДНК приготавливают (47) из DdeI фрагмента размером 600 п.о. кДНК-вставки р69 и гибридизуют (43) с ДНК пятном на фильтре. 10 7 импульсов в минуту пробы гибридизовали в течение 16 ч, а затем промывали как описано (43). Восемь геномных ДНК образцов от различных доноров (людей) переваривали Eco RI и гибридизовали с р69 32 P-меченным зондом. Как представлено на фиг. 7, наблюдается два четких сигнала гибридизации с размерами 8,8 m.п.о. и 2,0 m.п.о., что установлено путем сравнения подвижностей с Hind III переваренной -ДНК. Это могло быть результатом наличия или двух генов IFN- , или одного гена, расщепленного по Eco RI сайту. Так как р69 кДНК не содержит Eco RI сайтов, для объяснения наличия его в гене придется допустить промежуточную последовательность (интрон) с внутренним участком Eco RI. Для того, чтобы сделать различие между этими двумя возможностями, провели еще одну гибридизацию саузерна с тем же зондом и пятью другими эндонуклеазными перевариваниями одной человеческой ДНК (фиг. 8). По два гибридизуемых фрагмента ДНК наблюдали для других эндонуклеазных перевариваний, PVUII - 6,7 т.п.о. и 4,0 и Hinc II (2,5 т.п.о. и 2,2 т.п.о.). Однако три остальные картины эндонуклеазного переваривания дают только один гибридизующийся ДНК-фрагмент: Hind III (9,0 т.п.о.), Bdl II (11,5 т.п.о.) и BamHI (9,5 т. п. о.) Два IFN- гена должны быть связаны необычно коротким расстоянием (менее 9,0 квр), чтобы оказаться в одном и том же Hihd III фрагменте. Этот результат предполагает, что только один гомологичный IFN- ген (в отличие от многих связанных с IFN- генов) присутствует в человеческой геномной ДНК и что этот ген разделен одним или более интронов, содержащих Eco RI, PVU II и Hind II сайты. Это предположение было подтверждено гибридизацией 32 P-меченного (47) фрагмента, полученного из 3"-нетранслируемого участка кДНК из р69 (130 п.о. Dde I фрагмент от 860 положения до 990 положения на фиг. 5) с Eco RI переваром человеческой геномной ДНК. Только 2,0 т.п.о. Eco RI фрагмент гибридизуется с этим зондом, указывая на то, что этот фрагмент содержит 3"-нетранслированные последовательности, тогда как 3,8 т.п.о. Eco RI фрагмент содержит 5"-последовательности. Структура гена IFN- (один ген по крайней мере с одним интроном) существенно отличается от IFN- (множество генов (2) без интронов (56)) или IFN- (один ген без интронов (57)). J. Конструирование вектора клеточной культуры pSV69. Фрагмент из 342 пар оснований Hind III- PVU III, включающий инициатор SV 40, превратили во фрагмент, связанный с Eco R I рестрикционным сайтом. Hind III сайт превратили добавлением синтетического олигомера (5d AGCTGAATTC) и PVU II сайт превратили сшиванием по тупому концу в Eco RI сайт, дополнив его с использованием полимеразы I (фрагмент Кленова). Полученный Eco RI фрагмент вставили в Eсо RI сайт pML - (28). Плазмиду с поздним промотором SV 40, ориентированным в сторону от amp R гена, далее модифицировали, удалив Eco R I - сайт, ближайший к amp R гену pML - 1 (27). Был выделен фрагмент размером 1023 пар оснований HpaI - BglII из клонированной HBV ДНК (60), и HpaI сайт вируса гепатита B (HBV) превратили в Eco RI сайт с синтетическим олигомером (5"dGGGAATTCGC). Этот Eco RI-Bgl II фрагмент непосредственно клонировали в Eco RI - BamH I сайты плазмиды, описанной ранее и несущей инициатор SV 40. В оставшийся Eco R I - сайт вставили кодирующую IFN- последовательность на Pst I фрагменте р69 из 1250 п.о. после конверсии PstI концов в Eco R I концы. Выделили те клоны, в которых поздний промотор SV 40 предшествовал гену IFN- . Полученная плазмида pSV69 (фиг. 6) была затем введена в клетки культур тканей (29), в частности COS-7 клетки, с использованием ДЕАЕ-декстранметодики (61), модифицированной таким образом, что трансфекцию в присутствии ДЕАЕ-декстрана проводили в течение 8 ч. Клеточную среду меняли каждые 2-3 дн. Ежедневно отбирали 200 мкл на интерфероновый биоанализ. Типичные выходы составили 50-100 ед/мл в образцах, проанализированных три или четыре дня спустя после трансфекции. Анализ показал, что продукт экспрессии не имеет cys-tyr-cys-N-концевой части рекомбинантного человеческого иммуноинтерферона (ср. фиг. 5), указывая на то, что явление отщепления сигнального пептида прошло по связи cys-GLN (аминокислоты 3 и 4 на фиг. 5) и что зрелый полипептит фактически состоит из 143 аминокислот (geз-cys-Tyr-cys-иммунный интерферон). J. Частичная очистка рекомбинантного человеческого geз-cys-Tyr-cys-иммунного интерферона. Для получения больших количеств человеческого интерферона IFN- , выделяемого обезьяньими клетками, свежие монослои COS-7 клеток в десяти 10 см пластинах были трансфецированы в общем 30 мкг рDL 1 3 в 110 мл ДЕАЕ-декстрана (200 мкг/мл ДЕАЕ декстран 500000 MW; 0,05 М трис pH 7,5 в ДМЕМ). Спустя 16 ч при 37 o C, пластины промыли дважды ДМЕМ. 15 мл свежей ДМЕМ с добавлением 10 % f.b.s., 2 мМ глутамина, 50 мкг/мл пенициллина G и 50 мг/мл стрептомицина добавили затем на каждую пластину. Среду заменили освобожденной от сыворотки ДМЕM. Свежую, свободную от сыворотки среду добавляли затем ежедневно. Собранную среду хранили при 4 o C до тех пор, пока не использовали для анализа, или связывали с CPG. Было обнаружено, что фракции, собранные спустя 3 и 4 дн после трансфекции, сохраняли практически всю активность. 0,5 г CPG (контролируемое пористое стекло Electonucleonics CPG 350 размер в мешках 120/200) добавляли к 100 мл клеточной надосадочной жидкости, и полученную смесь перемешивали в течение 3 ч при 4 o C. После недолгого центрирования в beuch top центрифуге осевшие шарики набили в колонку и тщательно промыли буфером 20 мМ NaPO 4 , 1M NaCl, 0,1 % -меркаптоэтанол, pH 7,2. Затем активность элюировали тем же самым буфером, содержащим 30 % этиленгликоля с последующим элюированием вышеуказанным буфером, содержащим 50 % этиленгликоль. Практически вся активность связана с CPG. 75 % элюированной активности нашли во фракциях, элюированных с 30 % этиленгликолем. Эти фракции собрали и разбавили 20 мМ NaPO 4 1M NaCl, pH 7,2 до финальной концентрации 10 % этиленгликоля и непосредственно вводили в 10 мл колонку Con A Sepharose (Pharmacia). После тщательной промывки 20 мМ NaPO 4 - 1M NaCl, pH 7,2 активности элюировали 20 мМ NaPO 4 - 1M NaCl - 0,2 M -метил-Д-маннозидом. Существенное количество активности (55 %) не связано с этим лектином, 45 % активности элюировано -метил-Д-маннозидом. К. Фармацевтические композиции. Соединения настоящего изобретения можно включить в соответствии с известными способами в фармацевтически приемлемые композиции, в которых человеческий иммунный интерферон соединяют в смеси с фармацевтически приемлемым носителем. Подходящие носители и их композиции описаны в Pemington"s Pharmaceutical Science, которая включена в виде ссылки. Такие композиции должны содержать эффективное количество белка интерферона в соответствии с настоящим изобретением вместе с подходящим количеством носителя для получения фармацевтически приемлемой композиции, подходящей для эффективного введения больному. Парэнтеральный прием. Человеческий иммунный интерферон настоящего изобретения можно парэнтерально вводить пациенту, для которого необходимо противоопухолевое или противовирусное лечение, а также тем, кто находится в иммуноподавленном состоянии. Дозы и частота приема могут быть аналогичными тем, которые обычно используют в клинических исследованиях на других человеческих интерферонах; то есть около (1-10)10 6 единиц ежедневно, а в случае материалов с чистотой выше 1 %, по-видимому, вплоть 5010 6 ед. чистого интерферона, пригодного для парэнтерального введения. Ампулы предпочтительно хранить на холоде (-20 o C) перед употреблением. Данные биоисследований. 1. Характеристика противовирусной активности. Для нейтрализации антител образцы разбавляли, в случае необходимости, до концентрации 500 - 1000 ед/мл, добавляя PBS - BSA. Равные объемы образца инкубировали в течение 2-12 ч при 4 o C с рядом разбавлений кроличьих античеловеческих лейкоцитов, фибробластов или антисыворотки иммунного интерферона. Анти-IFN- и получили из национального института аллергических и инфекционных заболеваний. Анти-IFN- приготовили, используя аустентичный IFN- (5-20 % чистоты), очищенный из стимулированных лимфоцитов периферической крови. Образцы цетрифугировали в течение 3 мин при 1200 xg за 3 мин перед исследованием. Для проверки pH 2 - стабильности образцы доводили до pH 2, добавляя 1 н. HCl, инкубировали в течение 2-12 ч при 4 o C и нейтрализовали добавлением 1 н. NaOH перед исследованием. Для тестирования натрийдодецилсульфатной (SDS) чувствительности образцы инкубировали с равным объемом 0,2 % SDS в течение 2-12 ч при 4 o C непосредственно перед анализом. Характеристики IFN- полученного в COS - 7 клетках даны в таблице. Источники информации. 1. Goeddel et al., Nature 287, 411 (1930). 2. Goeddel et al., Nature 290. 20(1981). 3. Yelverton et al., Nucleic Aceds Research 9. 731 (1981). 4. Gutterman et al., Annals of Int. Med. 93, 399 (1980). 5. Goeddel et al., Nucleic Acids Reseach 8, 4057 (1980). 6. Yip et al., Proc. Natl. Acad. Sci. (USA) 78, 1601 (1981). 7. Taniguchi et al., Proc. Natl. Acad. Sci. (USA) 78, 3469 (1981). 8. Bloom, Nature 289, 593 (1980). 9. Sonnenfeld et al., Cellular Immunol. 40, 285 (1978). 10. Fleishmann et al., Infection and Immunity 26, 248 (1979). 11. Blalock et al., Cellular Immunology 49, 390 (1980). 12. Rudin et al., Proc. Natl. Acad. Sci. (USA) 77, 5928 (1980). 13. Crane et al., J. Natl. Cancer Inst. 61, 871 (1978). 14. Stinchcomb et al., Nature 282, 39 (1979). 15. Kingsman et al., Gene 7, 141 (1979). 16. Tschumper el al.,. Gene 10, 157 (1980). 17. Mortimer et al., Microbiological Reviews 44, 519 (198). 18. Miozzari et al., Journal of Bacteriology 134, 48 (1978). 19. Jones, Genetics 85, 23 (1977). 20. Hitzeman, et al., J. Biol. Chem. 255, 12073 (1980). 21. Hess et al., J. Adv. Enzyme Regul. 7, 149 (1968). 22. Holland et al.. Biochemistry 17, 4900 (1978). 23. Bostian et al., Proc. Natl. Acad. Sci. (USA) 77, 4504 (1980). 24. The Molecular Biology of Yeast (Aug 11-18, 1981), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York. 25. Chambon, Ann. Rev. Biochemistry, 44, 613 (1975). 25a. Gluzman, Cell 23. 175 (1981). 26. Goeddel et al., Nature 281, 544 (1979). 27. Itakura et al., Science 198, 1056 (1977). 28. Lusky et al., Nature 293, 79 (1981). 29. Gluzman et al. , Cold Spring Harbor Symp. Quant. Biol. 44, 293 (1980). 30. Fiers et al., Nature 273, 113 (1978). 31. Reddy et al., Science 200, 494 (1978). 32. Boedtker et al. , Prog. in Nucleic Acids Res. Mol. Biol. 19, 253 (1976). 33. Berger et al., Biochemistry 18, 5143 (1979). 34. Aviv et al., Proc. Natl. Acad. Sci. USA 69, 1408 (1972). 35. Gurdon et al., J. Molec. Biol. 80, 539 (1975). 36. Stewart, The Interferon System. Springer, New fork, p. 13-26 (1979). 37. Lehrach et al., Biochemistry 16, 4743 (1977). 38. Lynch el al., Virology 98, 251 (1979). 39. Wickens et al., J. Biol. Chem. 253, 2483 (1978). 40. Chang et al., Nature 275, 617 (1978). 41. Bolivar et al., Gene 2, 95 (1977). 42. Grunstein et al., Proc. Natl. Acad. Sci. U.S.A. 72, 3961 (1975). 43. Fritsch et al., Cell 19, 959 (1980). 44. Birnboim et al., Nucleic Acids Res. 7, 1513 (1979). 45. Kafatos et al., Nucleic Acids Res. 7, 1541 (1979). 46. Clewel et al., Biochemistry 9, 4428 (1970). 47. Taylor et al., Biochim. Biophys. Acta 442, 324 (1976). 48. Smith, Methods Enzymol. 61, 560 (1980). 49. Messing et al., Nucleic Acids Res. 9, 309 (1981). 50. Winzler, Hormonal Proteins and Peptides (ed. Li) Academic Press, New York, p. 1 (1973). 51. Mathan et al., Nature 292, 842 (1981). 52. Maxam et al., Methods in Enzymol. 65, 490 (1980). 53. Crea et al., Proc. Natl. Acad. Sci. (USA) 75, 5765 (1978). 54. Southern, J. Molec. Biol. 98, 503 (1975). 55. Blin et al., Nucleic Acids Res. 3, 2303 (1976). 56. Lawn et al., Science 212, 1159 (1981). 57. Lawn et al., Nucleic Acids Res. 9, 1045 (1981). 58. Miller, Experiments in Molecular Genetics, p. 431-3, Cold Spring Harbor Lab., Cold Spring Harbor, New York (1972). 59. Beggs, Nature 275, 104 (1978). 60. Valenzuela et al., Animal Virus Genetics (ed. Fields, Jaenisch and Fox) p. 57, Academic Press, New York (1980). 61. McCuthan et al., J. Natl. Cancer Inst. 41, 351 (1968).

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ получения человеческого иммунного интерферона, предусматривающий культивирование линии клеток животных, выделение и очистку целевого продукта, отличающийся тем, что культивируют линию клеток COS-7, трансформированных рекомбинантной плазмидной ДНК pSVj69, и выделяют дез-Cys-Tyr-Cys -интерферон.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

1 Классификация интерферонов

2 Методы получения интерферонов

2.1 Получение путем инфицирования лейкоцитов человека

2.2 Получение интерферонов генно-инженерным способом

3. Механизмы действия интерферонов

4. Терапевтическое применение интерферона человека

Заключение

Список использованной литературы

Введение

В 1957 году в Национальном институте медицинских исследований в Лондоне было установлено, что клетки человека и животных, подвергнутые воздействию вируса, выделяют вещества, придающие непораженным клеткам устойчивость к вирусной инфекции. Они как бы препятствуют (интерферируют) размножению вирусов в клетке и поэтому были названы интерферонами. Интерфероны помогают нашему организму бороться со множеством вирусных заболеваний.

Препараты на основе различных видов интерферонов используются как иммуномодуляторы для нормализации и усиления иммунной системы, в т. ч. для лечения различных тяжелых заболеваний - острого вирусного гепатита, рассеянного склероза, остеосаркомы, миеломы и некоторых видов лимфом.

Интерфероны представляют собой белковые молекулы с молекулярной массой от 15000 до 21000 дальтон, продуцируемые и секретируемые клетками в ответ на вирусную инфекцию или другие возбудители.

Интерфероны (ИФН) -- группа аутогенных гликопротеинов, биомеханизм действия которых связан с одновременным противовирусным эффектом - активацией клеточных генов, в результате чего синтезируются белки, ингибирующие синтез вирусной ДНК (РНК) и обладающие иммуномодулирующим эффектом -- способностью усиливать экспрессию антигенов на клеточных мембранах и увеличивать активность цитотоксических Т-клеток и естественных киллеров .

1. К лассификация интерферонов

В зависимости от типа клеток-продуцентов все интерфероны можно разделить на:

* б-интерфероны.

* в-интерфероны.

* г-интерфероны.

По способу получения интерфероны делятся на:

1. Природные, получаемые из культуры клеток лейкоцитов человека, стимулированных вирусами:

б-интерферон, в-интерферон, интерферон- б Nl;

2. Рекомбинантные, продуцируемые бактериями со встроенным геном интерферона в их геном:

Интерферон- б2А, интерферон- б2В, интерферон- вlb .

Интерферон - б вырабатывается лейкоцитами, и он получил название лейкоцитарного; в-интерферон называют фибробластным, поскольку он синтезируется фибробластами -- клетками соединительной ткани, а г -интерферон -- иммунным, так как он вырабатывается активированными Т-лимфоцитами, макрофагами, естественными киллерами, т. е. иммунными клетками

Под действием интерферона - г повышается продукция цитокинов, таких, как интерлейкин-1, интерлейкин-2, интерлейкин-12, ИФНв, и фактора некроза опухолей-б.

2. Методы получения интерферонов

Получают интерфероны двумя способами:

а) путем инфицирования лейкоцитов или лимфоцитов крови человека безопасным вирусом, в результате чего инфицированные клетки синтезируют интерферон, который затем выделяют и конструируют из него препараты интерферона;

б) генно-инженерным способом -- путем выращивания в производственных условиях рекомбинантных штаммов бактерий, способных продуцировать интерферон .

2 . 1 П олучение путем инфицирования лейкоцитов человека

Известны способы получения лейкоцитарного интерферона человека из лейкоцитов донорской крови человека, индуцированных вирусами и другими индукторами .

Лейкоциты крови человека - основные продуценты природного интерферона-альфа, количество которых для производственных целей лимитируется донорским сырьем. В этой связи решение вопросов оптимизации методов культивирования лейкоцитов для повышения выхода целевого продукта и разработки унифицированного эффективного метода получения природного ИФН для создания новых лекарственных форм представляется на сегодня весьма важным и актуальным для практического здравоохранения .

Известна технология производства человеческого лейкоцитарного интерферона, которая включает в себя следующую последовательность операций: выделение лейкоцитов из донорской крови, лейкоцитарной или эритроцитарной массы, суспензирование их в питательной среде при температуре (37±0,5) o C, добавление к лейкоцитам аллантоисного вирус-индуктора и инкубирование при (30±0,5) o C 3 ч. После этого отделяют вирус-индуктор, а к осадку лейкоцитов добавляют питательную среду и суспензию выдерживают при (37±0,5) o C в течение 18-20 ч. На этом этапе происходит биосинтез интерферона в лейкоцитах и накопление его в питательной среде, полученной по этой технологии, имеет противовирусную активность 800-1000 МЕ в 1 мл препарата.

С целью увеличения продукции интерферона лейкоцитами на стадии биосинтеза в другом регламенте производства человеческого лейкоцитарного интерферона N 302-82 суспензию лейкоцитов выдерживают при 37,5 o C в течение 2 -10 ч в питательной среде, содержащей 100-200 ед/мл человеческого лейкоцитарного интерферона и 0,0015 ед/мл инсулина стадия прайминга добавляют вирус-индуктор на 1-2 ч стадия индукции интерферона. Затем удаляют вирус-индуктор, а к осадку лейкоцитов добавляют питательную среду и суспензию выдерживают при 37,5 o C в течение 18-20 ч стадия биосинтеза интерферона, а надосадочную жидкость, содержащую интерферон, подвергают инактивации.

Введение стадии прайминга значительно повышает продукцию интерферона лейкоцитами, а противовирусная активность интерферона, полученного этим способом составляет 4000-5000 МЕ/мл. Необходимо отметить, что во всех вышеприведенных производственных технологиях и других известных способах получения человеческого лейкоцитарного интерферона, лейкоциты выделяют из крови, которая хранится при 4-6 o C, а сам процесс выделения идет при такой же температуре с последующим внесением их в питательную среду с температурой 37,5 o C и проведение стадии прайминга, стадии индукции и биосинтеза интерферона .

В качестве прототипа выбирается следующий способ получения интерферона, так как он является наиболее близким по технической сущности. Цель метода повышение выхода целевого продукта. С этой целью предложен способ получения интерферона, включающий выделение лейкоцитов, суспендирование их в питательной среде и праймирование в условиях постепенного повышения температуры суспензии с 20 o до (36,6 ±0,1) o C в течение 4-6 ч, индукцию аллантоисным вирусом болезни Ньюкасла, биосинтез интерферона и инактивацию вируса-индуктора. Сравнительный анализ существенных признаков методов свидетельствует, что отличительными признаками заявляемого способа являются проведение прайминга лейкоцитов при медленном подъеме температуры суспензии с 20 o до (36,6±0,1) o C в течение 4-6 ч. Предложенный температурный режим праймирования лейкоцитов обеспечивает условия для интенсивного биосинтезаИНФ. Способ осуществляется следующим образом. Выделенные лейкоциты из донорской крови, лейкоцитарной или эритроцитарной массы суспендируют в 5 л питательной среды (среда 199), содержащей 0,0015 ед/мл инсулина и 1500-3000 МЕ/МЛ человеческого лейкоцитарного интерферона 5-10% плазмы крови человека или 1,5-2% альбумина человека и антибиотики. В 1 мл питательной среды содержится 10020 млн. лейкоцитов. Питательная среда, содержащая вышеперечисленные исходные компоненты, имеет исходную температуру 20 o C. В автоматизированном режиме, по программе, температуру суспензии с 20 o C повышают до (36,6±0,1) o C в течение 4-6 ч. Затем температуру суспензии доводят до (36,9±0,1) o C и в суспензию добавляют вирус-индуктор в дозе 2000-4000 ГАЕ на 2 млрд лейкоцитов, инкубируют взвесь при (36,9±0,1) o C в течение 18-20ч, постоянно перемешивая. Лейкоциты удаляют центрифугированием, а надосадочную жидкость в количестве 4,5 л, содержащую интерферон, подкисляют 10% соляной кислотой до pH 2,2-2,4. Выдерживают подкисленный полуфабрикат интерферона в течение 10 дней для инактивации вируса-индуктора. Противовирусная активность полученного таким способом интерферона составляет 10-12тысяч МЕ/мл .

Таким образом, предлагаемый способ получения человеческого лейкоцитарнрого интерферона обеспечивает повышение его противовирусной активности в 2 и более раза по сравнению с предыдущим способом. Использование предлагаемого способа в производстве будет способствовать экономии материальных затрат, т.к. он направлен на более эффективное использование лейкоцитов, а не на увеличение их количествa.

Основным недостатком этих способов получения интерферонов являются вероятность контаминации конечного продукта вирусами человека, такими как вирус гепатитов В и С, вируса иммунодефицита и др .

2.2 Получение интерферонов генно-инженерным способом

интерферон лейкоцит ген вирус

В настоящее время более перспективным признан способ получения интерферона микробиологическим синтезом, который обеспечивает возможность получения целевого продукта со значительно более высоким выходом из сравнительно недорогого исходного сырья. Используемые при этом подходы позволяют создать оптимальные для бактериальной экспрессии варианты структурного гена, а также регуляторных элементов, контролирующих его экспрессию .

В качестве исходных микроорганизмов используют различные конструкции штаммов Pichia pastoris, Pseudomonas putida и Escherichia coli.

Недостатком использования P. pastoris в качестве продуцента интерферона, является крайне сложные условия ферментации этого типа дрожжей, необходимость строго поддерживать концентрацию индуктора, в частности метанола, в процессе биосинтеза.

Недостатком использования штаммов Ps. putida является сложность процесса ферментации при низком уровне экспрессии (10 мг интерферона на 1 л культуральной среды). Более продуктивным является использование штаммов Escherichia coli .

Известно большое количество плазмид и созданных на их основе штаммов Е. coli, экспрессирующих интерферон: штаммы Е. coli ATCC 31633 и 31644 с плазмидами Z-pBR322 (Psti) HclF-11-206 или Z-pBR 322(Pstl)/HclN SN 35-AHL6 (SU 1764515), штамм Е. coli pINF- AP2 (SU 1312961), штамм Е. coli pINF- F-Pa (AU 1312962), штамм E.Coli SG 20050 с плазмидой p280/21FN, штамм E.Coli SG 20050 с плазмидой pINF14 (SU 1703691), штамм E.coli SG 20050 с плазмидой pINF16 (RU 2054041) и др. Недостатком технологий, основанных на использовании этих штаммов, является их нестабильность, а также недостаточный уровень экспрессии интерферона.

Наряду с особенностями используемых штаммов эффективность процесса во многом зависит от используемой технологии выделения и очистки интерферона.

Известен способ получения интерферона, включающий в себя культивирование клеток Ps. putida, разрушение биомассы, обработку полиэтиленимином, фракционирование сернокислым аммонием, гидрофобную хроматографию на фенилсилохроме С-80, рН-фракционирование лизата, его концентрирование и диафильтрацию, ионообменную хроматографию на целлюлозе DE-52, элюирование в градиенте рН, ионообменную хроматографию полученного элюента на целлюлозе СМ-52, концентрирование пропусканием через кассету фильтров и гель-фильтрацию на Сефадексе G-100 (SU 1640996). Недостатком этого способа кроме сложной многостадийной ферментации является многостадийность при получении конечного продукта.

Известен также способ получения интерферона, включающий в себя культивирование штамма E.coli SG 20050/pIF16, в LB-бульоне в колбах в термостатированном шейкере, центрифугирование биомассы, ее промывку буферным раствором и обработку ультразвуком для разрушения клеток. Полученный лизат центрифугируют, промывают 3М раствором мочевины в буфере, растворяют в растворе гуанидин хлорида в буфере, обрабатывают ультразвуком, центрифугируют, проводят окислительный сульфитолиз, диализ против 8 М мочевины, ренатурацию и окончательную двухстадийную хроматографию на СМ-52 целлюлозе и сефадексе G-50 (RU 2054041) .

Недостатками этого способа является его относительно невысокая производительность основных этапов процесса выделения и очистки. В особенности это относится к ультразвуковой обработке продукта, диализу и окислительному сульфитолизу, что приводит к нестабильности выхода интерферона, а также к невозможности использования этого метода для промышленного производства интерферона.

В качестве наиболее близкого аналога (прототипа) может быть указан способ получения лейкоцитарного интерферона человека, заключающийся в культивировании рекомбинантного штамма E.coli, замораживании полученной биомассы при температуре не выше -70°С, размораживании, разрушении клеток микроорганизма лизоцимом, удалении ДНК и РНК введением в лизат ДНК-азы и очисткой выделенной нерастворимой формы интерферона отмывкой буферным раствором с детергентами, растворении осадка интерферона в растворе гуанидин гидрохлорида, ренатурации и одностадийной очистке ионообменной хроматографией. В качестве продуцента используют штамм E.coli SS5, полученный с помощью рекомбинантной плазмиды pSS5, содержащей три промотора: Plac, Pt7 и Ptrp, и ген альфа -интерферона с введенными нуклеотидными заменами.

Экспрессия интерферона штаммом E.coli SS5, содержащим эту плазмиду, контролируется тремя промоторами: Plac, Pt7 и Ptrp. Уровень экспрессии интерферона составляет около 800 мг на 1 л клеточной суспензии .

Недостатком способа является низкая технологичность использования ферментативного разрушения клеток, ДНК и РНК микроорганизма и одностадийная хроматографическая очистка интерферона. Это обуславливает нестабильность процесса выделения интерферона, приводит к снижению его качества и ограничивает возможность использования приведенной схемы для промышленного производства интерферона.

Недостатками данной плазмиды и штамма на ее основе являются использование в плазмиде сильного нерегулируемого промотора фага Т7 в штамме Е. coli BL21 (DE3), в котором ген Т7 РНК полимеразы находится под промотором lac оперона и который всегда "течет". Следовательно, в клетке непрерывно происходит синтез интерферона, что приводит к диссоциации плазмиды и снижению жизнеспособности клеток штамма, и в результате - снижение выхода интерферона.

Пример получения рекомбинантного интерферона:

600 г биомассы клеток Pseudomonas putida 84,содержавших рекомбинантную плазмиду p VG-3, после культивирования содержали 130 мг альфа-2 интерферона. Клетки загружали в емкость баллистического дезинтегратора с механической мешалкой вместимостью 5,0 л и приливали к ней 3,0 л лизисного буфера, содержащего 1,2% хлористого натрия, 1,2% трис-(гидроксиметил)-аминометана, 10% сахарозы, 0,15% этилендиаминтетрауксусной кислоты (ЭДТА), 0,02% фенилметилсульфонилфторида и 0,01% дитиотреитола при рН 7,7. Биомассу перемешивали до получения однородной суспензии в течение 30 мин, затем дезинтегрировали в циркуляционном режиме в баллистическом дезинтеграторе в соответствии с инструкцией по эксплуатации. Время дезинтеграции составляло 1,5 ч. Процесс дезинтеграции заканчивали, когда при микроскопировании препарата в нескольких полях зрения микроскопа практически не наблюдается целых клеток микроорганизмов. Объем суспензии лизированной биомассы составил 3,5 л.

Полученный на данной стадии лизат затем поступал на стадию осаждения нуклеиновых кислот. Для этого в емкость, содержащую лизат при перемешивании со скоростью 1-1,2 л/ч подавали 180 мл 5% раствора полиэтиленимина. Суспензию перемешивали в течение 1 ч и центрифугировали для отделения осадка нуклеиновых кислот 1 ч при (9500±500) об/мин, при температуре (5±2)С. После центрифугирования отделяли супернатант, объем которого составлял 3,0 л .

При медленном перемешивании мешалкой в супернатант всыпали 182 г сухого сульфата аммония малыми порциями (каждую следующую порцию добавляли после полного растворения предыдущей). После окончания внесения сульфата аммония перемешивание продолжали до полного растворения соли и суспензию осадка белков выдерживали при температуре (5±2)С 16 ч, а затем центрифугировали в течение 1 ч при (13500±500) об/мин при температуре (5±2)С.

Полученный осадок растворяли в дистиллированной воде, доводя общий объем до 4 л. Для осаждения сопутствующих белков проводили кислотное фракционирование полученного раствора, содержащего альфа-2 интерферон. Для этого в раствор добавляли 5,0 мл 50%-ной уксусной кислоты до рН 4,75. Полученную смесь переносили в холодильник и оставляли при температуре (5±2)С в течение 3 ч, затем центрифугировали суспензию белков при (13500±500) об/мин 30 мин при (5±2)С.

К 4 л супернатанта добавляли 50,0 мл 1 М раствора Триса до рН (6,9±0,1). Концентрация общего белка, определенная методом Лоури, составляла 9,0 мг/мл, биологическая активность альфа-2 интерферона (6,80,5)106 МЕ/мл. Удельная активность 8,5105 МЕ/мг. Общее содержание альфа-2 интерферона на данной стадии 2,91010 ME.

Сорбент Солоза КГ в количестве 0,6 л в виде водной взвеси помещали в хроматографическую колонку. Затем с помощью перистальтического насоса через сорбент последовательно пропускали 2,0 л 0,2 М раствора гидроокиси натрия, 6,0 л дистиллированной воды и 4,5 л 0,05 М трис-ацетатного буферного раствора при рН (7,1±0,1), который на выходе из колонки контролировали рН-метром.

Раствор белков, содержащий альфа-2 интерферон, разбавляли дистиллированной водой до проводимости (6,0+2,0) мСм/см при комнатной температуре. Объем раствора при этом составил 19,2 л.

Раствор наносили на колонку со скоростью 1,5 л/час, затем промывали сорбент 2,0 л трис-ацетатного буфера 0,05 М при рН 7,0. Элюцию проводили 1,2 л 0,05 М раствором Триса с рН (10,2±0,1) Содержание интерферона во фракциях, собранных с помощью коллектора фракций, определяли иммуноферментным методом.

Концентрация общего белка, определенная методом Лоури, составляет (2,2±0,2) мг/мл, биологическая активность альфа-2 интерферона (2,1±0,5)107 МЕ/мл, удельная активность препарата (9,7±0,5)106 МЕ/мг. Общее содержание альфа-2 интерферона на данной стадии составляет (1,5±0,5)1010 ME.

Сорбент Сфероцелл qae в количестве 0,15 л в виде водной суспензии загружали в колонку и промывали со скоростью 0,15 л/ч последовательно 0,5 л 2 М раствора хлористого натрия, 1,5 л дистиллированной воды и 1,0 л трис-ацетатного буферного раствора 0,05 М с рН 8,0, контролируя рН буферного раствора на выходе из колонки рН-метром .

Раствор белков объемом 0,7 л, содержащий альфа-2 интерферон наносили на колонку с сорбентом Сфероцелл-QAE объемом 0,15 л со скоростью 0,2 л/час. Промывку колонки осуществляли трис-ацетатным 0,05 М буферным раствором (рН 8,0) объемом 0,1 л, затем примесные белки отмывали 1,0 л того же буферного раствора с добавлением 0,05 М NaCI. Элюцию интерферона проводили 0,8 л 0,1 М натрий-ацетатным буферным раствором при рН 5,0. Содержание альфа-2 интерферона во фракциях, собранных с помощью коллектора определяли иммуноферментным методом. Концентрация белка составляла (0,35±0,05) мг/мл, биологическая активность альфа-2 интерферона (1,7±0,2)107 МЕ/мл. Удельная активность препарата 5,5107 МЕ/мг белка. Элюат содержал 1,20х1010 ME. Выход по биологической активности на данной стадии 82,5%.

Полученный раствор доводили до рН (5,0±0,1) 50% уксусной кислотой и разбавляли 0,05 М натрий-ацетатным буферным раствором. Удельная электропроводность составила (0,29±0,02) мСм/см при температуре (5±2)С. Подготовленный таким образом раствор белка наносили на колонку с сорбентом Сфероцелл ЛП-М со скоростью 0,1 л/ч, промывали 0,3 л вышеуказанного буферного раствора, а затем элюировали интерферон с помощью линейного градиента концентрации хлористого натрия, создаваемой с помощью градиентного смесителя Ультроград Элюат фракционировали с помощью коллектора фракций и измеряли концентрацию общего белка и альфа-2 интерферона. Концентрация белка в объединенных фракциях (0,45±0,02) мг/мл. Объем раствора 0,1 л. Общее содержание альфа-2 интерферона (8,6±0,2)109 ME. Удельная активность - е (7,5±0,2)107 МЕ/мг. Выход на данной стадии 73%.

Полученный 3 раствор объемом 0,1 л концентрировали до (5,0±0,2) мл с помощью ячейки для ультрафильтрации, используя мембрану Amicon YM-3. Подготовленный таким образом образец наносили на колонку с сорбентом Сефадекс G-100, уравновешенную фосфатно-солевым буфером со скоростью 0,025 л/ч. Объем фракций составляет 10,0 мл. Полученные после хроматографии фракции проверяли на содержание альфа-2 интерферона иммуноферментным методом и объединяя фракции, содержащие основной пик альфа-2 интерферона. Объем полученного раствора составил 30,2 мл. Концентрация общего белка, определенная методом Лоури, (0,90±0,02) мг/мл. Общее содержание альфа-2 интерферона в растворе 5,5109 ME. Удельная активность полученного препарата альфа-2 интерферона 2,3108 МЕ/мг. Выход по альфа-2 интерферону на данной стадии составляет 90,2%. Полученный продукт стерилизовали и расфасовывали. Общий выход препарата 35,8%, в том числе на стадии очистки 51% .

Для получения больших количеств ИФН используют шестидневные однослойные культуры клеток куриного эмбриона или культивируемые лейкоциты крови человека, зараженные определенным видом вируса. Иными словами, для получения ИФН создают определенную систему вирус-клетка .

Из клетки человека изолирован ген, ответственный за биосинтез ИФН. Экзогенный человеческий ИФН получают, используя технологию рекомбинантных ДНК. Процедура выделения кДНК ИФН-ов состоит в следующем:

1) Из лейкоцитов человека выделяют мРНК, фракционируют ее по размерам, проводят обратную транскрипцию, встраивают в сайт модифицированной плазмиды.

2) Полученным продуктом трансформируют Е. соli; образовавшиеся клоны подразделяют на группы, которые идентифицируют.

3) Каждую группу клонов гибридизируют с ИФН - мРНК.

4) Из образовавшихся гибридов, содержащих кДНК и хРНК, выделяют мРНК, проводят ее трансляцию в системе синтеза белка.

5) Определяют интерферонную противовирусную активность каждой смеси, полученной в результате трансляции. Группы, проявившие интерферонную активность, содержат клон с кДНК, гибридизировавшийся с ИФН - мРНК; повторно идентифицируют клон, содержащий полноразмерную ИФН - кДНК человека .

3 . Механизмы действия интерферонов

Интерфероны проявляют некоторые виды активности как лимфокины и иммуномодуляторы. ИФН I типа, действующие преимущественно как ингибиторы репликации вирусов в клетке, реализуют свой эффект, стимулируя выработку рибосомами клеток хозяина клеточных ферментов, которые тормозят продукцию вирусов, нарушая трансляцию вирусной мРНК и синтез вирусных белков .

Интерфероны вырабатывают большинство видов животных, но проявление их активности видоспецифично, т.е. они действуют только у того вида животных, в которых вырабатываются.

Интерфероны вызывают индукцию трех ферментов:

Протеинкиназы, нарушающей начальный этап построения пептидной цепи;

Олигоизоаденилат синтетазы, активирующей РНК-азу, которая разрушает вирусную РНК;

Фосфодиэстеразы, разрушающей конечные нуклеотиды тРНК, что приводит к нарушению элонгации пептида .

С учетом антивирусного и иммуномоделирующего эффектов интерферона в НПО "Биомед" предложены и успешно апробированы, суппозитории с ИФНаn1 и пробиотиками при терапии дисбактериозов вирусной и бактериальной этиологии, кандидозов; в гинекологической практике для лечения эндометритов, кольпитов, вагинитов и гинекологического герпеса .

4. Терапевтическое применение интерферона человека

Интерфероны (ИНФ) обладают универсально широким спектром антивирусной активности, поскольку действуют не на вирионы или их НК, а индуцируют антивирусное состояние клетки, стимулирую образование комплекса белков, блокирующих транскрипцию вирусной иРНК. ИНФ не проникают в клетки, а взаимодействуют с мембранными рецепторами, индуцируя образование цАМФ, передающего сигнал на соответствующий оперон ДНК. Кроме того, ИНФ активируют гены, кодирующие продукты с прямым антивирусным действием - протеинкиназы, нарушающие сборку белковой молекулы, и аденилатсинтетазы, продукт которых активирует эндонуклеазу, разрушающую вирусные иРНК. Гамма-ИНФ активирует цитотоксические лимфоциты, естественные киллеры, моноциты, макрофаги, гранулоциты, способствующие уничтожению инфицированных клеток .

Различают два поколения препаратов интерферона. Для первого поколения характерно натуральное происхождение, при котором его получают из крови доноров. Из него получают интерферон лейкоцитарный человеческий сухой, который применяют для ингаляций и закапывания в носовые проходы. Также производят интерферон в свечах, очищенный концентрированный интерферон в сухом виде и Лейкинферон .

Этот метод получения препаратов на основе интерферона является достаточно дорогим и малодоступным, поэтому в конце 20 века при помощи генной инженерии были созданы препараты интерферона второго поколения.

Таким образом, удалось разработать препараты Виферон, Интераль и другие, содержащие в себе рекомбинантный человеческий интерферон- б.

По причине своих уникальных свойств препараты интерферона применяют при лечении и профилактики всех респираторных заболеваний, большинства онкозаболеваний, для лечения многих вирусных заболеваний и гриппа. Препараты интерферона широко применяются в лечении гепатита геппатита В и С: интерферон ограничивает развитие вируса, препятствует возникновению цирроза и исключает смертельный исход.

У некоторых препаратов интерферона имеются побочные эффекты, например, кожные высыпания, аллергии и заболевания кроветворной системы.

При длительном приеме интерферона в организме вырабатываются антитела к интерферону, что делает его неспособным к борьбе вирусами . Причина этих явлений кроется в наличии альбумина в препаратах на основе интерферона.

Альбумин получают из крови, поэтому существует риск (хоть и минимальный) заражения гепатитом и другими болезнями, передающимися через кровь .

Таблица 1

Спектр активности интерферонов

Название препарата

Подтип ИНФ

Способ получения

Фармакологическое действие

Показания к применению

Интерферон

Биосинтез в культуре лейкоцитов донорской крови под воздействием вирусов

Антивирусное, иммуномодулирующее, антипролиферативное

Вирусные заболевания, лейкоз, злокачественная меланома, рак почек, карциноидный синдром

Интерлок

Биосинтез в культуре лейкоцитов донорской крови под воздействием парамиковирусов

Подавляет жизнедеятельность ряда вирусов

Вирусные заболевания глаз, гепатиты

Интерферон альфа-2

Рекомбинантный

Антивирусное, иммуномодулирующее, ингибирует пролиферацию большого спектра опухолевых клеток

Эпителиальная форма острой и рецидивирующей вирусной инфекции глаз; онкологические заболевания

Интерферон альфа-2а

Рекомбинантный. Белок, содержащий 165 аминокислот

Противовирусная, противоопухолевая активность

Лейкемический ретикулоэндотелиоз, саркома капоши, рак почки, мочевого пузыря, меланома, опоясывающий лишай

Реаферон

Рекомбинанатный ИНФ, продуцируемый бактериальным штаммом псевдомонады, в генетический аппарат которой встроен ген человеческого лейкоцитарного ИНФ б2. Идентичен человеческому лейкоцитарному ИНФ б2.

Вирусные, опухолевые заболевания

Интерферон альфа - n1

Высокоочищенный человеческий ИНФ

Противовирусная

Хронический активный инфекционный гепатит В

Инреферон бета

Суперпродуция фибробластов человека стимулятором в присутствии ингибиторов обменных процессов

Противовирусная, иммуномодулирующая, противоопухолевая активность

Хронические вирусные инфекции в офтальмологии, гинекологии и урологии, дерматологии, гепатологии, онкологии

Интерферон гамма

Рекомбинантный

Противовирусная, иммуномодулирующая, противоопухолевая активность

Хронические гранулематозные заболевания

ИНФ- б и ИНФ- в больше похожи друг на друга. Их гены локализуются в 9 хромосоме. Для выработки обоих индуцирующим сигналом являются вирусы. Обладают выраженным противовирусным и противоопухолевым действием, в гораздо меньшей степени проявляют иммуномодулирующие свойства.

ИНФ- г обладает выраженным иммуномодулирующим действием, вместе с интерлейкином-2 (ИЛ-2) и фактором некроза опухолей (ФНО или TNF) относится к основным провоспалительным цитокином, является индуктором клеточного звена иммунитета. Противовирусные и противоопухолевые свойства выражены слабее чем у ИНФ-б и ИНФ-в. Ген ИНФ-г расположен в 12 хромосоме, основными клетками продуцентами являются Т-лимфоциты, натуральные или естественные киллеры (NK-клетки). Индуцирующим сигналом для выработки могут быть любой антиген или другие цитокины.

Противовирусный эффект интерферонов заключается в подавление синтеза вирусной РНК, подавление синтеза белков оболочки вируса. Механизмом этого эффекта является активация внутриклеточных ферментов, таких например как протеинкиназа или аденилатсинтетаза. Протеинкиназа разрушает фактор инициации синтеза белка с матричной РНК, что подавляет белковый синтез. Аденилатсинтетаза - вызывает синтез веществ разрушающих вирусную РНК.

Иммуномодулирующий эффект интерферонов - способность регулировать взаимодействие клеток участвующих в иммунном ответе. Эту функцию интерфероны выполнят, регулируя чувствительность клеток к цитокинам и экспрессию на мембранах клеток молекул главного комплекса гистосовместимости I типа (ГКГ1). Усиление экспрессии ГКГ1 на вирус-инфицированных клетках значительно повышает вероятность того, что они будут распознаны иммунокомпетентными клетками и элеминированы из организма. Наиболее выраженными иммуномодулирующими свойствами обладает ИНФ-г, являясь продуктом Т-лимфоцитов-хелперов I типа он вместе с другими провоспалительными цитокинами активирует макрофаги, Т-цитотоксические лимфоциты, клетки-естественные киллеры (NK-клетки), подавляет активность В-лимфоцитов, активизирует простагландиновую и кортикостероидную системы. Все эти факторы усиливают фагоцитарные и цитотоксические реакции в зоне воспалительного очага и способствую эффективной элиминации инфекционного агента.

Противоопухолевый эффект интерферонов связан с их способностью замедлять или подавлять рост культуры клеток и активировать противоопухолевые механизмы иммунной системы. Это свойство интерферонов было обнаружено давно и широко используется в терапевтических целях. Все противоопухолевые эффекты интерферонов делятся на прямые и непрямые. Прямы связаны со способность оказывать непосредственное действие на опухолевый клетки, их рост и дифференцировку. Непрямые связаны с усилением способности иммунокомпетентных клеток обнаруживать и уничтожать атипичных клетки организма.

Прямые противоопухолевые эффекты интерферона:

· Подавление синтеза РНК.

· Подавление синтеза протеинов.

· Стимуляция недифференцированных клеток к созреванию.

· Увеличение экспрессии мембранных антигенов опухолевых клеток и рецепторов к гормонам.

· Нарушение процессов сосудообразования.

· Нейтрализация онковирусов.

· Подавление действие опухолевых ростовых факторов.

Непрямые противоопухолевые эффекты интерферона:

· Стимуляция активности клеток иммунной системы (макрофагов, NK-клеток, Т-цитотоксических лимфоцитов).

· Усиление экспрессии на клетках молекул гистосовместимости I класса.

Антипролиферативный эффект интерферонов заключается в способности интерферонов проявлять свойства цитостатиков - подавлять роста клеток за счет подавления синтеза РНК и протеинов, а так же ингибирования ростовых факторов стимулирующих пролиферацию клеток.

Индукторы ИНФ - это весьма разнородная по составу группа природных и синтетических соединений, способных вызывать в организме образование собственного (эндогенного) ИНФ. Подобно ИНФ они обладают универсально широким спектром противовирусной активности, а также иммуномодулирующим действием, которое определяет их эффективность при многих невирусных заболеваниях .

Таблица 2

Спектр противовирусной активности индукторов ИНФ

Препарат

Показания к применению

Акриданоны (циклоферон, неовир)

Грипп, энцефалиты, бешенство, ВИЧ- инфекция, СПИД

Флюореноны (амиксин)

Грипп, ОРВИ, герпес, гепатит А, энцефалиты, бешенство, рассеянный склероз

Поли (И): поли(У)- амплиген

ВИЧ- инфекция, СПИД

Поли (Г): поли(Ц)- полигуацил

Грипп, гепатит В, энцефалиты, бешенство

Двухспиральные РНК (ларифан, ридостин)

Грипп, ОРВИ, герпес, энцефалиты, бешенство

Поли(А): поли(У)- полудан

Герпетические поражения глаз

Полифенолы (мегасин, кагоцел, саврац, рагосин, гозалидон)

Грипп. ОРВИ, герпес, энцефалиты, бешенство, гепатиты, энтеровирусные инфекции

Заключение

Интерферон представляет собой семейство белков-гликопротеидов, которые синтезируются клетками иммунной системы и соединительной ткани. В зависимости от того, какими клетками синтезируется интерферон, выделяют три типа: б, в и г-интерфероны .

Получают интерферон двумя способами: а) путем инфицирования лейкоцитов или лимфоцитов крови человека безопасным вирусом; б) генно-инженерным способом.

В нашей стране рекомбинантный интерферон получил официальное название "Реаферон". Производство этого препарата во многом эффективнее и дешевле, чем лейкоцитарного .

Действие интерферона тем эффективнее, чем раньше он начинает синтезироваться или поступать в организм извне. Поэтому его используют с профилактической целью при многих вирусных инфекциях, например гриппе, а также с лечебной целью при хронических вирусных инфекциях, таких как парентеральные гепатиты (В, С, D), герпес, рассеянный склероз и др. Интерферон дает положительные результаты при лечении злокачественных опухолей и заболеваний, связанных с иммунодефицитами.

Интерфероны обладают видоспецифичностью, т. е. интерферон человека менее эффективен для животных и наоборот. Однако эта видоспецифичность относительна .

Список используемой литературы

1. Временная фармакопейная статья 42У-23/60-439-97. Интерферон человеческий рекомбинантный альфа-два.

2. Гавриков А.В. Оптимизация биотехнологического производства субстанций рекомбинантных интерферонов человека.- М., 2003,

3. Галынкин ВА., Заикина НА., Кочеровец В.И., Потехина Т.С. Основы фармацевтической микробиологии. С-Птб.: Проспект науки, 2008. -304 с.

4. Глик Б., Пастернак Дж. Молекулярная биотехнология. Принципы и применение. М.: Мир, 2002. -589 с.

5. Государственная Фармакопея СССР. ХI изд., вып.1.-- С. 175.

6. Государственный реестр лекарственных средств / Под ред. А.В. Катлинского и др. - М., 2002.

7. Елинов Н.П. Основы биотехнологии. С-Птб.: Наука.-1995.-600 с.

8. Елинов Н.П., Заикина И.А., Соколова И.П. Руководство к лабораторным занятиям по микробиологии.- М.: Медицина, 1998.

9. Карабельский А.В. Рекомбинантные интерфероны.- М.: Книга по Требованию, 2010.- 132 с.

10. Машкина О.С., Буторина А.К. Генетическая инженерия и биобезопасность. Воронеж: ВГУ, 2005. 71 с.

11. Народицкий Б.С. Молекулярная биотехнология интерферонов. // сборник научно-практической конференции"Интерферону - 50 лет". - М., 2007 г., стр. 17-23

12. Основы фармацевтической биотехнологии: Учебное пособие / Т.В. Прищеп, В.С. Чучалин, К.Л. Зайков, Л,К. Михалева, Л.С. Белова - Ростов н/Д: Феникс; Томск: Издательство НТЛ, 2006.- 256 с.

13. Фролов А.Ф., Вовк А.Д., Дядюн С.Т. и др. Эффективность рекомбинантного альфа-два-интерферона при вирусном гепатите В//Врачебное дело.-- Киев, 1990.-- № 9.-- С. 105-108.

14. http://interferon.su/php/content.php?id=577

15. http://ru-patent.info/20/95-99/2098124.html

16. www.antibiotic.ru/ab/brviri.shtml

17. www.pharmvestnik.ru

Размещено на Allbest.ru

...

Подобные документы

    Классы интерферонов: естественного происхождения и искусственно синтезируемые. Способы получения лейкоцитарного интерферона человека из лейкоцитов донорской крови и микробиологическим синтезом. Механизмы действия интерферонов, терапевтическое применение.

    реферат , добавлен 27.01.2010

    История открытия интерферонов, их характеристика, классификация, механизм действия и особенности получения; клинические особенности их применения. Технологическая схема производства лейкоцитарного и рекомбинантного интерферона в препаративных количествах.

    курсовая работа , добавлен 23.12.2012

    Врожденный антивирусный иммунитет. Типы интерферонов и механизмы антивирусного действия интерферонов. Способность антител и комплементов ограничить распространение вируса и предотвратить повторную инфекцию. Обход вирусами иммунологического контроля.

    реферат , добавлен 27.09.2009

    Изучение свойств интерферона. Исследование основных действий белка, обладающего противовирусным, антипролиферативным и иммуномоделирующим действием. Применение интерферона при лечении злокачественных опухолей и заболеваний, связанных с иммунодефицитами.

    презентация , добавлен 17.11.2015

    Процесс гемотрансфузии и его назначение, оценка безопасности на современном этапе развития медицины. Патологическое действие донорской крови, его причины и методы реабилитации больного. Применение реинфузии и аутогемотрансфузии крови и их достоинства.

    реферат , добавлен 13.07.2009

    Виды иммуномодуляции. Понятие об иммунотропных лекарственных средствах. Интерфероны, их индукторы. Механизм иммуномодулирующего действия бактериальных вакцин. Показания для назначения препаратов a-ИФ. Противопоказания для терапии препаратами интерферонов.

    презентация , добавлен 03.04.2014

    Анализ форменных элементов крови: эритроцитов, лейкоцитов, тромбоцитов. Гемоглобин и его функции в работе организма. Гранулоциты, моноциты и лимфоциты как составлющие лейкоцитов. Паталогии в составе крови, их влияние на функции организма человека.

    реферат , добавлен 06.10.2008

    Лечебно-профилактический механизм действия лечебных грязей, их классификация и применение с целью теплового воздействия на организм. Показания и противопоказания к теплолечению. Техника проведения общих и местных грязевых аппликаций и разводных ванн.

    реферат , добавлен 21.12.2014

    Функции крови - жидкой ткани сердечно-сосудистой системы позвоночных. Ее состав и форменные элементы. Формирование эритроцитов, типы патологий. Главная сфера действия лейкоцитов. Лимфоциты - основные клетки иммунной системы. Возрастные изменения крови.

    презентация , добавлен 14.10.2015

    Возрастная периодизация человека. Кроветворение в эмбриогенезе. Изменение концентрации эритроцитов, лейкоцитов, лимфоцитов и тромбоцитов с возрастом. Удельный вес и вязкость крови новорожденных и у пожилых людей. Классификация и сроки развития лейкоцитов.