Как космические корабли бороздят звездные просторы. Самые быстрые ракеты в мире

Правообладатель иллюстрации Thinkstock

Нынешний рекорд скорости в космосе держится уже 46 лет. Корреспондент задался вопросом, когда же он будет побит.

Мы, люди, одержимы скоростью. Так, только за последние несколько месяцев стало известно о том, что студенты в Германии поставили рекорд скорости для электромобиля, а ВВС США планируют так усовершенствовать гиперзвуковые самолеты, чтобы те развивали скорость в пять раз превышающую скорость звука, т.е. свыше 6100 км/ч.

У таких самолетов не будет экипажа, но не потому, что люди не могут передвигаться с такой высокой скоростью. На самом деле люди уже перемещались со скоростью, которая в несколько раз выше скорости звука.

Однако существует ли предел, преодолев который наши стремительно несущиеся тела уже не смогут выдерживать перегрузки?

Нынешний рекорд скорости поровну принадлежит трем астронавтам, которые участвовали в космической миссии "Аполлон 10", - Тому Стаффорду, Джону Янгу и Юджину Сернану.

В 1969 году, когда астронавты облетели вокруг Луны и возвращались обратно, капсула в которой они находились, развила скорость, которая на Земле равнялась бы 39,897 км/час.

"Я думаю, что сто лет назад мы вряд ли могли себе представить, что человек сможет перемещаться в космосе со скоростью почти в 40 тысяч километров в час", - говорит Джим Брей из аэрокосмического концерна Lockheed Martin.

Брей - директор проекта обитаемого модуля для перспективного корабля "Орион" (Orion), который разрабатывается Космическим агентством США НАСА.

По замыслу разработчиков, космический корабль "Орион" – многоцелевой и частично многоразовый - должен выводить астронавтов на низкую орбиту Земли. Очень может быть, что с его помощью удастся побить рекорд скорости, установленный для человека 46 лет назад.

Новая сверхтяжелая ракета, входящая в Систему космических пусков (Space Launch System), должна, согласно плану, совершить свой первый пилотируемый полет в 2021 году. Это будет облет астероида, находящегося на окололунной орбите.

Среднестатистический человек может вынести перегрузку примерно в пять G, прежде чем потеряет сознание

Затем должны последовать многомесячные экспедиции к Марсу. Сейчас, по мысли конструкторов, обычная максимальная скорость "Ориона" должна составлять примерно 32 тысяч км/час. Однако скорость, которую развил "Аполлон 10", можно будет превзойти даже при сохранении базовой конфигурации корабля "Орион".

"Orion предназначен для полетов к различным целям в течение всего своего срока эксплуатации, - говорит Брей. – Его скорость может оказаться значительно выше той, что мы сейчас планируем".

Но даже "Орион" не будет представлять пик скоростного потенциала человека. "По сути дела, не существует другого предела скорости, с какой мы можем перемещаться, кроме скорости света", - говорит Брей.

Скорость света один миллиард км/час. Есть ли надежда, что нам удастся преодолеть разрыв между 40 тысячами км/час и этими величинами?

Удивительным образом скорость как векторная величина, обозначающая быстроту перемещения и направление движения, не является для людей проблемой в физическом смысле, пока она относительно постоянна и направлена в одну сторону.

Следовательно, люди – теоретически – могут перемещаться в пространстве лишь чуть медленнее "скоростного предела вселенной", т.е. скорости света.

Правообладатель иллюстрации NASA Image caption Как будет ощущать себя человек в корабле, летящем с околосветовой скоростью?

Но даже если допустить, что мы преодолеем значительные технологические препятствия, связанные с созданием скоростных космических кораблей, наши хрупкие, состоящие в основном из воды тела столкнутся с новыми опасностями, сопряженными с эффектами высокой скорости.

Могут возникнуть и пока только воображаемые опасности, если люди смогут передвигаться быстрее скорости света благодаря использованию лазеек в современной физике или с помощью открытий, разрывающих шаблон.

Как выдержать перегрузки

Впрочем, если мы намерены передвигаться со скоростью свыше 40 тысяч км/час, нам придется достигать ее, а затем замедляться, не спеша и сохраняя терпение.

Быстрое ускорение и столь же быстрое замедление таят в себе смертельную опасность для организма человека. Об этом свидетельствует тяжесть телесных травм, возникающих в результате автомобильных катастроф, при которых скорость падает с нескольких десятков километров в час до нуля.

В чем причина этого? В том свойстве Вселенной, которое носит название инерции или способности физического тела, обладающего массой, противостоять изменению его состояния покоя или движения при отсутствии или компенсации внешних воздействий.

Эта идея сформулирована в первом законе Ньютона, который гласит: "Всякое тело продолжает удерживаться в своем состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменять это состояние".

Мы, люди, в состоянии переносить огромные перегрузки без тяжких травм, правда, только в течение нескольких мгновений

"Состояние покоя и движение с постоянной скоростью - это нормально для человеческого организма, - объясняет Брей. - Нам скорее следует беспокоиться о состоянии человека в момент ускорения".

Около века назад создание прочных самолетов, которые могли маневрировать на скорости, привело к тому, что пилоты стали говорить о странных симптомах, вызываемых изменениями скорости и направления полета. Эти симптомы включали в себя временную потерю зрения и ощущение либо тяжести, либо невесомости.

Причина заключается в перегрузках, измеряемых в единицах G, которые представляют собой отношение линейного ускорения к ускорению свободного падения на поверхности Земли под воздействием притяжения или гравитации. Эти единицы отражают воздействие ускорения свободного падения на массу, например, человеческого тела.

Перегрузка в 1 G равна весу тела, которое находится в поле тяжести Земли и притягивается к центру планеты со скоростью 9,8 м/сек (на уровне моря).

Перегрузки, которые человек испытывает вертикально с головы до пят или наоборот, являются поистине плохой новостью для пилотов и пассажиров.

При отрицательных перегрузках, т.е. замедлении, кровь приливает от пальцев на ногах к голове, возникает чувство перенасыщения, как при стойке на руках.

Правообладатель иллюстрации SPL Image caption Для того чтобы понять, сколько G смогут выдержать астронавты, их тренируют в центрифуге

"Красная пелена" (чувство, которое испытывает человек, когда кровь приливает к голове) наступает, когда распухшие от крови, полупрозрачные нижние веки поднимаются и закрывают зрачки глаз.

И, наоборот, при ускорении или положительных перегрузках кровь отливает от головы к ногам, глаза и мозг начинают испытывать недостаток кислорода, поскольку кровь скапливается в нижних конечностях.

Сначала зрение туманится, т.е. происходит потеря цветного зрения и накатывает, что называется, "серая пелена", потом наступает полная потеря зрения или "черная пелена", но человек остается в сознании.

Чрезмерные перегрузки ведут к полной потере сознания. Это состояние называют обмороком, вызванным перегрузкой. Многие пилоты погибли из-за того, что на их глаза опускалась "черная пелена" - и они разбивались.

Среднестатистический человек может вынести перегрузку примерно в пять G, прежде чем потеряет сознание.

Пилоты, одетые в специальные противоперегрузочные комбинезоны и обученные особым образом напрягать и расслаблять мышцы торса для того, чтобы кровь не отливала от головы, способны управлять самолетом при перегрузках примерно в девять G.

По достижении стабильной крейсерской скорости в 26 000 км/ч на орбите астронавты ощущают скорость не больше, чем пассажиры коммерческих авиарейсов

"На протяжении коротких периодов времени человеческое тело может переносить гораздо более сильные перегрузки, чем девять G, - говорит Джефф Свентек, исполнительный директор Ассоциации аэрокосмической медицины, расположенной в городе Александрия, штат Вирджиния. - Но выдерживать высокие перегрузки на протяжении длительного периода времени способны очень немногие".

Мы, люди, в состоянии переносить огромные перегрузки без тяжких травм, правда, только в течение нескольких мгновений.

Рекорд кратковременной выносливости поставил капитан ВВС США Эли Бидинг-младший на авиабазе Холломэн в штате Нью-Мексико. В 1958 году он при торможении на специальных санях с ракетным двигателем после разгона до 55 км/ч за 0.1 секунду испытал перегрузку в 82.3 G.

Этот результат зафиксировал акселерометр, закрепленный у него на груди. На глаза Бидинга также упала "черная пелена", но он отделался только синяками во время этой выдающейся демонстрации выносливости человеческого организма. Правда, после заезда он провел три дня в госпитале.

А теперь в космос

Астронавты, в зависимости от средства передвижения, также испытывали довольно высокие перегрузки - от трех до пяти G - во время взлетов и при возвращении в плотные слои атмосферы соответственно.

Эти перегрузки переносятся сравнительно легко, благодаря разумной идее пристегивать космических путешественников к креслам в положении лежа лицом по направлению полета.

По достижении стабильной крейсерской скорости в 26 000 км/ч на орбите астронавты ощущают скорость не больше, чем пассажиры коммерческих авиарейсов.

Если перегрузки не будут представлять собой проблему для длительных экспедиций на кораблях "Орион", то с мелкими космическими камнями – микрометеоритами – все сложнее.

Правообладатель иллюстрации NASA Image caption Для защиты от микрометеоритов "Ориону" понадобится своего рода космическая броня

Эти частицы размером с рисовое зернышко могут развивать впечатляющие и при этом разрушительные скорости до 300 тысяч км/час. Для обеспечения целостности корабля и безопасности его экипажа "Орион" оснащен внешним защитным слоем, толщина которого варьируется от 18 до 30 см.

Кроме того, предусмотрены дополнительные экранирующие щиты, а также используется хитроумное размещение оборудования внутри корабля.

"Чтобы не лишиться полетных систем, жизненно важных для всего космического корабля, мы должны точно рассчитывать углы подлета микрометеоритов", - говорит Джим Брей.

Будьте уверены: микрометеориты – не единственная помеха для космических экспедиций, во время которых высокие скорости полета человека в безвоздушном пространстве будут играть все более важную роль.

В ходе экспедиции к Марсу придется решать и другие практические задачи, например, по снабжению экипажа продовольствием и противодействию повышенной опасности раковых заболеваний из-за воздействия на человеческий организм космической радиации.

Сокращение времени в пути снизит остроту таких проблем, поэтому быстрота перемещения будет становиться все более желаемой.

Космические полеты следующего поколения

Эта потребность в скорости воздвигнет новые препятствия на пути космических путешественников.

Новые корабли НАСА, которые угрожают побить рекорд скорости "Аполлона 10", по-прежнему будут полагаться на испытанные временем химические системы ракетных двигателей, используемые со времен первых космических полетов. Но эти системы обладают жесткими ограничениями скорости по причине высвобождения малых величин энергии на единицу топлива.

Наиболее предпочтительный, хотя и труднодостижимый источник энергии для быстрого космического корабля - это антиматерия, двойник и антипод обычной материи

Поэтому, чтобы существенно увеличить скорость полета для людей, отправляющихся на Марс и далее, необходимы, как признают ученые, совершенно новые подходы.

"Те системы, которыми мы располагаем сегодня, вполне в состоянии доставить нас туда, - говорит Брей, - однако все мы хотели бы стать свидетелями революции в двигателях".

Эрик Дэвис, ведущий физик-исследователь в Институте перспективных исследований в Остине, штат Техас, и участник программы НАСА по прорывным разработкам в физике движения, шестилетнего исследовательского проекта, завершившегося в 2002 году, выделил три наиболее перспективных средства, с точки зрения традиционной физики, способных помочь человечеству достичь скоростей, разумно достаточных для межпланетных путешествий.

Если коротко, речь идет о явлениях выделения энергии при расщеплении вещества, термоядерном синтезе и аннигиляции антиматерии.

Первый метод заключается в делении атомов и применяется в коммерческих ядерных реакторах.

Второй, термоядерный синтез, заключается в создании более тяжелых атомов из простых атомов – такого рода реакции питают энергией Солнце. Это технология, которая завораживает, но не дается в руки; до ее обретения "всегда остается еще 50 лет" - и так будет всегда, как гласит старый девиз этой отрасли.

"Это весьма передовые технологии, - говорит Дэвис, - но они основаны на традиционной физике и прочно утвердились еще на заре Атомного века". По оптимистическим оценкам, двигательные системы, основанные на концепциях деления атомов и термоядерном синтезе, в теории, способны разогнать корабль до 10% скорости света, т.е. до весьма достойных 100 миллионов км/час.

Правообладатель иллюстрации US Air Force Image caption Летать со сверхзвуковой скоростью - уже не проблема для человека. Другое дело - скорость света, или хотя бы близко к ней...

Наиболее предпочтительный, хотя и труднодостижимый источник энергии для быстрого космического корабля - это антиматерия, двойник и антипод обычной материи.

Когда два вида материи приходят в соприкосновение, они уничтожают друг друга, в результате чего выделяется чистая энергия.

Технологии, позволяющие вырабатывать и хранить – пока крайне незначительные – количества антиматерии, существуют уже сегодня.

В то же время производство антивещества в полезных количествах потребует новых специальных мощностей следующего поколения, а инженерной мысли придется вступить в конкурентную гонку по созданию соответствующего космического корабля.

Но, как говорит Дэвис, немало отличных идей уже прорабатывается на чертежных досках.

Космические корабли, приводимые в движение энергией антиматерии, смогут перемещаться с ускорением в течение нескольких месяцев и даже лет и достигать более существенных процентов от скорости света.

При этом перегрузки на борту будут оставаться приемлемыми для обитателей кораблей.

Вместе с тем, такие фантастические новые скорости будут таить в себе и иные опасности для организма человека.

Энергетический град

На скорости в несколько сот миллионов километров в час любая пылинка в космосе, от распыленных атомов водорода до микрометеоритов, неизбежно становится пулей, обладающей высокой энергией и способной прошить корпус корабля насквозь.

"Когда вы передвигаетесь с очень высокой скоростью, это означает, что частицы, летящие вам навстречу, движутся с теми же скоростями", - говорит Артур Эдельстайн.

Вместе с покойным отцом, Уильямом Эдельстайном, профессором радиологии в Медицинской школе Университета имени Джона Хопкинса, он работал над научным трудом, в котором рассматривались последствия воздействия атомов космического водорода (на людей и технику) во время сверхбыстрых космических путешествий в космосе.

Водород начнет разлагаться на субатомные частицы, которые будут проникать внутрь корабля и подвергать воздействию радиации как экипаж, так и оборудование.

Двигатель Алькубьерре понесет вас, как серфингиста, несущегося на доске по гребню волны Эрик Дэвис, физик-исследователь

На скорости, равной 95% скорости света, воздействие такой радиации будет означать почти мгновенную смерть.

Звездолет нагреется до температур плавления, перед которыми не устоит ни один мыслимый материал, а вода, содержащаяся в организме членов экипажа, немедленно закипит.

"Это все крайне неприятные проблемы", - замечает Эдельстайн с мрачным юмором.

Он и его отец приблизительно подсчитали, что для создания некоей гипотетической системы магнитной защиты, способной оградить корабль и находящихся в нем людей от смертоносного водородного дождя, звездолет может перемещаться со скоростью, не превышающей половины скорости света. Тогда люди на борту имеют шанс выжить.

Марк Миллис, физик, занимающийся проблемами поступательного движения, и бывший руководитель программы НАСА по прорывным разработкам в физике движения, предупреждает, что этот потенциальный предел скорости для полетов в космосе остается пока проблемой отдаленного будущего.

"На основании физических знаний, накопленных к настоящему времени, можно сказать, что развить скорость свыше 10% от скорости света будет крайне трудно, - говорит Миллис. – Опасность нам пока не угрожает. Простая аналогия: зачем переживать, что мы можем утонуть, если мы еще даже не вошли в воду".

Быстрее света?

Если допустить, что мы, так сказать, научились плавать, сможем ли мы тогда освоить скольжение по космическому времени - если развивать дальше эту аналогию - и летать со сверхсветовой скоростью?

Гипотеза о врожденной способности к выживанию в сверхсветовой среде хотя и сомнительна, но не лишена определенных проблесков образованной просвещенности в кромешной тьме.

Один из таких интригующих способов перемещения основан на технологиях, подобных тем, что применяются в "варп-двигателе" или "двигателе искривления" из сериала "Звездный путь".

Принцип действия этой силовой установки, известной еще как "двигатель Алькубьерре"* (названного по фамилии мексиканского физика-теоретика Мигеля Алькубьерре), состоит в том, что он позволяет кораблю сжимать перед собой нормальное пространство-время, описанное Альбертом Эйнштейном, и расширять его позади себя.

Правообладатель иллюстрации NASA Image caption Нынешний рекорд скорости принадлежит трем астронавтам "Аполлона 10" - Тому Стаффорду, Джону Янгу и Юджину Сернану

По существу, корабль перемещается в некоем объеме пространства-времени, своеобразном "пузыре искривления", который движется быстрее скорости света.

Таким образом, корабль остается неподвижным в нормальном пространстве-времени в этом "пузыре", не подвергаясь деформациям и избегая нарушений универсального предела скорости света.

"Вместо того чтобы плыть в толще воды нормального пространства-времени, - говорит Дэвис, - двигатель Алькубьерре понесет вас, как серфингиста, несущегося на доске по гребню волны".

Есть тут и определенный подвох. Для реализации этой затеи необходима экзотическая форма материи, обладающая отрицательной массой, чтобы сжимать и расширять пространство-время.

"Физика не содержит никаких противопоказаний относительно отрицательной массы, - говорит Дэвис, - но никаких ее примеров нет, и мы никогда не встречали ее в природе".

Существует и другой подвох. В опубликованной в 2012 году работе исследователи из Университета Сиднея предположили, что "пузырь искривления" будет накапливать заряженные высокой энергией космические частицы, поскольку неизбежно начнет взаимодействовать с содержимым Вселенной.

Некоторые частицы будут проникать внутрь самого пузыря и накачивать корабль радиацией.

Застрявшие в досветовых скоростях?

Неужели мы так и обречены застрять на этапе досветовых скоростей по причине нашей деликатной биологии?!

Речь ведь не столько о том, чтобы установить новый мировой (галактический?) рекорд скорости для человека, сколько о перспективе превращения человечества в межзвездное общество.

Со скоростью в половину скорости света - а это тот предел, который, согласно данным изысканий Эдельстайна, способен выдержать наш организм - путешествие к ближайшей звезде в оба конца займет более 16 лет.

(Эффекты расширения времени, под воздействием которых для экипажа звездолета в его системе координат пройдет меньше времени, чем для людей, оставшихся на Земле в своей системе координат, не приведут к драматическим последствиям на скорости, составляющей половину скорости света).

Марк Миллис полон надежд. Принимая во внимание, что человечество изобрело противоперегрузочные костюмы и защиту от микрометеоритов, позволяющие людям безопасно путешествовать в великой голубой дали и усеянной звездами черноте космоса, он уверен, что мы сможем найти способы выживания, на какие бы скоростные рубежи не вышли в будущем.

"Те же самые технологии, которые смогут помочь нам достигать невероятных новых скоростей перемещения, - размышляет Миллис, - обеспечат нас новыми, пока неведомыми возможностями для защиты экипажей".

Примечания переводчика:

*Мигель Алькубьерре выдвинул идею своего "пузыря" в 1994 году. А в 1995 году российский физик-теоретик Сергей Красников предложил концепцию устройства для космических путешествий быстрее скорости света. Идея получила название "трубы Красникова".

Это искусственное искривление пространства времени по принципу так называемой кротовой норы. Гипотетически корабль будет двигаться по прямой от Земли к заданной звезде сквозь искривленное пространство-время, проходя через другие измерения.

Согласно теории Красникова, космический путешественник вернется обратно в то же самое время, когда он отправился в путь.

Вниманию читателей представлены самые быстрые ракеты в мире за всю историю создания.

Скорость 3,8 км/с

Самая быстрая ракета средней баллистической дальности с максимальной скоростью 3,8 км в секунду открывает рейтинг самых быстрых ракет в мире. Р-12У являлся модифицированным вариантом Р-12. Ракета отличалась от прототипа отсутствием промежуточного днища в баке окислителя и некоторыми незначительными изменениями конструкции - в шахте нет ветровых нагрузок, что позволило облегчить баки и сухие отсеки ракеты и отказаться от стабилизаторов. С 1976 года ракеты Р-12 и Р-12У начали сниматься с вооружения и заменяться на подвижные грунтовые комплексы «Пионер». Они были сняты с вооружения в июне 1989 года, и в период по 21 мая 1990 года на базе Лесная в Белоруссии были уничтожены 149 ракет.

Скорость 5,8 км/с

Одна из самых быстрых американских ракет-носителей с максимальной скоростью 5,8 км в секунду. Является первой разработанной межконтинентальной баллистической ракетой, принятой на вооружение США. Разрабатывалась в рамках программы MX-1593 с 1951 года. Составляла основу ядерного арсенала ВВС США в 1959-1964 годах, но затем была быстро снята с вооружения в связи с появлением более совершенной ракеты «Минитмэн». Послужила основой для создания семейства космических ракет-носителей Атлас, эксплуатирующегося с 1959 и поныне.

Скорость 6 км/с

UGM -133 A Trident II - американская трехступенчатая баллистическая ракета, одна из самых быстрых в мире. Её максимальная скорость составляет 6 км в секунду. “Трезубец-2” разрабатывался с 1977 года параллельно с более легким “Трайдентом-1”. Принят на вооружение в 1990 году. Стартовая масса - 59 тонн. Макс. забрасываемый вес - 2,8 тонны при дальности пуска 7800 км. Максимальная дальность полета при уменьшенном числе боевых блоков - 11 300 км.

Скорость 6 км/с

Одна из самых быстрых твердотопливных баллистических ракет в мире, стоящая на вооружении России. Имеет минимальный радиус поражения 8000 км, примерную скорость 6 км/с. Разработка ракеты ведётся с 1998 года Московским институтом теплотехники, разработавшим в 1989-1997 гг. ракету наземного базирования «Тополь-М». К настоящему времени произведено 24 испытательных пусков «Булавы», пятнадцать из них признаны успешными (в ходе первого пуска запускался массогабаритный макет ракеты), два (седьмой и восьмой) - частично успешными. Последний испытательный пуск ракеты состоялся 27 сентября 2016 года.

Скорость 6,7 км/с

Minuteman LGM -30 G - одна из самых быстрых межконтинентальных баллистических ракет наземного базирования в мире. Её скорость составляет 6,7 км в секунду. LGM-30G «Минитмэн» III имеет расчетную дальность полета от 6000 километров до 10 000 километров в зависимости от типа боеголовки. Минитмен-3 стоит на вооружении США с 1970 года по сегодняшний день. Она является единственной ракетой шахтного базирования в США. Первый пуск ракеты состоялся в феврале 1961 года, модификации II и III были запущены в 1964 году и 1968 соответственно. Ракета весит около 34 473 килограмм, оснащена тремя твердотопливными двигателями. Планируется, что ракета будет стоять на вооружении вплоть до 2020 года.

Скорость 7 км/с

Самая быстрая противоракета в мире, предназначенная для поражения высокоманевренных целей и высотных гиперзвуковых ракет. Испытания серии 53Т6 комплекса «Амур» были начаты в 1989 году. Её скорость составляет 5 км в секунду. Ракета представляет собой 12-метровый остроконечный конус без выступающих частей. Ее корпус изготовлен из высокопрочных сталей с использованием намотки из композиционных материалов. Конструкция ракеты позволяет выдерживать большие перегрузки. Перехватчик стартует со 100-кратным ускорением и способен перехватывать цели, летящие со скоростью до 7 км в секунду.

Скорость 7,3 км/с

Самая мощная и быстрая ядерная ракета в мире со скоростью 7,3 км в секунду. Предназначена она, прежде всего, для того чтобы разрушать самые укрепленные командные пункты, шахты баллистических ракет и авиабазы. Ядерная взрывчатка одной ракеты может разрушить большой город, весьма большую часть США. Точность попадания – около 200-250 метров. Ракета размещается в самых прочных в мире шахтах. SS-18 несет 16 платформ, одна из которых загружена ложными целями. Выходя на высокую орбиту все головки «Сатаны» идут «в облаке» ложных целей и практически не идентифицируются радарами».

Скорость 7,9 км/с

Межконтинентальная баллистическая ракета (DF-5A) с максимальной скоростью 7,9 км в секунду открывает тройку самых быстрых в мире. Китайская МБР DF-5 поступила в эксплуатацию в 1981 году. Она может нести огромную боеголовку на 5 мт и имеет диапазон более чем 12,000 км. У DF-5 отклонение приблизительно в 1 км, что означает, что у ракеты одна цель - уничтожать города. Размер боеголовки, отклонение и факт, что на её полную подготовку к запуску требуется всего час, все это означают, что DF-5 - карательное оружие, предназначенное для наказания любых потенциальных нападающих. Версия 5A имеет увеличенный диапазон, улучшение отклонения на 300 м и способность нести несколько боеголовок.

Р-7 Скорость 7,9 км/с

Р-7 - советская, первая межконтинентальная баллистическая ракета, одна из самых быстрых в мире. Ее предельная скорость составляет 7,9 км в секунду. Разработку и выпуск первых экземпляров ракеты осуществило в 1956-1957 годах подмосковное предприятие ОКБ-1. После успешных пусков она была использована в 1957 году для запуска первых в мире искусственных спутников Земли. С тех пор ракеты-носители семейства Р-7 активно применяются для запуска космических аппаратов различного назначения, а с 1961 года эти ракеты-носители широко используются в пилотируемой космонавтике. На основе Р-7 было создано целое семейство ракет-носителей. С 1957 по 2000 год выполнены запуски более 1800 ракет-носителей на базе Р-7, из них более 97 % стали успешными.

Скорость 7,9 км/с

РТ-2ПМ2 «Тополь-М» (15Ж65) - самая быстрая межконтинентальная баллистическая ракета в мире с максимальной скоростью 7,9 км в секунду. Предельная дальность - 11 000 км. Несёт один термоядерный боевой блок мощностью 550 кт. В шахтном варианте базирования принята на вооружение в 2000 году. Метод старта - миномётный. Маршевый твёрдотопливный двигатель ракеты позволяет ей набирать скорость намного быстрее предыдущих типов ракет аналогичного класса, созданных в России и Советском Союзе. Это значительно затрудняет её перехват средствами ПРО на активном участке полёта.

Однако, в космосе все по-другому, некоторые явления просто необъяснимы и никаким законам не поддаются в принципе. Например, запущенный несколько лет назад спутник, или другие объекты будут вращаться по своей орбите и никогда не упадут. Почему так происходит, с какой скоростью летит ракета в космос ? Физики предполагают, что есть центробежная сила, которая нейтрализует действие гравитации.

Проделав небольшой эксперимент, мы можем сами, не выходя из дома, это понять и ощутить. Для этого нужно взять нитку и привязать к одному концу небольшой груз, далее нить раскрутить по окружности. Мы почувствуем, что чем выше скорость, тем траектория у груза будет четче, а нить больше натягивается, если ослабить силу, скорость вращения объекта уменьшится и риск того, что груз упадет, возрастает в несколько раз. Вот с такого небольшого опыта мы и начнем развивать нашу тему - скорость в космосе .

Становится понятно, что высокая скорость позволяет любому объекту преодолевать силу притяжения. Что касается космических объектов, любых у них у каждого своя скорость, она разная. Определяется четыре основных вида такой скорости и самая маленькая из них первая. Именно на такой скорости летит корабль на орбиту Земля.

Для того чтобы вылететь за ее пределы нужна вторая скорость в космосе . На третьей скорости полностью преодолевается тяготение и можно вылететь за пределы солнечной системы. Четвертая скорость ракеты в космосе позволит покинуть саму галактику, это примерно 550 км/с. Нам всегда было интересна скорость ракеты в космосе км ч, при выходе на орбиту она равняется 8 км/с, за ее пределы - 11 км/с, то есть, развивая свои возможности до 33 000 км/ч. Ракета наращивает постепенно скорость, полноценный разгон начинается с высоты 35 км. Скорость выхода в космос составляет 40000 км/ч.

Скорость в космосе: рекорд

Максимальная скорость в космосе - рекорд, установленный 46 лет назад, до сих пор держится, его совершили астронавты, принимавшие участие в миссии «Аполлон 10». Облетев Луну, обратно они возвращались, когда скорость космического корабля в космосе составляла 39 897 км/час. В ближайшем будущем планируется отправить в пространство невесомости корабль «Орион», который будет выводить космонавтов на низкую околоземную орбиту. Возможно, тогда удастся побить 46-летний рекорд. Скорость света в космосе - 1 млрд км/час. Интересно, сможем ли мы преодолеть такое расстояние со своей максимально доступной скоростью в 40 000 км/час. Вот какая скорость в космосе развивается у света, но мы это не ощущаем здесь.

Теоретически человек может перемещаться со скоростью несколько меньшей скорости света. Однако это повлечет за собой колоссальный вред, особенно для неподготовленного организма. Ведь для начала такую скорость нужно развить, приложить усилие, чтобы безопасно ее снизить. Потому как быстрое ускорение и замедление может стать смертельным для человека.

В древние времена считалось, что Земля неподвижна, никого не интересовал вопрос о скорости ее вращения по орбите, потому как таких понятий в принципе не существовало. Но и сейчас дать однозначный ответ на вопрос сложно, потому что величина неодинаковая в разных географических точках. Ближе к экватору скорость будет выше, в районе юга Европы она равняется 1200 км/час, вот такая средняя скорость Земли в космосе .

От вертолётов и космических кораблей до элементарных частиц - перед вами 25 самых быстрых вещей в мире.

25. Самый быстрый поезд

Японский поезд JR-Maglev развил скорость, превышающую 581 километров в час при помощи магнитной левитации.

24. Самые быстрые американские горки


Формула Росса (Formula Rossa), недавно построенная в Дубае, позволяет искателям приключений развить скорость в 240 километров в час.

23. Самый быстрый лифт


Лифты в башни Тайбэй (Taipei Tower) в Тайване перевозят людей вниз и вверх на скорости в 60 километров в час.

22. Самый быстрый серийный автомобиль


Бугатти Вейрон ЕВ 16.4 (Bugatti Veyron EB 16.4), разгоняющаяся до 430 километров в час, является самой быстрой в мире машиной, допущенной к эксплуатации на дорогах общего пользования.

21. Самый быстрый несерийный автомобиль


15 октября 1997 года автомобиль с ракетной тягой Thrust SSC преодолел звуковой барьер в пустыне Невада.

20. Самый быстрый пилотируемый самолёт


X-15 военно-воздушных сил США не только разгоняется до впечатляющей скорости (7270 километров в час), но и поднимается настолько высоко, что несколько его пилотов получили «крылья» астронавтов от НАСА.

19. Самый быстрый торнадо


Торнадо, случившийся неподалёку от города Оклахома, был самым быстрым в плане скорости ветра, достигавшей 480 километров в час.

18. Самый быстрый мужчина


В 2009 году спринтер из Ямайки Усэйн Болт (Usain Bolt) установил мировой рекорд на дистанции в 100 метров, пробежав её за 9,58 секунды.

17. Самая быстрая женщина


В 1988 году американка Флоренс Гриффит-Джойнер (Florenc Griffith-Joyner) пробежала 100-метровку за 10,49 секунды - рекорд, который до сих пор никто не побил.

16. Самое быстрое наземное животное


Помимо того, что гепарды быстро бегают (120 километров в час), они ещё и способны разгоняться быстрее большинства серийных автомобилей (от 0 до 100 километров в час за 3 секунды).

15. Самая быстрая рыба


Отдельные особи вида парусник могут разгоняться до 112 километров в час.

14. Самая быстрая птица


Сапсан это также самое быстрое животное в мире в целом и может превышать скорость в 325 километров в час.

13. Самый быстрый компьютер


Хотя, скорее всего, этот рекорд уже будет побит к тому моменту, когда вы будете читать статью, Млечный Путь-2 (Milky Way-2) в Китае является самым быстрым компьютером в мире.

12. Самая быстрая подводная лодка


Рекорды регистрировать в подобных вещах сложно, так как информация о подводных лодках обычно держится в тайне. Однако по некоторым оценкам наибольшую скорость развила советская подводная лодка К-162 в 1969 году. Скорость составляла около 44 узлов.

11. Самый быстрый вертолёт


В июле 2010 года Сикорский Х2 (Sikorsky X2) установил над Уэст-Палм-Бич (West Palm Beach) новый рекорд скорости - 415 километров в час.

10. Самая быстрая лодка


Мировой водный рекорд скорости является официально признанной максимальной скоростью, развитой водным транспортов. На данный момент рекордсменом является Дух Австралии (Spirit of Australia), достигший 511 километров в час.

9. Самый быстрый спорт с ракетками


В бадминтоне волан может достигать скорости более 320 километров в час.

8. Самый быстрый наземный транспорт


Военные ракетные салазки развивают скорость превышающую Мах 8 (9800 километров в час).

7. Самый быстрый космический корабль


В космосе скорость может измеряться только относительно других объектов. Учитывая это, самым быстрым космическим аппаратом, двигающимся от Солнца на скорости 62000 километров в час, является Вояджер-1 (Voyager 1).

6. Самый быстрый едок


Джоуи «Челюсти» Честнат (Joey “Jaws” Chestnut) на данный момент признан Международной Федерацией Соревнований Едоков (International Federation of Competitive Eating) чемпионом мира после того, как он съел 66 хот-догов за 12 минут.

5. Самый быстрый краш-тест


Для определения рейтинга безопасности EuroNCAP обычно проводит свои краш-тесты на скорости в 60 километров в час. Однако, в 2011 году, они решили увеличить скорость до 190 километров в час. Просто для развлечения.

4. Самый быстрый гитарист


Джон Тейлор (John Taylor) установил новый мировой рекорд, идеально сыграв «Полёт Шмеля» на 600 ударах в минуту.

3. Самый быстрый рэпер


No Clue получил титул «самый быстрый рэпер» в Книге Рекордов Гинеса, когда он произнёс 723 слога за 51,27 секунды. За секунду он произносил около 14 слогов.

2. Самая большая скорость


Технически самая большая скорость во Вселенной это скорость света. Однако тут есть несколько оговорок, которые приводят нас к первому пункту…

1. Самая быстрая элементарная частица


Несмотря на то, что это спорное утверждение, учёные из европейского центра ядерных исследований недавно провели эксперименты, в ходе которых мю-мезон нейтрино преодолели дистанцию между Женевой, Швейцария и Гран-Сассо, Италия на несколько наносекунд быстрее света. Однако, на данный момент, фотон всё ещё считается королём скорости.

Корзников приводит расчеты, что при скорости более 0,1 С космический корабль не успеет изменить траекторию полёта и избежать столкновения. Он считает, что при субсветовой скорости космический корабль разрушится до достижения цели. По его мнению межзвёздное путешествие возможно только при существенно меньших скоростях (до 0,01 С). С 1950-60 гг. в США разрабатывался космический корабль с ядерно-импульсным ракетным двигателем для исследования межпланетного пространства «Орион».

Межзвёздный полёт - путешествие между звёздами пилотируемых аппаратов или автоматических станций. По словам директора Исследовательского центра Эймса (НАСА) Симона П. Уордена, проект двигателя для полётов в дальний космос может быть разработан в течение 15-20 лет.

Пусть полёт туда и полёт обратно состоят из трёх фаз: равноускоренного разгона, полёта с постоянной скоростью и равноускоренного торможения. Пусть половину пути космический корабль двигается с единичным ускорением, а вторую половину - с таким же ускорением тормозит (). Затем корабль разворачивается и повторяет этапы разгона и торможения.

Для межзвездного полета пригодны не все типы двигателей. Расчёты показывают, что с помощью космической системы, рассмотренной в данной работе, можно достичь звезды Альфа Центавра… примерно за 10 лет». В качестве одного из вариантов решения проблемы предлагается использование в качестве рабочего вещества ракеты элементарные частицы, движущиеся со световой или околосветовой скоростью.

Какова скорость современных космических кораблей?

Выхлопная скорость частиц от 15 до 35 километров в секунду. Поэтому появились идеи снабжать межзвездные корабли энергией из внешнего источника. На данный момент этот проект неосуществим: двигатель обязан иметь скорость истечения 0.073 с (удельный импульс 2 миллиона секунд), при этом его тяга должна достигать 1570 Н (то-есть 350 фунтов).

Столкновение с межзвёздной пылью будет происходить на околосветовых скоростях и по физическому воздействию напоминать микровзрывы. В научно-фантастических произведениях нередко упоминаются методы межзвёздных перелётов, основанные на перемещении быстрее скорости света в вакууме. Самый большой экипаж состоял из 8 космонавтов (в его составе была 1 женщина), стартовавших 30 октября 1985 г. на корабле многоразового использования «Челленджер».

Расстояние до ближайшей звезды (Проксимы Центавра) составляет около 4,243 световых лет, то есть примерно в 268 тысяч раз больше расстояния от Земли до Солнца. Полёты на звездолётах занимают существенное место в научной фантастике.

В этой ситуации время полёта в земной системе отсчёта составит примерно 12 лет, тогда как по часам на корабле пройдёт 7,3 года. Пригодность различных типов двигателей для межзвёздных полётов в частности была рассмотрена на заседании Британского межпланетного общества в 1973 г. доктором Тони Мартином (Tony Martin).

В ходе работ были предложены проекты большого и малого звездолётов («кораблей поколений»), способных добраться до звезды Альфа Центавра за 1800 и 130 лет соответственно. В 1971 году в докладе Г. Маркса на симпозиуме в Бюракане было предложено использовать для межзвёздных перелётов лазеры рентгеновского диапазона. В 1985 году Р. Форвардом была предложена конструкция межзвёздного зонда, разгоняемого энергией микроволнового излучения.

Космический предел скорости

Основная составляющая массы современных ракет - это масса топлива, требуемого ракете для разгона. Если удастся каким-нибудь образом использовать в качестве рабочего тела и топлива окружающую ракету среду, можно значительно уменьшить массу ракеты и достичь за счёт этого больших скоростей движения.

В 1960-е годы Бюссаром (англ.) была предложена конструкция межзвёздного прямоточного реактивного двигателя (МПРД). Межзвёздная среда состоит в основном из водорода. В 1994 году Джеффри Лэндис (англ.) предложил проект межзвёздного ионного зонда, которых получал-бы энергию от лазерного луча на станции.

Ракетный корабль по проекту «Дедал» оказался таким громадным, что строить его пришлось бы в открытом космосе. Одним из недостатков межзвездных кораблей является необходимость нести с собой энергосистему, что увеличивает массу и соответственно снижает скорость. Так электрический ракетный двигатель имеет характеристическую скорость в размере 100 км/с, что слишком медленно для полета к далеким звездам за приемлемый срок.