И к ослепшему вернулось зрение. Ученые: полное восстановление зрения у слепых людей нельзя осуществить

Как вернуть зрение слепым?

В предыдущей части статьи мы сделали акцент на технологиях, которые больше ориентированы на пациентов с «пониженным зрением», но в некоторых случаях могут подойти и полностью слепым людям. Когда человек ещё не совсем ослеп, помочь ему всё же легче. А что же делать, когда удаётся в лучшем случае отличить свет от тьмы (четвёртая категория по Международной классификации) или когда человек вообще не различает свет (пятая категория)? Оказывается, современные технологии имеют рецепты и на такие случаи жизни. Тема так называемого бионического глаза, в котором задействованы такие элементы как процессор, видеокамера и передача информации по нейронам, уже поднималась в новостной ленте и, похоже, еще не раз поднимется.

Читая новостные заметки разных изданий, можно подумать, что бионический глаз - это абсолютное спасение для людей с проблемным зрением. Но журналисты иногда любят приукрасить действительность. Попробуем разобраться, что же действительно по силам новому изобретению?

В настоящее время медицинская наука ещё не имеет возможности создать электронную замену для целого глаза. Определённые успехи наблюдаются лишь в разработке имплантатов, которые имитируют функциональность отдельных элементов зрительной системы и могут их заменить. То есть бионический глаз может помочь лишь при некоторых (и в большинстве случаев весьма редких) формах слепоты. Но встречающиеся невероятные факты возвращения зрения полностью ослепшим людям сами по себе не могут не привлечь нашего внимания.

Самые большие успехи пока достигнуты в области создания протезов сетчатки глаза. Проблемы с деградацией сетчатки глаза нередко наблюдаются у людей в пожилом возрасте. Рецепторы при старении всё слабее реагируют на свет и со временем вовсе атрофируются, что приводит к полной слепоте. Но нервные клетки сетчатки глаза и сам зрительный нерв ведь остаются целыми и работоспособными. Именно это и используется в большинстве разработок, которые стимулируют оставшиеся живые клетки. На данном этапе развития отрасли получаемое изображение имеет очень маленькое разрешение и является черно-белым. А ведь цветные Full HD-телевизоры тоже не сразу появились.

Первый коммерчески доступный имплантат — ARGUS

Выделяют два основных подхода к построению имплантата сетчатки (на самом деле способов есть больше, но лишь два из них наиболее часто используются в реальных прототипах) - эпиретинальный и субретинальный. Вся разница между ними в том, что первые размещаются на внутренней поверхности сетчатки, а вторые - между внешним слоем сетчатки и пигментным эпителием. Эпиретинальные имплантаты непосредственно стимулируют нервные узлы. Неотъемлемой частью такой системы является внешняя камера, которая захватывает изображение, обрабатывает его и передаёт беспроводным способом имплантируемому электроду. Внешний трансмиттер также необходим для обеспечения постоянным питанием имплантата. Чаще всего камера и видеочип монтируются на очки. К достоинствам такого подхода относятся скромные габариты имплантата и возможность совершенствования системы за счёт внешнего оборудования, то есть уже без дополнительного хирургического вмешательства. С другой стороны, сложность алгоритмов обработки изображения относят к недостаткам эпиретинальных имплантатов.

Субретинальные имплантаты имеют более простую структуру. Эта система включает массив микрофотодиодов, монтируемых на единственный чип. Системы такого типа зачастую имеют намного больше электродов по сравнению с эпиретинальными имплантатами, что позволяет передавать больше информации о цвете. Такие системы могут вовсе не включать очков, а так как чип с микрофотодиодами меняет положение вместе с движением глаза, то пациент при переводе взгляда не должен вращать головой, как в случае с эпиретинальной системой. Главным недостатком таких систем является нехватка падающего света для формирования микрофотодиодами достаточного по величине тока. Поэтому во многих случаях всё же приходится использовать внешний источник питания. Кроме того, существует риск повреждения сетчатки из-за перегрева имплантата.

Самым ярким примером эпиретинального подхода является устройство ARGUS (сейчас актуальна вторая версия протеза, ARGUS II). Этот имплантат интересен тем, что стал первым в мире таким устройством, одобренным FDA (Food and Drug Administration). В прошлом году ARGUS II стал официально продаваться в США. Имплантат рассчитан на частичное восстановление зрения страдающих пигментным ретинитом людей, которых в мире насчитывается около 1,5 млн. Проблема в том, что стоимость аппарата превышает $100 тыс., поэтому на реальную помощь пока могут надеяться немногие из них.

Также хотелось бы отметить разработку группы немецких исследователей MPDA Project Alpha IMS, которая является примером субретинального подхода. Чип использует массив микрофотодиодов, которые собирают свет и преобразовывают его в электрический ток. При этом, как и в большинстве таких систем, есть потребность во внешнем источнике питания.

В июне этого года опубликован отчёт о результатах клинических испытаний имплантата. В эксперименте участвовали 29 слепых пациентов. Благодаря устройству, им удалось повысить остроту зрения до 20/546. Четверо пациентов смогли читать тексты с помощью имплантата. А 13 участников отметили повышение комфорта при выполнении повседневных задач.

Из «свеженького» хочется выделить также разработку Стэндфордского университета, лицензированную французской компании Pixium Vision, - так называемую систему восстановления зрения PRIMA. Как и ARGUS, она создана для пациентов с дегенерацией сетчатки. Система включает три компонента: очки со встроенной мини-камерой, систему беспроводной передачи информации к электродам имплантата, а также карманный блок с процессором. Здесь мы видим своеобразное объединение эпиретинального и субретинального подходов: схема стандартна для эпиретинальных систем (включая смарт-очки), но для имплантата используется массив микрофотодиодов, как в субретинальных.

В отличие от системы Alpha IMS, в которой используется массивный имплантируемый источник питания с кабелями, пересекающими склеру, Pixium Vision предлагает беспроводной фотогальванический субретинальный протез с питанием от импульсов света.

Результаты исследований, опубликованные в журнале Nature Medicine, показали способность PRIMA частично восстанавливать зрение крыс с дегенерацией сетчатки. Конечно, по уровню развития PRIMA ещё далеко до коммерчески доступной ARGUS, зато авторы пообещали, что их система будет в пять раз превосходить по уровню улучшения зрения существующие решения. Среди достоинств PRIMA отмечается одновременная передача изображения и питания для имплантата, благодаря чему отдельный внешний адаптер питания уже не требуется. Устройство поможет слепым распознавать предметы и передвигаться, минуя препятствия. Клинические испытания PRIMA стартуют в 2016 году.

Примеры из жизни

Итак, пока что хай-тек-офтальмология может помочь далеко не во всех случаях. Если у вас пониженное зрение, то интеллектуальные очки, о которых мы говорили выше, и другие вспомогательные технологии вполне могут хотя бы существенно облегчить жизнь, если не полностью вернуть полноценное зрение. А вот с другими болезнями, ведущими к слепоте, ситуация пока намного сложнее. Некоторые проблемы можно решить «вшиванием» имплантата, но и это, к сожалению, доступно лишь избранным счастливчикам.

Однако закончить статью хотелось бы не этим, а примерами из жизни, когда высокие технологии действительно творили чудеса, возвращая людям способность видеть.

В начале года средства массовой информации подхватили проникновенную историю о том, как женщина, страдающая болезнью Штаргардта (наследственное заболевание макулярной области, то есть самого центра сетчатки) и, по сути, слепая, смогла увидеть своего новорождённого. Без очков eSight (о них мы упоминали выше) Кейт Бейц (Kate Beitz) видела окружающий мир как одно сплошное размытое пятно. Но высокие технологии позволили ей различать эмоции сына и даже увидеть схожесть его губ со своими. В Северной Америке уже почти две сотни людей являются счастливыми владельцами этих чудо-очков.

А вот воспоминания преподавателя Лондонского университета во Франции Ханны Томсон, которая провела два часа с Хиксом и его командой во время тестирования очков Assisted Vision (у Ханны зрение на грани слепоты — она практически ничего не видит): «Когда я их надела, я почувствовала себя персонажем из какой-то научной фантастики. Я взглянула на мир совсем по-другому. Предметы, которые я раньше совсем не могла видеть, пролетали мимо моих глаз как причудливые светло-фиолетовые тени». Ханне оказалось очень легко пользоваться очками. В считаные минуты она научилась ориентироваться с помощью их в пространстве и определять все препятствия. По её мнению, особенно полезными очки Assisted Vision могут быть при ярком солнечном свете. Её обычные очки в таких условиях ничем не могли помочь, и в яркий солнечный день было очень трудно уследить за ребёнком на прогулке.

Сразу поясним: речь не идёт о полной копии органа зрения, которым заменяют невидящий глаз. В отличие, скажем, от протеза руки или ноги, который внешне точно воспроизводит утраченную часть тела. «Искусственный глаз» - это конструкция из очков, миникамеры, преобразователя видеосигнала, который крепится на поясе, и чипа, вживляемого в сетчатку глаза. Такие решения, сочетающие живое и неживое, биологию и технику, в науке получили название бионических.

Первым в России обладателем бионического глаза стал 59-летний слесарь-фрезеровщик Григорий Ульянов из Челябинска.

«Наш пациент - 41-й в мире, которому сделана подобная операция, - объяснила «АиФ» министр здравоохранения Вероника Скворцова . - До 35 лет он видел. Потом зрение начало сужаться от периферии к центру и полностью погасло к 39 годам. Так вот эта интересная технология позволяет человеку вернуться из тьмы. На сетчатку ставится чип, который создаёт цифровой образ изображения за счёт трансформации изображения, фиксируемого видео-камерой очков, через специальный преобразователь. Этот цифровой образ передаётся через сохранённый зрительный нерв в кору голов-ного мозга. Самое важное - что мозг распознаёт эти сигналы. Конечно, зрение восстанавливается не на 100%. Поскольку в процессоре, вживляемом в сетчатку, всего 60 электродов (что-то вроде пикселей в экранах, для сравнения: современные смартфоны имеют разрешение от 500 до 2000 пикселей. - Ред.), то изображение возникает более примитивное. Оно чёрно-белое и состоит из геометрических форм. Скажем, дверь такой пациент видит чёрной буквой «П». Тем не менее это намного лучше, чем позволяла видеть первая версия прибора с 30 электродами.

Конечно, пациенту требуется длительная реабилитация. Его нужно учить понимать зрительные образы. Григорий настроен очень оптимистично. Как только подключили анализатор, он сразу же увидел световые пятна и начал считать число лампочек на потолке. Мы очень надеемся, что его мозг сохранил старые зрительные образы, ведь пациент лишился зрения уже в зрелом возрасте. Воздействуя на мозг специальными реабилитационными программами, можно заставить его «соединить» те символы, которые он сейчас получает, с образами, которые хранятся в памяти с тех пор, когда человек видел».

Прозреют все?

В нашей стране это первый подобный опыт. Операцию провёл директор научно-исследовательского центра офтальмологии РНИМУ им. Пирогова хирург-офтальмолог Христо Тахчиди . «Пациент сейчас дома, чувствует себя хорошо, впервые увидел внучку, - говорит профессор Х. Тахчиди. - Обучение у него идёт форсированными темпами. Ребята-инженеры из США, которые приехали подключать электронику спустя пару недель после операции, удивились, как быстро он освоил работу системы. Это удивительный человек, настроенный на победу. И его оптимизм передаётся врачам. Есть несколько программ обучения. Сейчас он учится обслуживать себя в быту - приготовить еду, убрать за собой. Следующий шаг - освоить самые необходимые маршруты: до магазина, аптеки. Дальше - научиться чётко видеть границы объектов, например пешеходной дорожки. Появление более качественной техники, а значит, и более качественного восстановления зрения, не за горами. Вспомните, какими были мобильные телефоны 10-15 лет назад и каковы они сейчас. Главное - пациент социально реабилитируется. Может обслуживать себя».

Правда, гордиться мы пока можем только виртуозным исполнением. Вся технология, равно как и конструкция, - импортные. Недешёвые. Только прибор стоит 160 тыс. долл. А вся технология целиком - 1,5 млн долл. Однако есть надежда, что скоро появятся отечественные приборы.

«Мы начали разработку ретинального имплантата совместно с Первым Санкт-Петербургским государственным медицинским университетом им. Павлова. Конечно, он будет дешевле и доступнее для пациентов, чем импортные», - обнадёжил «АиФ» главный офтальмолог Минздрава, директор НИИ глазных болезней им. Гельм-гольца Владимир Нероев .

Надо сказать, что разработки бионического глаза ведутся уже 20 лет в лабораториях США, Японии, Германии, Австралии. В 1999 г. в США слепому пациенту впервые вживили чип в сетчатку. Правда, результаты до сих пор не афишируются. Недостатков у этой методики много. Во-первых, больного надо долго обучать пониманию зрительных образов, то есть у него изначально должен быть высокий уровень интеллекта. Патология глаз, при которой можно применять эту технологию, очень ограниченна. Это заболевания, связанные с повреждением глазных клеток, превращающих свет в электрические сигналы. В таких случаях можно использовать прибор, который будет выполнять эту работу вместо повреждённых клеток. Но зрительный нерв должен быть сохранён. На Западе уже пошли дальше и разработали чипы, которые вживляют в кору головного мозга, чтобы миновать проводящие пути глаза и сразу передать сигнал в зрительный участок головного мозга. Такой «глаз» можно применять пациентам с более широкой патологией (когда перебит зрительный нерв или наступила его полная атрофия, невозможно провести импульс от чипа в сетчатке). Занимаются этим нейрохирурги. На данный момент о результатах ничего не известно - они засекречены.

Пока же бионическое направление в России активно развивается в других областях. В частности, при создании бионических протезов рук и ног. Ещё одно применение бионики - приборы для восстановления слуха. «Первая кохлеарная имплантация была сделана в России 10 лет назад, - говорит Вероника Скворцова. - Сейчас мы их делаем более тысячи в год и вошли в тройку лидеров в мире. Все новорождённые дети проходят аудиологический скрининг. Если есть определённые необратимые нарушения слуха, без очереди выполняется имплантация. Малыши развиваются, как и слышащие, учатся нормально говорить и не отстают в развитии».

Британец Крис Джеймс, ослепший вследствие генетического заболевания более 20 лет назад, стал первым пациентом в Соединенном Королевстве, который перенес операцию по вживлению так называемого бионического глаза.

Уникальную процедуру, которая заняла 8 часов, провели медики в Оксфорде: в сетчатку глаза был вживлен микрочип, подобный тому, что используют при сборке камер мобильных телефонов.

Сенсорный датчик площадью всего в 3 миллиметра способен передавать изображение в 1500 пикселей. Свет, который фиксирует прибор, превращается в электронный сигнал. Он доходит до той части мозга, которая отвечает за визуальную обработку информации.

После успешной операции пацинет способен видеть ограниченное зернистое черно-белое изображение, сравнимое с тем, как если бы здоровый человек смотрел на дальнее расстояние через небольшое мутное окошко.

Из-за того что Крис долгое время был незрячим, его мозгу потребуются несколько недель, чтобы полностью начать обрабатывать получаемые с помощью чипа образы.

Во время проверок зрения Крис рассказал, что видит лишь очертания предмета, как, например, тарелки, но не видит ее полностью. Изображение очень фрагментарное, однако мы верим, что со временем он научится даже распознавать лица людей. Для человека, который был слеп на протяжении 20 лет, это означает независимость, - рассказал один из специалистов, проводивших операцию, профессор Роберт Макклейн.

Стоимость новейшего оборудования составляет около 100 000 долларов, сама операция обойдется в сумму от 10 000 до 15 000 долларов. Тем не менее эксперты уверены, что она сможет стать реальной альтернативой для слепых людей по всему миру, которые ранее могли пользоваться лишь услугами собак-поводырей, чье обучение стоит более 120 000 долларов.

Бионические глаза активно разрабатывают в США и Австралии. Технология была одобрена для проведения первых операций в Европе в 2011 году.

В 2008 году были проведены первые операции, использовавшие подобную технологию, однако тогда чип не вживлялся непостредственно в глаз пациента, а прикреплялся к специальным очкам.

МОСКВА, 19 янв - РИА Новости. Люди, потерявшие зрение в результате несчастных случаев или ненаследственных болезней, вряд ли смогут заново обрести полноценное зрение из-за того, что структура зрительных центров и связанных с ними нейронов в мозге человека необратимо меняется, заявляют канадские нейрофизиологи в статье, опубликованной в Journal of Neurophysiology .

"У нас была редкая возможность изучить случай женщины, которая страдала от слабого зрения с момента рождения и чье зрение было внезапно восстановлено во взрослые годы жизни после имплантации искусственной роговицы в ее правый глаз. С одной стороны, мы выяснили, что зрительная кора мозга сохраняет способность формировать новые связи достаточно долгое время, а с другой, мы обнаружили, что даже после нескольких месяцев после операции центры зрения так и не восстановили свою нормальную работу", — объясняет Джулия Дормал (Giulia Dormal) из университета Монреаля (Канада).

Дормал и ее коллеги нашли, возможно, фундаментальное и самое серьезное препятствие для восстановления зрения, изучая случай 50-летней жительницы штата Квебек, которая проходила операцию по имплантации искусственной роговицы глаза. Подобные процедуры длятся несколько недель, что дало ученым шанс проследить за тем, как мозг пациентки реагировал на внезапное "воскрешение" глаз и резкое улучшение в остроте зрения.

Томографические снимки, сделанные еще до начала операции, показали, что зрительные центры пожилой женщины были по большей части "перепрограммированы" на решение других задач. К примеру, они гораздо сильнее реагировали на звуковые стимулы, чем на картинки, которые исследователи показывали пациентке.

Тем не менее не все было потеряно — после имплантации роговицы, несмотря на десятилетия почти полной слепоты, зрительные центры в коре мозга женщины начали постепенно переключаться на нормальный режим работы и обслуживать информацию, поступающую из глаз.

Однако по мере дальнейших наблюдений нейрофизиологи заметили нечто странное — темпы восстановления зрительных центров резко замедлились, и даже через семь месяцев после завершения пересадки значительная часть коры в этой части мозга реагировала не на визуальные, а звуковые раздражители. Подобная проблема не прошла бесследно для зрения пациентки — несмотря на отсутствие проблем с самим глазом, острота ее зрения по-прежнему оставалась ниже нормы.

Данный факт, как полагают ученые, может послужить непреодолимым препятствием для всех проектов по восстановлению зрения при помощи кибернетических аналогов глаза или искусственно выращенных его частей.

18.04.11 Помогая прозреть слепым индийским детям, американские нейрофизиологи и специалисты по искусственному интеллекту попутно справились с 300-летней философской проблемой, над решением которой бились лучшие мыслители Европы, не уверенные, существует ли что-то помимо опыта, данного нам в ощущениях.

Три столетия назад, в марте 1692 года, ирландский математик Уильям Молинё в письме британскому философу Джону Локку сформулировал парадоксальную задачу. От её решения, как показала последующая многовековая дискуссия, которая собрала лучшие философские умы и точка в которой не поставлена до сих пор, зависит фундаментальное понимание природы человеческого разума, мышления и, в конечном итоге, феномена человека вообще. Задача (или, как стали ее называть впоследствии, загадка Молинё) выглядит очень просто и нам, зрячим людям, как-то даже странно: может ли слепой от рождения человек, внезапно обретший зрение, различить, не прикасаясь к этим предметам, куб и шар?

Теперь группе ученых из Массачусетского технологического института (MIT) удалось однозначно ответить на этот вопрос, пользуясь экспериментальными медицинскими методиками. Итак, исследование группы пациентов позволило сотрудникам факультета мозга и когнитивных наук MIT дать окончательный ответ на трехсотлетнюю загадку Молинё – и этот ответ отрицательный.
Человеческий мозг не обладает врожденной способностью связывать воедино разнотипные сенсорные данные. Зато может очень быстро этому учиться.

Уникальный шанс ответить на загадку Молинё предоставил «Проект Пракаш», реализованный доктором Синхом в Индии с двумя целями – решить проблему лечения слепорожденных детей, которых в этой стране из-за недостаточного качества и доступности медицины очень много, а также отработать методику сенсорной и психологической аккомодации детей с возвращенным зрением. Собственно, решение натруженной трехсотлетней проблемы западноевропейской философии явилось побочным результатом этого проекта (на случай, если у кого возникнут сомнения в этичности проведенного эксперимента), дав при этом важный практический выход в разработке методики реабилитации бывших слепых.

Участие в эксперименте было добровольным и не увязывалось с оказываемой детям медицинской помощью. Тесты проводились в течение 48 часов сразу после снятия глазных повязок. Таким образом самое строгое и наиболее трудновыполнимое условие – не допустить смешения тактильной и визуальной информации, присущего зрячим от рождения людям, которое поставили для тогда еще умозрительного эксперимента философы-эмпирики, – было соблюдено.

В первом проверочном тесте прозревшему ребенку сначала демонстрировался простой геометрический объект, собранный из пластмассовых деталей. Затем, чтобы удостовериться, что функция зрения восстановлена достаточно, а ребенок понимает смысл задачи, его просили распознать показанный ранее объект среди двух непохожих. То же самое – распознать изученный ранее объект – его просили проделать с двумя другими объектами, только уже на ощупь.

Удостоверившись, что ребенок уверенно различает объекты тактильно и визуально (еще одно из строгих условий эксперимента, озвученное европейскими эмпириками), экспериментаторы перешли к самому интересному – тактильно-визуальному тесту, попросив сначала только ощупать объект, а потом идентифицировать его визуально среди пары разных объектов. Оказалось, что опознать среди пары визуально разных изученный только на ощупь образец дети уже не могут. Однако тактильно-визуальная связь выстраивается мозгом довольно быстро: уже через две недели дети начинали все правильней распознавать объекты в кросс-сенсорных тестах.

В терминах когнитивной нейрофизиологии это говорит об отсутствии у нас врожденной способности интегрировать разносенсорные данные (а в терминах европейской философии, что эмпиристы, пусть и через 300 лет, оказались правы: неожиданно прозревший слепец не сможет сказать, где куб, а где шар, не прикасаясь к этим фигурам, хотя тактильно он может различать их замечательно). Априорного внечувственного опыта, данного нам вне ощущений, не существует. Таким образом, и абстрактные «внечувственные» категории являются в основе эмпирическими.

– Почему для участия в эксперименте были выбраны именно подростки?

– Вопрос, возможно ли осуществлять кросс-сенсорную идентификацию объектов или развивать со временем эту способность, конечно же, должен быть адресован к представителям всех возрастных групп. В принципе вполне возможно, что молодые люди справляются с этой задачей лучше в силу очевидных причин, таких, например, как большая пластичность восприятия, свойственная молодому возрасту. Или тому, что период предшествующей слепоты был у них короче. В своем эксперименте мы старались как можно больше расширить возрастной диапазон его участников. Довольно часто дети с трудом идут на сотрудничество или просто не понимают, чего от них хотят, но нам повезло работать с одним смышленым и покладистым мальчиком 8 лет, который был самым молодым в группе. Вообще найти людей, чьи случаи удовлетворяли бы чрезвычайно строгим требованиям к научным тестам, было очень сложно, и у нас не было возможности работать с людьми старше 17 лет, но результаты эксперимента говорят в пользу того, что мы вряд ли получим другие результаты в более старших группах.

Возможно, конечно, что более молодые испытуемые показали бы «кросс-сенсорный перенос» (то есть способность правильно распознавать объект) сразу же после первого визуального контакта с ним, демонстрируя таким образом врожденную способность различения.

Однако было бы очень странным, если эта способность, которой подростки быстро обучаются, не прибегая, как мы выяснили, ни к каким врожденным навыкам, оказалась бы доступна младенцам, благодаря именно им.

Более того, установление адаптивной и обучаемой связи между осязанием и зрением протекает намного более критично в детском возрасте, чем во взрослом, поскольку конечности ребенка растут, его мускулатура быстро укрепляется, так что мозгу приходится все время поспевать за этими изменениями, так как уже установившиеся визуально-сенсорные связи в процессе нормального роста подвергаются постоянной перекалибровке. По здравом размышлении, кросс-сенсорная система связей обязана переучиваться очень быстро, а наше исследование как раз подтверждает это.

– Можно ли решить «проблему Молинё» не с помощью тестов, а средствами инструментального мониторинга мозговой активности?

– В случае инструментального мониторинга такие эксперименты требуют большого количества испытуемых для получения статистически «усредненных» результатов, поскольку результаты таких обследований могут отличаться в силу различных условий экспериментов. Когда у тебя мало испытуемых, статистически достоверный результат получить чрезвычайно сложно. В случае с «проблемой Молинё» потребовалось бы также знать наверняка, как точно интерпретировать «мозговые сигналы», что сложно даже в случае со здоровыми людьми. В случае же с нашими детьми долгий период визуальной депривации должен сильно изменить картину сигнальных мозговых паттернов по сравнению с нормальной, что сделало бы задачу интерпретации таких данных сложной вдвойне. Таким образом, даже если бы мы обнаружили разницу в мозговой активности между нашими участниками и здоровыми детьми (либо у наших участников в момент обретения зрения и у них же, но через некоторое время), мы не поняли бы ни истинного значения, ни причин этого отличия. Насколько нам известно, в мозгу не выявлено никакой «кросс-сенсорной зоны», или «зоны объектной идентификации», которую можно было прицельно мониторить.
На современном этапе уровня понимания нейрофизиологией самой техники построения мозгом образов пока совершенно недостаточно, чтобы решить «проблему Молинё», наблюдая работу мозга.

– Какую проблему (в нейронауке) решил этот эксперимент и какие новые возникли?

– В широком смысле этот эксперимент рассматривает проблему «представления» – в какой форме мозг «хранит данные» об объекте? Принимая во внимания, что испытуемые отлично выполняли визуально-визуальные и тактильно-тактильные тесты, мы можем предположить, что визуальные представления и тактильные представления были им хорошо доступны. Но являются ли эти представления сходными? Ответ, похоже, «нет». В противном случае визуально-тактильный тест работал бы без сбоев. Далее: если эти представления разные, существует ли врожденная связь между двумя типами этих представлений? Похоже, ответ вновь отрицательный, поскольку априорная связь позволила бы нашим детям пройти и тактильно-визуальный тест. Самое подходящее объяснение пока, что эти представления, сформированные в различных модальностях (тактильной и сенсорной), связываются друг с другом через опытное обучение.

Согласно полученным результатам, опубликованным в нашей статье, следующим большим вопросом должен быть «как именно формируется эта связь?» Иначе говоря, как так получается, что буквально за одну неделю (или чуть больше) спонтанного жизненного опыта в мозгу формируется устойчивая (или достаточно устойчивая, чтобы успешно пройти наши тактильно-визуальные тесты) кросс-сенсорная карта? Специфические механизмы такого обучения только должны быть прояснены, хотя у нас уже и есть теории на этот счет...

– Какое значение может иметь этот эксперимент в разработке систем искусственного интеллекта?

– Главный вызов «проблемы Молинё», является ли кросс-сенсорная связь врожденной или же это результат обучения.

В первом случае алгоритм, выстраивающий кросс-сенсорную связь, должен насчитывать сотни миллионов лет непрерывной эволюции, включающей в себя бесчисленное количество мини-экспериментов, наследуемых мутаций и закрепление удачных результатов естественным отбором. Подобный результат предполагает, что разработчикам искусственного интеллекта потребуется создать свой алгоритм, близкий к нему по изощренности. Второй случай, когда кросс-сенсорная связь устанавливается посредством обучения, предполагает, что искусственные алгоритмы должны уметь быстро и хорошо самообучаться, но отнюдь не должны содержать в себе всю необходимую информацию (для установления связи). Скорость обучения, которую мы наблюдали, также предполагает, что система даже не нуждается в избыточности входящих данных, чтобы построить кросс-сенсорную зависимость.
Если эти выводы корректны, то, по всей вероятности, можно, скажем, создать робота, который может адекватно обучаться, реагируя на физические изменения окружающего мира, явным образом не предусмотренные его конструкторами, то есть такие роботы могут обучаться и уверенно адаптироваться, даже если физические параметры постоянно варьируются из-за разной гравитации (в случае путешествия в космосе), влажности или аварийных ситуаций. Но как конкретно происходит такое обучение, остается непонятным.